CHEAPER CLEANER ENERGY FOR ALL Volfpack Energy Pvt Ltd

VOLFPACK Energy

The Problem

grid operators

Renewable power is unpredictable This makes solar adoption a challenge for

The Solution

Hybrid battery systems using supercapacitors Software for predicatability

Hybrid supercapacitors

They blend the technologies of traditional supercapacitors and lithium-ion batteries for exceptional performance.

Higher energy density than traditional supercapacitors.

Higher power density than typical lithium-ion batteries.

Longer cycle life than many batteries.

Rapid charge and discharge capabilities.

Liquid electrolyte

with metal oxide content

Aluminium current collector

Separator paper

Reduced cost

50% savings for battery only solution

stability

Stable and Predictable

power output to the grid

Safety

The Benefits

A hybrid system with predictable software has significant advantages

Fast response to changes ensuring grid

Reducing the high power demand removes risk of fire

Stage 1 Chemistry optimization 4 Months Ongoing Based on LFP chemistery

Timeline

Stage 2 Pouch Cell Production 8 Months (\$ 50,000) A pouch cell factory. 50 units per day

Stage 3 Transition to Renewable 18 Months \$ 350,000 Scale up to large cells. 50 units per day Stage 4 Pilot Production 18 Months \$3,000,000 I1000 units/day.

Stage 5 24 Months Full-Scale Production (\$10,000,000) 10,000 units/day.

Revenue Streams Stage 3 onwards

Cells \$20-\$30 per supercap cell

Units

\$100,000 - \$500,000

per unit

Engineering Implemenation Team \$100,000 - \$500,000 implementation

The global energy storage market was worth USD 211 billion in 2021 and will increase to USD 436 billion by 2030 at a CAGR of 8.45%.

Global Energy Storage Markets, Facts and Factors

Market Size	
About 1.6 billion has to be	
spent on transmission,	
about 1.5 billion dollars	
on energy storage to boost renewable share to	10000MW
70% by 2030	8000MW
Minister for Power and Energy Hon. Kanchana Wijesekra	6000MW

4000MW

2000MW

OMW

2033 2043 2053 2025

Competition **KYOCERa**

TECHNOLOGIES

Hardware Is Hard

but so much FUN

Stage 2 Pouch Cell Production & Rapid Feedback

Pouch Cell Production

Distribution Partner with electricians, universities and entrepreneurs to test on various use cases Emphasize a tight feedback loop for continuous product refinement

Investment details

Time Line - 8 Months Investment - USD 50,000 Battery Max Size: 130*120mm For lab scale pouch cell equipment 10,000F 3

Potential Use Cases Digital Cameras Electronic Components Handheld Devices Memory backup Medical Equipment Real-time Clocks **Gaming Devices** Wearable Tech Prototypes **Power drills** Automatic door locks

Core Team

Maithri Dissanayake **Material Science & Cell Development**

MSc in nanoscience & Nano Technology University of Peradeniya

Research assistant at the Institute of Fundamental Studies Kandy (IFS) since 2015

Passionate about bringing lab products to the market

We have a very strong collaborative culture and our focus will always be on finding the truth

Charlie Karunaratne CEO

PhD in power electronics Electrical engineering University of Waikato, New Zealand Senior lecturer in electrical and the UK electronics engineering, SLTC Interested in supercapacitors, energy storage and renewable energy

University of Technology Sydney Software product development in Australia and Solving complex problems for significant

Dr Nicoloy Gurusinghe Power Electronics & Integration

Organisation Structure

Our Supercapcitor Mix

Material mix (IP)

- 4x performance increase
- Uses Hydrograph, Canada's graphene
- Tested over 30 materials
- Article published in Canada
- Patent application pending

Partnership

Volfpack Energy Pvt Ltd Volfpack's mission is to make the grid renewable ready

SLTC Research University

Sri Lanka's first non-state engineering university. Founded in 2015

Elon Musk 🤣 💌 @elonmusk

@yes_andre I'm a big fan of ultracapacitors. Was going to do my PhD at Stanford on them. But we need a breakthrough in energy density...

3:15 AM · May 21, 2013

Thank you

Contact Charlie Karunaratne +94 719 751 003 charliekaru@volfpackenergy.com

Appendix

Why Now

IDCCCC

COP28

Consensus, which calls on all Parties to transition away from fossil fuels and establishes targets to triple renewables and double energy efficiency by 2030

Paris convention

Agreement among countries to limit global warming and reduce greenhouse gas emissions

Affordability

Renewable energy is becoming more affordable and accessible, making it more viable for large-scale deployment

Timeline

ΜΟ	M1 Design Develop factory layout and lab- scale production process	M2	M3 Test Validate product performance in real-life situations.	
Preparation Secure machinery, factory space, product design, chemical		Build Construct and set up the lab-scale factory process with the acquired machinery		
YO	Y1	Y2	Y3	
Lab Plant Develop process and validate product at the lab scale.	Pilot Plant Invest in a larger facility to increase production capacity.	Production Plant P1 Design and initiate construction of the full-scale factory.	Production Plant P2 Continue development of the production plant.	

Lab scale factory (1 Year Timeline) **Production facility 7 year plan**

M4

M5-M12

Approvals **Acquire necessary** certifications and approvals for super capacitor production.

Operate/Optimize Initiate lab-scale operations, optimize processes, and collaborate with customers

Y4

Y5-Y7

Operation & Optimization Streamline and finetune the production plant processes.

Pre-IPO Planning Begin strategizing for an IPO to fund international expansion.

WHY SRI LANKA

Cost-effective production

Sri Lankan operations lower overall manufacturing expenses Ideal test market Sri Lanka's transition to renewable energy offers a fitting platform for product validation.

Skilled workforce Abundant science and engineering graduates ensure top-quality

human resources.

Potential Markets

Telecom		G
Rising fuel costs and energy demands	12.00 -	
drive the need for cost-effective, efficient		
backup power solutions for 5G telecom	10.00 -	
towers. Market Size over 10 000 towers in Sri		
Lonko and 200 000 in South Asia		
Lanka and 200,000 in South Asia	8.00 –	
Grid Support		
Power loss and fluctuations during	6.00 -	
transmission hinder grid effectiveness.		
Market size - 20 plus of grid stations in Sri	4.00	
Lanka	4.00	
Wind Mills:		
Pitching issues reduce wind turbine	2.00	
efficiency and elevate maintenance		
expenses.	0.00	
Market Size: Currently at 150MW.		2021
Exponential growth anticipated		

lobal Market Size in USD Billion

2022

2026

2030

Work Streams

Material Science & Cell Development

Led by

Maithri Dissanayake

Goal

Using lab scale factory to develop a scalable process to develop high quality super capacitors

Roles

Material scientist, process engineers and quality assurance

Integration Led by Dr Nicoloy Gurusinghe Responsibility Roles testing

Power Electronics &

- Use super capacitors to develop a system
- that solve fast frequency response for
- solar panels at grid scale
- Electrical engineers, power engineers and

Manufacturing

Simple block diagram of super capacitor manufacturing process

FUTURE SOLAR COSTS BY YEAR

Cost per kWh (US\$)

