V Refueling and discharge of cryo-
compressed hydrogen storage
VERNE systems for heavy trucks




Cryo-compressed (CcH2) vessels comprise an
MLI-wrapped type 3 high pressure vessel
surrounded by a vacuum jacket
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CcHz2 vessels provide safety, cost and weight advantages
over alternative approaches to long-range zero emissions
transportation

e The storage density of LH, vessels
without the vent losses: ~10x
longer thermal endurance than low
pressure LH, tanks essentially
eliminates boil-off

e Less expensive than compressed
hydrogen vessels: LH, capable
vessels use 2-3x less carbon fiber
than conventional compressed H,
vessels

o Compelling safety advantages:
vacuum jacket protects composite
vessel, reduced H, expansion
energy due to cold operation




LH, pump (Linde) enables practical CcH, storage
through rapid, high density refueling of initially warm
and/or pressurized vessels
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LH, pump pressurizes H2 in two stages for efficient and
cavitation-free operation with saturated LH2

Up to 75 g/L high-pressure
cryogenic H, (to vehicle)

|

High pressure LH, pump

3 bar vapor
return to Dewar

makes cryogenic refueling practical

____________________

» Pump provides flow rate of 100 kgH,/hour

 High density fill possible (up to 75 gH,/L)

1st stage

6 bar outlet

» Refuel warm and/or pressurized vessels
e No need for data communication with vehicle

e Unlimited back-to-back refuels
2nd stage
up to 8759 bar  Can refuel compressed gaseous H2 vessels
outlet

___________________

|

65 g/l LH, (25K)
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Cryo-compressed hydrogen offers high density
with minimal complexity and supply flexibility

100

Cryo-compressed H,
Liquid H,
Compressed H,

900 bar

700 bar

H2 density (g/L)

500 bar
350 bar

20 A
200 bar

100 bar

O %% ' | ‘l__i 50 bar

15 60 105 150 195 240 285

Temperature (K)

VERNE



LLNL conducted 24 experiments to characterize pump
performance enabling detailed modeling of CcH,, fill process
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Fill processes can be accurately modeled assuming
10 kJ/kg-K vessel inlet entropy
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BMW experiments with an LH, pump in a commercial setting,
vacuum insulated line, and compact station layout demonstrated
improved LH, pump performance (6 kJ/kg:-K vessel inlet entropy )
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700 bar cH, doesn’t meet volumetric energy
densities for long-haul trucking

Volume available and volume needed
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Back-of-cab 700 bar storage system
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700 bar storage does not meet 500+ miles range for long-haul
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Thermodynamic modeling predicts 68 g/L
usable storage density of CcH2 truck vessel
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Insensitivity of CcH2 vessels to heat transfer rate
broadens design space, reducing cost and/or
insulation thickness
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» No vent losses anticipated even at very high heat transfer rates
» The main effect of increased heat transfer rate is reduced fill density

* Increasing the heat transfer rate from 2 to 20 W/m? decreases usable

storage density by only 20%
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High pressure capability of CcH2 vessels enables supply
of H2 at elevated pressure to meet demand of e.g.,
direct injected hydrogen internal combustion engines
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cH2 chilling provides a second approach to CcH2 dispensing
and storage, mitigating the scarcity of LH2 infrastructure

H2 density (g/L)
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LN2 chilling, cascade, or mixed refrigerant systems may
be used for densifying pressurized H2 to practical values
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Favorable thermodynamics gives CcH2
key advantages for truck propulsion

e Highest usable density: 68 g/L with fill density as high
as 73 g/L and small residual fraction (5 g/L)

e High delivery pressure: 30+ bar possible with relatively
small (15%) impact on usable density

e No vent losses anticipated during filling or operation:
insensitivity to heat transfer broadens design space,
reducing cost and/or insulation thickness

e Delivery flexibility: LH2 and chilled cH2 are possible
pathways; compatibility with cH2 extends usability

o Compelling safety advantages: vacuum jacket protects
composite vessel; reduced H, expansion energy due to
cold operation

VERNE
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