Town of Roseboom Climate Smart Actions

The Town of Roseboom was certified by NYSERDA as a <u>Clean Energy Community</u> in 2019 and has received a \$5000 grant from them to use toward future energy reduction projects. Now, we are working with the Department of Environmental Conservation to be certified as a <u>Climate Smart Community</u>. This requires 120 points to achieve the Bronze level. This will give us access to even more grant money for energy saving projects. We are almost there! We submitted an application this past July, but did not quite make it. There were a few "Actions" that did not meet all their specifications. We will try again on the January 7, 2022 re-submission date. These CSC Actions not only reduce our energy consumption and emissions, but save us money as well!

So far, this is what we have done:

We have re-appointed a Climate Smart Community (CSC) Coordinator for a 4 year term: Environmental Committee Chairperson, Allegra Schecter, in 2021.

We have re-appointed a CSC Task Force in 2021, comprised of Town Supervisor Patti Gustafson, Town Board members Curtis Vandewerker and Charlie Diamond, Highway Superintendent Dan Gage and local business persons Mary Jo Cronin and Bob Schecter, for a 4 year term.

We are part of the Regional Climate Program, <u>Clean Energy Communities</u>, where we completed 4 High Impact Actions for Certification: a Unified Solar Permit (2016), LED Street lighting (2018), Benchmarking Building Energy Usage (2018) and Energy Code Enforcement Training (2019)

We completed Exterior Lighting Upgrades, converting all our outdoor security lights to LED (2016).

We completed Interior Lighting Upgrades by converting all fluorescent to LED lighting (2021)

We insulated above the ceiling in the Town Garage (2018) and new garage door weather-stripping (2021).

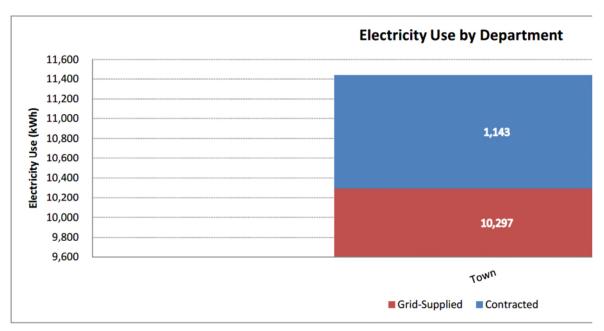
We have a Green Power Procurement Plan with NEXAMP for 10% solar credit on our National Grid bills for both our streetlights and the Town Barn signed in 2019.

We have used our Town Comprehensive Plan with Sustainability Elements to guide our Town's environmental direction and to create a Natural Resource Inventory in 2019.

We have adopted the Natural Resource Inventory as a local law in 2021. This will guide the future development of our Town and protect our scenic views and natural resources.

We have adopted the Otsego County Hazard Mitigation Plan in 2021, after attending all the prerequisite workshops.

We have planted trees in a Riparian Buffer, to protect the stream bank adjacent to the Town Garage from runoff from our sand and salt in 2021.


In preparation for increasing rainfall events due to climate change, we are continually enlarging replacement culverts over certain stream crossings where there has been flooding in the past.

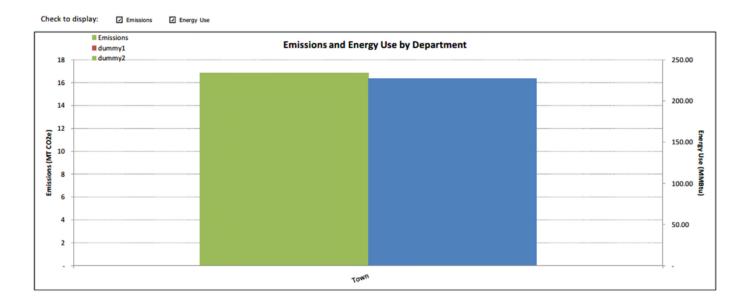
We are in the process of achieving a <u>Community Choice Aggregation (CCA) Plan</u> for <u>ALL</u> Roseboom residents to receive a 10% solar credit on their National Grid Electric bill in 2022.

We have also completed a local government **Green House Gas (GHG) Inventory** which tracks the Town's energy usage and produced CO2 and other emissions. Climate Smart Communities are committed to reducing GHG emissions, which include Carbon Dioxide (CO2), Methane (CH4) and Nitrous Oxide (N2O). These gasses build-up in the atmosphere and contribute to global warming and climate change. By taking a Municipal Inventory, we can see where changes can be made to lower our emissions. Even though our government GHG footprint is relatively small, every little bit we can do locally to minimize these emissions helps the planet. The following graphs and tables track the Lighting, Heating, Heavy Equipment Operations and even the Highway Employees Commute for the year 2020.

The Electricity Summary shows the electricity used through National Grid and the 10% solar credit with NEXAMP we contracted for both our Street Lights and the Town Barn.

Electricity Use by Department (in kWh)							
Grid-Supplied Contracted Market-Based							
Department	kWh	kWh	Total kWh	kWh			
Town	10,297	1,143	11,440	9,154			
Total Electricity Use	10,297	1,143	11,440	9,154			

As you can see, from the next chart, the solar NEXAMP produces virtually zero CO₂ emissions. CO₂ Emissions by Contractual Instrument


EF (lb								
Contractual Instrument/Utility	kWh	CO ₂ /MWh)	MWh/kWh	MT/lb	MT CO ₂			
NEXAMP solar	1,143	-	0.001	0.000454	-			
NEXAMP	-	-	0.001	0.000454	-			
NEXAMP	-	-	0.001	0.000454	-			
NEXAMP solar	1,143	-	0.001	0.000454	-			
NEXAMP solar	1,143	-	0.001	0.000454	-			
NEXAMP solar	1,143	-	0.001	0.000454	-			

The Stationary Summary calculates the energy used to heat the Town Barn in 2020, and the emissions created by the diesel burning furnace. This amount would vary from year to year depending on the weather. Installing automatic garage door-openers (2015), insulating the garage ceiling (2017) and putting new weather-stripping around the garage doors (2021) saves us money and reduces emissions, but we are hoping to replace the old boiler completely. If we install a more efficient ground source heat pump, using our earned Clean Energy Communities grant money and Covid ARPA funds, it will eliminate our local CO2 emissions by using electricity.

Department Summary

Emissions by Department (MT CO ₂ e)							
Department CO ₂ CH ₄ N ₂ O Total							
Town	17	0	0	17			
Total Stationary Combustion Emissions	17	0	0	17			

Fuel and Energy (MMBtu) Use by Department							
Department	Energy Use						
Town		1,649		228			
Total Stationary Combustion Energy Use		1,649		228			

Fuel Summary

Emissions by Fuel Type (MT CO₂e)							
Fuel Type	CO ₂	CH ₄	N ₂ O	TOTAL			
Natural Gas							
Diesel	17	0	0	17			
Gasoline							
LPG	-						
Propane							
Butane							
Residual Fuel Oil No. 5							
Residual Fuel Oil No. 6							
Jet Fuel	-		-				
Bituminous Coal							
Digester Gas							
Total Emissions from	- 17	_	0	- 17			
Stationary Fuel Combustion	17	U	U	17			

			Energy Use
Fuel Type	Fuel Used	ı	(MMBtu)
Natural Gas	0	mcf	
Diesel	1,649	gal	227.56
Gasoline	0	gal	
LPG	0	gal	-
Propane	0	gal	
Butane	0	gal	
Residual Fuel Oil No. 5	0	gal	
Residual Fuel Oil No. 6	0	gal	
Jet Fuel	0	gal	
Bituminous Coal	0	tons	
Digester Gas	0	mcf	

	Fuel Use	Unit	kg CO₂/unit	MT/kg	MT CO ₂	× GWP =	MT CO₂e
Natural Gas	0	mcf	54.50	0.001	0.00	1	
Diesel	1649	gal	10.21	0.001	16.84	1	16.84
Gasoline	0	gal	8.78	0.001	0.00	1	
LPG	0	gal	5.79	0.001	0.00	1	
Propane	0	gal	5.59	0.001	0.00	1	
Butane	0	gal	6.58	0.001	0.00	1	
Residual Fuel Oil No. 5	0	gal	10.21	0.001	0.00	1	
Residual Fuel Oil No. 6	0	gal	11.27	0.001	0.00	1	
Jet Fuel	0	gal	9.75	0.001	0.00	1	
Bituminous Coal	0	tons	2328.46	0.001	0.00	1	
Digester Gas	0	mcf	43.79	0.001	0.00	1	

CH₄ Emissions by Fuel Type

CH 4 Emissions = Fuel use × CH 4 Emission Factor (kg CH 4/unit of fuel) × MT/kg; CO 2 equivalent emissions = MT CH 4 × Global Warming Potential of CH 4

Fuel Use	Unit	kg CH ₄ /unit	MT/kg	MT CH ₄	× GWP =	MT CO ₂ e
0	mcf	0.00514	0.001	0.00	25	
1649	gal	0.00150	0.001	0.00	25	0.06
0	gal	0.00140	0.001	0.00	25	
0	gal	0.00100	0.001	0.00	25	
0	gal	0.00100	0.001	0.00	25	
0	gal	0.00110	0.001	0.00	25	
0	gal	0.00150	0.001	0.00	25	
0	gal	0.00170	0.001	0.00	25	
0	gal	0.00149	0.001	0.00	25	
0	tons	0.27423	0.001	0.00	25	
0	mcf	0.00269	0.001	0.00	25	
	0 1649 0 0 0 0 0	0 mcf 1649 gal 0 tons	0 mcf 0.00514 1649 gal 0.00150 0 gal 0.00140 0 gal 0.00100 0 gal 0.00100 0 gal 0.00110 0 gal 0.00150 0 gal 0.00170 0 gal 0.00170 0 gal 0.00149 0 tons 0.27423	0 mcf 0.00514 0.001 1649 gal 0.00150 0.001 0 gal 0.00140 0.001 0 gal 0.00100 0.001 0 gal 0.00100 0.001 0 gal 0.00100 0.001 0 gal 0.00150 0.001 0 gal 0.00150 0.001 0 gal 0.00170 0.001 0 gal 0.00170 0.001 0 gal 0.00149 0.001 0 tons 0.27423 0.001	0 mcf 0.00514 0.001 0.00 1649 gal 0.00150 0.001 0.00 0 gal 0.00140 0.001 0.00 0 gal 0.00100 0.001 0.00 0 gal 0.00100 0.001 0.00 0 gal 0.00100 0.001 0.00 0 gal 0.00110 0.001 0.00 0 gal 0.00150 0.001 0.00 0 gal 0.00170 0.001 0.00 0 gal 0.00149 0.001 0.00 0 tons 0.27423 0.001 0.00	0 mcf 0.00514 0.001 0.00 25 1649 gal 0.00150 0.001 0.00 25 0 gal 0.00140 0.001 0.00 25 0 gal 0.00100 0.001 0.00 25 0 gal 0.00100 0.001 0.00 25 0 gal 0.00100 0.001 0.00 25 0 gal 0.00110 0.001 0.00 25 0 gal 0.00150 0.001 0.00 25 0 gal 0.00150 0.001 0.00 25 0 gal 0.00170 0.001 0.00 25 0 gal 0.00149 0.001 0.00 25 0 tons 0.27423 0.001 0.00 25

N₂O Emissions by Fuel Type

N 2 O Emissions = Fuel use × N 2 O Emission Factor (kg N 2 O/unit of fuel) × MT/kg; CO 2 equivalent emissions = MT N 2 O × Global Warming Potential of N 2 O

	Fuel Use	Unit	kg N ₂ O/unit	MT/kg	MT N ₂ O	× GWP =	MT CO₂e
Natural Gas	0	mcf	0.00010	0.001	0.00	298	
Diesel	1649	gal	0.00010	0.001	0.00	298	0.05
Gasoline	0	gal	0.00010	0.001	0.00	298	
LPG	0	gal	0.00010	0.001	0.00	298	
Propane	0	gal	0.00010	0.001	0.00	298	
Butane	0	gal	0.00010	0.001	0.00	298	
Residual Fuel Oil No. 5	0	gal	0.00010	0.001	0.00	298	
Residual Fuel Oil No. 6	0	gal	0.00010	0.001	0.00	298	
Jet Fuel	0	gal	0.00008	0.001	0.00	298	
Bituminous Coal	0	tons	0.03989	0.001	0.00	298	
Digester Gas	0	mcf	0.00053	0.001	0.00	298	

The Mobile Summary tracks the diesel used in 2020, by the Town's 6 heavy duty trucks, plows, sanders, and equipment. This is a fluctuating number, as it depends on how much ice and snow we get in any given year, and how many times the trucks need to go out to keep the roads clear.

Fuel Use by Department and Fuel Type

This table summarizes fuel consumption by department. These are the activity data used to calculate CO $_2$ em

			Biodiesel	Biodiesel
	Gasoline	Diesel	(B5)	(B20)
Units	Gallons	Gallons	Gallons	Gallons
Town	-	10,062	-	-
Total	-	10,062		-

Energy Use by Department and Fuel Type

This table summarizes energy use by department (MMBtu).

			Biodiesel	Biodiesel
	Gasoline	Diesel	(B5)	(B20)
Town	-	1,390	-	-
Total	-	1,390	-	-

Gross CO₂ Emissions

CO₂ Emissions (MT) = Fuel use \times kg CO₂/unit of fuel \times MT/kg

			Biodiesel	Biodiesel
	Gasoline	Diesel	(B5)	(B20)
EF: kg CO ₂ /gal (or g.g.e.)	8.78	10.21	10.17	10.06
Town	-	103	-	-
Total	-	103	-	-

The Employee Commute Emissions Summary tracks the 4 Town Highway Employees average daily commute from home for the year 2020. You will see it our greatest source of GHG emissions. It depends on how far away the employees live, and how they get to work.

Please enter the average one-way commute length for city employees. Default commute distance is 12 http://www.fhwa.dot.gov/policy/2010cpr/execsum.htm).

This commute distance may be longer or shorter than the average commute for your city's employees.

Average One-Way Commute		
Length (miles)	7.0	12.6

Please enter the number of days each city employee works per year. This number will be multiplied by lay work week, two weeks (10 days) of vacation, and 10 federal holidays.

Workdays per year	220	240
-------------------	-----	-----

Employee Commute Emissions Summary

Emissions by Department (MT CO ₂ e)			
CO ₂			
Town	5.01		
Total	1,382.17		

Background Calculations

Employees by Department and Mode

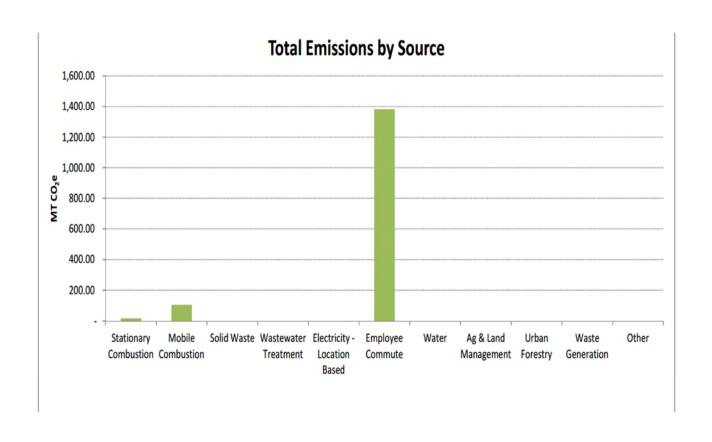
Number of Employees who use mode = # of employees × percentage of employees who use each mode

	Single Occupancy				
	Vehicle Carpool Moto				
Town	4	0	0.0		
Total	1104	0	0		

Daily CO₂ Emissions by Department and Mode

CO₂ Emissions/Day = Employees traveling × Trip Distance/day ÷ People/Mode ÷ miles per gallon × M α × gal/mile × kg CO₂/gal × MT/kg = MT CO₂/day]

	Single Occupancy		
	Vehicle	Carpool	Motorcycle
CO ₂ Emission Factor (kg/gal)	8.78	8.78	8.78
mpg	21.6	21.6	43.4
People/Mode	1	2	1


Town	0.02	-	-
Total	6.28	0.00	0.00

Annual CO₂ Emissions by Department and Mode

Annual CO₂ Emissions (MT) = MT CO₂/commute day \times commute days/yr

	Single Occupancy				
	Vehicle Carpool Motorcy				
Town	5.01	-	-		
Total	1,382.17	0.00	0.00		

Emissions by Source (MT CO₂e)								
Source	CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF ₆	Total	Percent of Total
Stationary Combustion	16.84	0.00	0.00		-	-	16.84	1%
Mobile Combustion	102.73	0.03	0.34		-	-	103.11	7%
Solid Waste	-				-	-		0%
Wastewater Treatment	-		-		-			0%
Electricity - Location Based	-		-	-	-	-	-	0%
Electricity - Market Based								
(for informational purposes only)	-		-					
Employee Commute	1,382.17		-		-	-	1,382.17	92%
Water	-	-	-		-	-		0%
Ag & Land Management	-		-					0%
Urban Forestry	-		-					0%
Waste Generation	-		-				-	0%
Total (Gross Emissions)	1,501.74	0.03	0.34			•	1,502.11	100%
Total (Net Emissions)	1,501.74	0.03	0.34				1,502.11	100%

