Consensus on equine tendon disease: Building on the 2007 Havemeyer symposium

Introduction
This conference was held from 24 to 26 September 2007 in Iceland to bring together a number of clinicians and scientists interested in equine tendon disease; this injury accounts for a large number of days out of training/competition and/or retirement. It is evident that there have been considerable advances in this field over the past 20 years and here we draw together conclusions from the discussion of the following 4 key areas in equine tendon disease where a consensus view was reached to guide future research of most relevance to the equine industry: 1) severity grading and staging; 2) genetics of tendon disease; 3) the design of clinical trials; and 4) rehabilitation programmes.

Terminology
‘Tendinitis’ is commonly used to describe a nontraumatic overstrain injury to a tendon. The term ‘tendinosis’ has been suggested in the human field because many pathological specimens from human patients show no evidence of traditional histological features of inflammation. This, however, does not rule out components of the inflammatory cascade having some role, and so more recently, the nonspecific terms ‘tendinopathy’ or ‘tendon disease’ have been adopted. The latter may be the most appropriate given that it is clear that while clinical tendon overstrain injuries occur suddenly, most appear to be associated with previously accumulated degenerative processes; hence, the term ‘tendon disease’ has been used here.

Severity grading and staging of tendon disease

Severity
The severity of disease was thought to be most practically and objectively determined by ultrasonographic assessment of tendon cross-sectional area. The size of the hypoechoic lesion was thought to be less accurate because of the difficulty in accurately determining lesion size. Although only the central area of the injured tendon may be hypoechoic, damage to other parts of the tendon may still be present, and in more generalised lesions it is often not possible to delineate the lesion. Owing to the large natural variation in normal tendon cross-sectional area, injured tendon data (size and echogenicity) could be normalised to an internal ‘standard’, such as the contralateral tendon (although bilateral disease is common) or an area of the tendon that is rarely affected by disease in the same horse.

\[
\text{Percentage of tendon 'volume' affected} = \frac{\text{lesion CSA}}{\text{maximum tendon CSA}} \times 100
\]

Table 1: Proposed criteria for severity grading of superficial digital flexor tendon injuries (consensus includes previously proposed definitions)

<table>
<thead>
<tr>
<th>Proposed definitions</th>
<th>Havemeyer grade 1 (mild)</th>
<th>Havemeyer grade 2 (moderate)</th>
<th>Havemeyer grade 3 (severe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAPTEFN protocol [18]</td>
<td>0–15% of tendon ‘volume’ affected</td>
<td>16–25% of tendon ‘volume’ affected</td>
<td>>25% of tendon ‘volume’ affected</td>
</tr>
<tr>
<td>Lesion size at MIZ</td>
<td><10%</td>
<td>10–40%</td>
<td>>40%</td>
</tr>
<tr>
<td>Maximum tendon CSA</td>
<td><2 cm(^2)</td>
<td>2–5 cm(^2)</td>
<td>>5 cm(^2)</td>
</tr>
</tbody>
</table>

MIZ = maximum injury zone; CSA = cross-sectional area.

Ultrasonographic definition
The ultrasonographic definition of disease relies on identifying an increase in cross-sectional area, changes in echogenicity (usually hypoechoic change in the acute stage and a heterogeneous pattern in chronic disease), fibre alignment pattern in longitudinal images, shape, position and margination. The correlation between clinical and ultrasonographic criteria are commonly, but not always, matched. It is rare for there to be clinical positive findings without ultrasound, but less rare for there to be ultrasonographic positive findings and no clinical evidence of disease.

Concern was raised over the sensitivity of ultrasound to monitor disease accurately. Ultrasonography was not found to be particularly useful for this in human patients and had been recently found to be insensitive for predicting clinical disease [4]. However, it was agreed that for horses to return to normal use, the ultrasonographic parameters should be a stable cross-sectional area, homogeneous echogenicity and good longitudinal patterns.

Magnetic resonance imaging definition
A more accurate and/or sensitive definition of disease may be provided by MRI, although to be practical, this should be performed using standing units. Different sequences are available for characterisation of the injury, providing detailed information about the nature of the tissue contained within the disrupted area [5–8] and the condition of the surrounding tendon fibres. Identification of the optimal sequences would speed up application of the technique, hence reducing cost and improving practical application. It was considered important that, just as with ultrasonography, the changes observed on MRI need to be correlated with defined pathology.

Magnetic resonance imaging provides detailed information about the nature of soft tissue injury and is exquisitely sensitive to the presence of haemorrhage. However, reliably identifying acute vs. chronic tendon injury with MRI can be challenging, depending on the MRI findings present. The presence of fluid in a tendon indicates a moderate to severe abnormality, depending on the nature and distribution and is often associated with fibre disruption. Fluid is best detected with T2-weighted or fat suppressed images. Combining different sequences can be helpful in ageing haemorrhage.
TABLE 2: Summary of the parameters used to define and stage tendon disease

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
<th>Normal</th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultrasoundography</td>
<td>Cross-sectional area</td>
<td>Normal cross-sectional area</td>
<td>Enlargement of tendon</td>
<td>Enlargement only</td>
</tr>
<tr>
<td></td>
<td>Echogenicity</td>
<td>Even and bright echogenicity</td>
<td>Reduction in echogenicity</td>
<td>Heterogeneous and variable echogenicity</td>
</tr>
<tr>
<td></td>
<td>Longitudinal pattern</td>
<td>Prominent striated pattern</td>
<td>Reduction in longitudinal fibre pattern</td>
<td>‘Fibrotic’ longitudinal fibre pattern</td>
</tr>
<tr>
<td>Magnetic resonance imaging</td>
<td>Homogeneous low signal intensity</td>
<td>Enlargement of tendon with increased signal intensity</td>
<td>Enlargement of tendon with increased signal intensity; alternatively, enlarged with low signal intensity on all sequences</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>Vascular component</td>
<td>Sparse vascularity</td>
<td>Haemorrhage; increased vascularity</td>
<td>Neovascularisation; increased to normal vascularity</td>
</tr>
<tr>
<td></td>
<td>Fascicle organisation</td>
<td>Prominent fascicular pattern with linearly arranged fascicles</td>
<td>Fibre disruption, giving rise to a variation in crimp signifying partial rupture</td>
<td>Disorganised fascicular pattern Accumulation of proteoglycan between fascicles Cyst formation; fat necrosis Increased cellularity with cell rounding Acellular areas</td>
</tr>
<tr>
<td></td>
<td>Cellular component</td>
<td>Sparse tenocyte population</td>
<td>Tenocyte necrosis Inflammation and reparative cellular proliferation and fibroplasia; neutrophil and monocyte infiltration</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acellular areas in old tendon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mild to moderate injury is not always associated with fluid accumulation in the tendon, but increased signal intensity on proton density or T1-weighted images with no increased signal intensity or a slight to mild concurrent signal increase on T2-weighted and short TI inversion recovery images may be seen. This signal pattern can also be present following healing of a severe injury and can remain for an extended period of time following the dissipation of fluid. In other cases, acute and chronic injury can appear identical on MRI and findings should be correlated with the clinical examination of the horse.

Histological definition

Histological analysis could provide the most accurate definition of pathological change, although it is usually only appropriate post mortem because of the trauma created by biopsy techniques. It is important to distinguish between histological changes in the lesion itself vs. those associated with ageing or pre-existing tendon disease. While some features overlap, there is evidence that these are distinct pathological processes. The processes thought to be associated with age-related degeneration are not always characterised by histological changes, occurring more at a subcellular and molecular level. In addition, while some histological changes, such as acellular areas [9], may be more related to ageing change and therefore of questionable clinical significance they could still represent predisposition to injury or re-injury.

Several different pathologies exist in different tendons and ligaments and at different stages of the disease. Soon after the clinical onset of the injury, the lesion will show fibre disruption, haemorrhage, tenocyte necrosis, inflammation and reparative cellular proliferation and fibroplasia, i.e. a wound healing profile. Chronic (often also termed ‘degenerative’) tendon disease, which can also occur in areas potentially well removed from the site of the initial lesion [10], are characterised by increased tenocyte numbers and cell rounding, neo-vascularisation, collagen fibril malalignment, interfascicular matrix accumulation and proteoglycan accumulation. Importantly, degenerative change lacks inflammatory cell infiltration and may arise as an end-stage of previous injury or because of alterations in loading. These pathological changes are consistent between different tendons and across species.

Histological changes are well described in human tendon, including degenerative lesions that have been identified in significant numbers of asymptomatic individuals and that have been determined to have greater severity when observed in specimens from acutely ruptured Achilles tendons [11,12]. Some of these changes, including alterations in crimp waveform and variation in cellular density, have been looked for and described in horses, while others, including abnormal tenocyte morphology, myxomatous or lipid degeneration and collagen microtears, have not [1,2,9]. There has not been a recent study of asymptomatic and ruptured equine tendons to define more clearly the normal and pathological histological features of the matrix and cellular populations in digital tendons and ligaments of horses of different ages and breeds and varying exercise histories. The accuracy and detail of histological descriptions would be improved by the involvement of pathologists in such studies.

The participants considered there to be a need for a standardised histological scoring system. One of the best examples was that of Movin et al. [12], which is a modification of the protocol used by Astrom and Rausing [11]. The system has been further modified by Maffulli et al. [13,14]. The system uses a 4-point scoring, where 0 is normal, 1 slightly abnormal, 2 moderately abnormal and 3 markedly abnormal, and each of the following 8 parameters were assessed: fibre structure, fibre arrangement, roundness of nuclei, regional variations in cellularity, increased vascularity, decreased collagen staining, noncollagenous matrix accumulation and fibrosis/hyalinisation. Thus, 0 was normal and the most severe pathology 24. Scores between 1 and 8 were classified as slightly abnormal, between 9 and 16 as moderately abnormal and between 17 and 24 as markedly abnormal. This can be simplified into the assessment of the following 3 broad categories: 1) cellular changes, i.e. cellularity and cell morphology (rounding); 2) vascularity; and 3) organisation, i.e. collagen fibre alignment, interfascicular matrix infiltration and proteoglycan content (e.g. toluidine blue staining).

Because of the variation of pathology across the tendon, a sufficiently representative area is required to provide a confident picture of the tendon as a whole. It was recommended that ideally more than one section from each tendon sample should be evaluated, with at least 10 representative fields (×20) being scored from each section. As some fields may have
limited pathology, scores from each field should then be summed (rather than averaged) to give a total score for the tendon section.

Genetics of tendon disease

It is often difficult to determine the relative importance of genetics and the environment for tendon disease. Both genetic and environmental factors should be included in epidemiological ‘models’. While some environmental factors are considered to be influenced by genetic components, this is likely to be less so in the horse, because the horse has no voluntary choice with respect to its environment. Furthermore, to date, there are very few diseases in the horse that have been shown to have significant genetic components.

Genetics has the potential to provide useful markers of susceptible individuals and disease mechanisms, which will be beneficial in the future to help prevent injury. Approaches at present may be either to establish a list of 30–40 candidate genes in the first instance or to progress immediately to whole-genome screening approaches. With the completion of the equine genome, such genome-wide screens become a reality, and progress may now become rapid owing to the recent commercial availability of a large equine single nucleotide polymorphism Chip. For this to be successful, however, it requires the accurate identification of ‘clean’ control horses, free of tendon disease.

The design of clinical trials and objective outcome parameters

There are many studies published in both the human and the equine literature on tendon disease that are underpowered. To assist in the design of future studies to compare outcomes between different treatments, a power calculation was performed to give the sizes of the groups required, assuming a P value of 0.05 (2-sided), 90% power and 1:1 treated : nontreated ratio (see Table 3). Thus, in a randomised controlled trial, for a 55% re-injury rate (data for conventional treatment in National Hunt racehorses [15]); in the ‘nontreated’ (i.e. conventionally managed) group and a clinically relevant improved prognosis of 30% re-injury rate for a new treatment, 2 groups of 88 horses would be needed to complete the study. To account for drop-outs (e.g. lost to follow-up, change of career and noncompliance; usually about 10%), there should be more than 100 horses per group.

With respect to the best outcome parameters, the consensus view was that there is no convincing single outcome parameter. It was agreed that the most objective parameters were considered to be similar to those considered by Dyson [15], namely:

- Proportion showing re-injury over a 2-year period after a return to full work. Analysis should only be performed on those horses that had returned to a reasonable level of performance (e.g. returned to full work) so that the healed tendon was subjected to the level of loading experienced by the normal use of the horse.
- Proportion still racing for 2 seasons after returning to full work.
- Proportion of horses racing more than once (return to racing, i.e. completing one race, was thought to be an unreliable indicator); ideally 3 or 5 races, although racing frequency differs between countries.
- Return to the previous level of performance without re-injury to both the treated and the contralateral limb (horses that have not previously raced should be analysed separately).
- Other outcome measures could be included for other disciplines, such as a mile time for Standardbreds, although this was considered less relevant because tendon injury may not influence maximal speed.

Kinetic and kinematic measures indicative of gait abnormality could also be used as an outcome parameter. While lameness is not a common feature of superficial digital flexor tendon disease after the initial inflammatory phase, there is increasing evidence that there are changes, both discrete and quantitative, that can be defined via both elaborate (e.g. force plate or video) or simple (e.g. accelerometer) methods; however, these must be well controlled for gait and speed without horse acceleration.

Rehabilitation protocols

There is a need for a standardised rehabilitation protocol. At present, programmes are empirical, but the variability of the disease makes scientific testing of these protocols impossible. The most damaging aspect of exercise was considered to be high-impact loading, and this may be more evident in some horses compared with others that exhibit asymmetric limb loading, especially when tired, which can induce subclinical tendon damage (‘microklutziness’) associated with minor differences in neuromuscular control of limb motion [16]. Rehabilitation should therefore occur in an environment that limits high-impact loads. The group proposed a graduated rehabilitation protocol for overstrain injury to the superficial digital flexor tendon in a racehorse based on current (and empirical) experience (see Table 4). Both walking and trotting exercise can be given in hand or with the use of a horse walker. The surfaces on which the horse is exercised become more important when the horse begins faster work (trotting and cantering); generally, softer surfaces are thought to be protective of superficial digital flexor tendon disease, most probably because of their effect at slowing the horse. Serial ultrasonographic examinations were considered important at a minimum of 3-monthly intervals to allow modification of the programme. The recommended programme was a generic one, which could be adapted (shortened or lengthened) depending on the following factors: 1) the

<table>
<thead>
<tr>
<th>Percentage of re-injury without treatment</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of re-injury with treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>38</td>
<td>31</td>
<td>25</td>
<td>21</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>119</td>
<td>80</td>
<td>58</td>
<td>44</td>
<td>35</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>216</td>
<td>128</td>
<td>85</td>
<td>61</td>
<td>46</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>496</td>
<td>230</td>
<td>134</td>
<td>88</td>
<td>63</td>
<td>47</td>
<td>36</td>
</tr>
<tr>
<td>35</td>
<td>2008</td>
<td>523</td>
<td>240</td>
<td>138</td>
<td>90</td>
<td>63</td>
<td>47</td>
</tr>
<tr>
<td>40</td>
<td>2092</td>
<td>538</td>
<td>244</td>
<td>140</td>
<td>90</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2134</td>
<td>544</td>
<td>244</td>
<td>138</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>2134</td>
<td>538</td>
<td>240</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>2092</td>
<td>523</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1882</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaded areas give an example of the group size needed to demonstrate an improved outcome of 55% to 30% between two treatments.
The following were considered the most important directions for research and the suspensory ligament would complete the same programme while desmitis of the accessory ligament of the deep digital flexor tendon i.e. deep digital flexor tendon disease might follow the same programme, rapidly; 2) the severity of the disease; and 3) the structure affected, more time, while showjumpers can sometimes be rehabilitated more rapidly; 2) the severity of the disease; and 3) the structure affected, i.e. deep digital flexor tendon disease might follow the same programme, while desmitis of the accessory ligament of the deep digital flexor tendon and the suspensory ligament would complete the same programme within less time.

Recommendations for future research

The following were considered the most important directions for research into tendon disease in the horse in the immediate future.

- **Biomechanics:**
 - Evaluation of ‘microklutziness’ in the horse.
 - Relationship of biomechanics to risk of injury, both in terms of ‘macrobiomechanics’ (i.e. of the limb) and biomechanics at a tissue level.
- **Experimental models of tendon disease in the horse:**
 - Validation of surgical models in the horse [17] and sheep [10].
 - Development and validation of in vitro models to identify molecular processes of degradation.
- **Diagnostic imaging (ultrasonography and MRI) of tendon injuries.**
- **More sensitive and specific correlation with histology.**
- **Genetics of tendon disease.**
- **The influence of genetics on tendon biology and risk of injury.**
- **Prevention of tendon disease:**
 - Development of training regimes to prevent tendon disease in both young and mature horses.
 - Epidemiological studies to identify risk factors.
 - The influence of surface to tendon injury.
- **Medication targets in tendons.**
- **Development of new drugs to reduce the apparent excessive remodelling in tendons.**
 - Biological therapies:
 - Mechanism and evidence-based outcomes for platelet-rich plasma and other growth factor/cytokine-related therapies.
 - Mechanism and evidence-based outcomes for cell-based therapies.
- **Clinical trials:**
 - Need to be well controlled, with an adequate number of horses per group (see power calculation above).

- Need for randomised controlled trials, although this may not be possible/practical in the equine industry.

Rehabilitation programmes

Authors’ declaration of interests

No conflicts of interest were declared.

Acknowledgements

The organisers would like to acknowledge the considerable financial assistance that was given to hold this meeting, primarily from the Dorothy Havemeyer Foundation, but also from Luitpold Pharmaceuticals and The Orthopedic Research Centre, Colorado State University.

Participants:

- Stephen Arnoczky Michigan State University, USA
- Matthew Binns Royal Veterinary College, UK
- Helen Birch University College London, UK
- Bruce Caterson Cardiff University, UK
- Peter Clegg Liverpool University, UK
- Jay Dudhia Royal Veterinary College, UK
- Elwyn Frith Massey University, New Zealand
- Karl Kadler University of Manchester, UK
- Chris Kawkac Colorado State University, USA
- Michael Kjaer Copenhagen University, Denmark
- Chris Little University of Sydney, Australia
- Wayne McIlwraith* Colorado State University, USA
- Alan Nixon Cornell University, USA
- Tim Parkin Glasgow University, UK
- Stuart Raleigh University of Nottingham, UK
- Graham Riley University of East Anglia, Norwich, UK
- Michael Schramme North Carolina State University, USA
- Roger Smith* Royal Veterinary College, UK
- Sue Stover University of California Davis, USA
- Gene Pranzo President of Havemeyer Foundation, USA
- Allyn Mann Luitpold (Sponsor), USA
- Natasha Werpy* Orthopedic Research Centre, Colorado State University.

*Conference organisers

R. K. W. Smith and C. W. McIlwraith*

Department of Veterinary Clinical Sciences, The Royal Veterinary College, Hatfield, Hertfordshire, UK; and *Orthopedic Research Center, Colorado State University, Fort Collins, Colorado, USA

References