LH₂ ecosystem, transfer and infrastructures

ELVHyS international stakeholder seminar Bologna 2024

Air Liquide - Safety-Lab

Content

- H₂ production & Ecosystem development
- Concretely, why LH₂?
- H₂ liquefaction & Storages
- **Distribution**
- **5**. **LH₂ refuelling stations & applications**

Liquid Hydrogen

Worldwide production capacities

0.3%

AL LH₂ references

World's largest LH2 plant

Replication of West Coast Cold Boxes Under Detail Design Study, main equipment ordered and under fabrication

First LH2 plant in South Korea, to feed fleet of city buses

Under Manufacturing in AL's workshop Equipment delivery Q2 2022

Located in North Las Vegas

To supply Californian market

Running since March 2022!

More than 30 years of operation

Still under operation with full availability & reliability

Large scale liquefiers in operation

Focus on the US, from 1960 to now

Site	operated by	Capacity	built
Painsville, OH / USA	Air Products	3 tpd	1957 *
West Palm Beach, FL / USA	Air Products	3.2 tpd	1957 *
	Air Products	27 tpd	1959 *
Long Beach, CA / USA	Air Products	30 tpd	1958
Mississippi (Test Fac.)	Air Products	> 36 tpd	1960 *
Ontario, CA / US	Praxair	20 tpd	1962 *
Sacramento, CA / USA	Union Carbide, Linde Div.	(54) 60 tpd	1966 *
	Air Products	6 tpd	1986
New Orleans, LA / USA	Air Products	34 tpd	1977 (1963)
	Air Products	34 tpd	1978
Niagra Falls, NY / USA	Praxair	18 (40?) tpd	1981
Pace, FL / USA	Air Products	30 tpd	1994 *
McIntosh, AL / USA	Praxair	24 (29?) tpd	1995
East Chicago, IN / USA	Praxair	30 tpd	1997
Sarnia, Ontario / Canada	Air Products	30 tpd	1982
Montreal, Canada	Air Liquide Canada Inc.	10 tpd	1986
Bécancour, Quebec /Can.	Air Liquide	12 tpd	1988
Magog, Quebec /Canada	(BOC) Linde	15 tpd	1989
Kourou, Franz. Guayana	Air Liquide	5 tpd	1990

^{*}stopped

Large scale liquefiers in operation

In the rest of the World

Europe

Site	operated by	Capacity	built
Lille (Wazier), France	Air Liquide	10.5 tpd	1985
Rozenburg, Netherlands	Air Products	5 tpd	1986
Ingolstadt, GER	Linde	4.4 tpd	1992 *
Leuna (close to Leipzig,	Linde	5 tpd	2008
GER)	Linde	5 tpd	2021

^{*}stopped

Asia

Site	operated by	capacity	built
Amagashi, Japan	Iwatani	1.2 tpd	1978 *
Tashiro, Japan	Mitsubishi Heavy Industr.	0.6 tpd	1984 *
Ooita, Japan	Pacific Hydrogen Co, Jpn.	1.4 tpd	1986
Tane-Ga-Shima, Japan	Jpn Liquid Hydrogen	1.4 tpd	1986
Minamitane, Japan	Jpn Liquid Hydrogen	2.2 tpd	1987
Kimitsu, Japan	Nippon Steel Corp. (Air Products?)	0.2 (0.3?) tpd	2004
Sakai, Japan	Iwatani Gas	1.1 tpd	2006
Osaka, Japan	Iwatani (Hydro Edge)	11.3 tpd	2006
Chiba (Tokio), Japan	Iwatani (built by Linde)	10 (5?) tpd	2008
Yamaguchi, West-Japan	Iwatani (built by Linde)	5 tpd	2008
KHI Akashi, Japan	Kawasaki Heavy Industries → own development!	(5 tpd prototyp)	2015
Indien	Asiatic Oxygen	1.2 tpd	k.A.
Mahendragiri, Indien	ISRO	0.3 tpd	1992
Beijing, China	CALT	0.6 tpd	1995

^{*}stopped

H₂ production & Ecosystem development

Worldwide hydrogen production

Quick reminder

Hydrogen is mainly produced from fossil fuels

Clean and renewable production processes now used for low-C hydrogen needs

Low-Carbon H₂ pathways

BioCH₄ Reforming

Electrolysis

Low carbon electricity
DK PEM 1.5 MW 0.6 tpd
Canada PEM 20 MW 8 tpd
Taiwan AEM 25 MW 10 tpd
Normandhy PEM 200 MW 80 tpd

Projects in AL bassins (Kairos, Antwerp@Sea, Portos,...) CO₂ shipping OCEOS JV AL-SOGESTRAN

Hydrogen value chain

From production to end-uses

Concretely, why LH₂?

Hydrogen densities

A few numbers

Installation at DLR, Cologne, Germany

Why liquid hydrogen?

Concretely, the benefits

LOGISTIC: MORE VIABLE AT SCALE

LH₂: large amount of H₂ with minimum volume & mass = minimum storage & transport costs

Equivalence in usable payload

3.6 t #1 LH,

#16 200 bar

Usable payload (swap @ 50 bar for GH, trailers) based on 2022 prices for GH, in Europe and LH, in US

ONBOARD: HIGH POWER DENSITY

LH, has a role to play for energy intensive mobility applications with large quantities of energy onboard

• Example: Truck fueling - 60 kg in 10 min = 360 kg.h^{-1} = 6 times higher flowrate than for H₂ cars

LAYOUT: REDUCED FOOTPRINT

LH₂ for stationary applications

 Example: Lower footprint (factor 2) for Light Duty FCV refueling stations

H₂ liquefaction & Storages

Hydrogen liquefaction

A few specificities

- Volumetric capacity of LH₂ is 70 kg.m⁻³ as opposed to 30 kg.m⁻³ for GH₂ tanks at 700 bar
- LH₂ stored at cryogenic temperatures and at pressures of around 10-12 bar
- LH₂ storage tank is a Dewar, double-walled, vacuum-insulated vessel made of lightweight steel alloys
 - Insulation: perlite or MLI (Multi Layer Insulation)
- Boil-off [evaporation of LH₂ due to environmental warm-up] is a major challenge, which can be caused by:
 - The exothermic ortho-para H₂ conversion
 - Residual thermal entries

Equilibrium concentration of ortho- and para-hydrogen vs. temperature

The conversion from ortho to para is an exothermic reaction with a conversion energy of 270 kJ.kg⁻¹ at ambient temperature

Liquid hydrogen storage

Stationary storages

LH₂ storage tanks at Waziers liquefaction plant in France (10 t.d⁻¹)

4 tanks of 250 m³ each ⇒ Total : 70 t Int/ext diameter = 4.02 / 5.1 m

LH₂ storage vessel with 3 800 m³ capacity at KSC in Florida

World's largest, 3800 m³ (3 218 m³ of LH₂) double-wall vacuum perlite (1.3 m of thickness) insulated spherical (int/ext diameter = 18.75/21.34 m) storage vessel The tank is operated at a pressure of 0.62 MPa and has a boil-off rate of 0.025%/d.

Liquid hydrogen storage

Stationary storages - Insulation

Double-wall insulation principle $[T_{IH2} = -253^{\circ}C]$

- Vacuum insulated vessels
- Inner vessel for pressure
- External protective jacket to retain perlite

Perlite

- Inorganic amorphous volcanic glass
- Compressed under vacuum between inner vessel and outer jacket
- Good tradeoff between cost and insulation properties

MLI

- Layer of Aluminium/Polymeric sheets Mylar, Lydall...
- More efficient than perlite
- Complex to wrap

⇒ Next generation : Aerogel, Foam, ...

Liquid hydrogen storage

Stationary storages - Location

- In most of the cases, LH₂ tanks are aerial \rightarrow Above ground
- But a few cases of underground LH₂ storages
 - buried (LNG, LOx) or vault (LH₂ in Germany)

Station Year Location Design operator 2004 Washington Vertical. Shell DC in a sleeve BP 2005 London Vault 2007 Vault Munich Total 2010 Berlin Vault NA

List of known underground liquid hydrogen storages

Advantages

Footprint/layout reduction, could foster societal acceptance for urban environment...

Drawbacks

Lack of knowledge/feedback, H₂ confinement, ageing, maintenance...

LH₂ storage *Mobile tanks*

Picture 2: Liquid hydrogen storage module for BMW

Picture 3: Liquid hydrogen storage module for GM

HEAVEN FCH JU project Successful flight summer 2023 Maribor Slovenia

11 kg $LH_2 / V_{tank} = 265 L / M_{tank} = 71 kg$

 10 kg LH_2 $M_{tank} = 100 \text{ kg}$

H₂ filling center & Distribution

LH₂ delivery chain

Overview

LH₂ supply chain

Equipment

Large trailers

- US Jumbo design for Airgas
- 53' trailers, 66 m³ \Rightarrow 4, 35 t payload

■ Short trailers / A-Double train configuration

Specific to US market, complex valve cabinet

ISO40' containers

- Payload: 2.7 t
- One way travel time up to 50 days

■ Compact trailers (ISO 20' containers)

Payload 1.2 t

On site storages

- Sizes from 1 000 to 2 000 m³ in operation or designed at AL
- Max 4000 m³ at NASA

■ Space / Car industry / Aeronautics

- Tailored designs
- Most of them are under strict NDA

Example of Airgas LH, Jumbo trailer manufactured by Worthington

Example of A-Double train configuration operated in Canada (LN2)

ISO 40' LH, container

H₂ filling center & transfer with LH₂ trailer

Degassing hose

Actually

- LH₂ transfer by pressure build up (small ext HEX)
 - ⇒ P "mother storage" > P "daughter storage"
 - ⇒ "natural" LH₂ transfert
- Drawbacks
 - Slow transfer (1 to 2 t/h)
 - P / in the "mother" storage ⇒ need of venting

Near future

- LH₂ transfer by pumping (no flow limitation) using a centrifugal cryogenic pump
- Drawbacks
 - Cost of the pump
 - Frequent maintenance of the pump

LH₂ distribution

Road transport

- LH₂ trailers capacity: up to 5 t-H₂ 12 bar
- H₂ boil-off can occur during transport despite the super-insulated design of tankers
 - potentially 0.5% per day
- H₂ boil-off up to roughly 5% also occurs when unloading LH₂ on delivery
- Boil off can be vented or valorized (compressed, recycled...)
- LH₂ tanks on the trailers are insulated using a vacuum super insulation (MLI)

LH₂ distribution

Ship transport

NASA LH₂ barge fleet From Louisiana to Florida 5 t capacity since 1990

The world's first LH₂ carrier ship SUISO FRONTIER launched in December 2019 in Kobe, Japan (HySTRA project)

Ship length 116 m, width 19 m LH₂ tank with a capacity of 1 250 m³ (90 t)

LH₂ distribution

Pipelines

- Pipeline transportation of LH₂ at a small scale only
- Pipes for transferring cryogenic LH₂ must comply with the extreme low temperature of LH₂ and the associated insulation requirements
- Similar to LH₂ storage tanks, pipelines are of double-wall design and vacuum-jacketed
- Stainless steel is usually taken for the inner line with low heat conduction spacers as a support in the vacuum jacket
- Cryogenic pipes must be sufficiently flexible which can be done by appropriate pipe routing and expansion joints

During the period of chill-down of an LH_2 line, a two-phase flow develops which is stratified for horizontal flows This phenomenon is encountered particularly in refuelling lines where chill-down is required before the fuelling process itself begins to avoid the gaseous phase to enter the tank

 \Rightarrow

5 — LH₂ refuelling stations & applications

LH₂ storage-based refuelling station LtG HRS

A LH₂-based refueling station basically consists of :

- a LH₂ tank (around 20 m³)
 with a maximal operating pressure of 10 bar
- an insulated process line driving LH₂ from the storage tank to a vaporizer
- a heater to heat up H₂ at 1000 bar
- 1000 bar gaseous buffers (few m³)

1. liquid hydrogen storage unit 8. chiller 15. pressure regulator 2. gaseous hydrogen storage unit 16. breakaway coupling 9. dispenser 3. intermediate gas storage 10. safety valve 17. pressure build-up evaporator 11. delivery hose 4. evaporator 12. off-loading hose 5. emergency shutdown system LT level sensor 6. pump 13. fill FT flow sensor TT temperature sensor 7. compressor 14. purifier

LH₂-based filling station

For FCV and Forklift

Coca Cola - Charlotte - USA

LH₂-based refueling stations

Oakland (US) First Element Fuel LtG HRS

LH₂-based refueling stations *Tobishima (Japan) L-t-G HRS*

LH₂ applications LH₂ system for mobility - Trucks

Musashi-9 LH, truck Musashi Institute of Technology (Japan)

 ${
m H_2}$ -powered engine with a 150 L LH $_2$ tank A high pressure LH $_2$ pump delivers fuel to ICE

 ${\it Mercedes FC truck GenH2 concept with LH}_2 {\it storage}$

Total output of 300 kW with 2 FC stacks 1000 km on a single tank filling recently demonstrated

LH₂ applications

LH, system for mobility - Ships

SF-BREEZE

- A zero-emission, H₂ fuel cell, high-speed passenger ferry (California)
- Designed for 150 passengers 100 km / day at a top speed of 35 knots (~65 km/h)
- 1,2 t of LH₂ are stored in a single tank installed on the roof
- 41 PEMFC racks (4* 30 kW FC stacks) ⇒ 4.92 MW

NORLED HYDRA ferry

- Power is provided by two 200-kW fuel cell modules
- The LH₂ tank (3.8 t) will be installed on the roof

■ TOPEKA prototype FC ship

- Starting in 2021 the EU project HySHIP with 14 partners and led by the Norwegian shipping operator Wilhelmsen
- Equipped with a 3 MW PEM fuel cell stack and supported by a 1 MWh battery pack
- On-board single LH2 tank (6 t installed on the roof)

Many others under NDA

LH, infrastructure

Many thanks

Do business efficiently,

responsibly, sustainably

AND Safely!

