

ELVHYS - Enhancing safety of liquid and vaporised hydrogen transfer technologies in public areas for mobile applications

2nd Stakeholders' Workshop – HSE, Buxton (UK)

Federico Ustolin (NTNU) et al

29.11.2023

ELVHYS project No. 101101381 is supported by the Clean Hydrogen Partnership and its members and the European Union. UK participants in Horizon Europe Project ELVHYS are supported by UKRI: University of Ulster (grant number 10063519) and Health and Safety Executive.

Programme					
Time (GMT)	Presentation title				
09:00-09:05	Welcome (F. Ustolin, NTNU; W. Rattigan, HSE)				
09:05-09:30	ELVHYS project overview (F. Ustolin, NTNU)				
09:30-09:55	HSE experimental work on large-scale LH2 releases as part of the PRESLHY project (S. Coldrick, Health & Safety Executive)				
09:55-10:20	The consequences of releasing liquid hydrogen on and into water (K. van Wingerden, Vysus Group)				
10:20-10:40	Coffee break				
10:40-11:05	NPRA: LH2 releases at large scale associated with Norwegian Ferry application (D. Allason, DNV)				
11:05-11:30	Pro-Science/KIT experimental work on cryogenic H2 releases as part of the PRESLHY project (A. Friedrichs, KIT)				
11:30-12:00	Intermediate round table discussion (F. Ustolin, NTNU; All)				
12:00-13:00	Lunch break				
13:00-13:25	The consequences of exposing cryogenic storage vessels containing liquid hydrogen to a fire load (M. Kluge, BAM)				
13:25-13:50	HEAVEN project: overview of the first piloted Flight of LH2 Powered Electric Aircraft (S. Jallais, Air Liquide)				
13:50-14:20	Coffee break				
14:20-14:45	LH2 release experiments to support large scale Shell projects (S. Betteridge, Shell)				
14:45-15:10	Experimental research on cryogenic hydrogen behaviour at Sandia National Laboratories				
	(E. Hecht, Sandia)				
15:10-15:40	Final round table discussion (F. Ustolin, NTNU; All)				
15:40-15:50	Closure of the workshop (F. Ustolin, NTNU; W. Rattigan, HSE)				

Co-funded by the European Union

Pre - ELVHYS **Progress / Closed gaps**

Fundamental/Modelling "Release":

- Discharge coefficients for cryo- and cryocompressed releases
- Rainout phenomena better understood
- Fundamental data for mixing of large scale releases

Fundamental/Modelling "Ignition":

- ✓ MIE and hot surface T determined for cryogenic conditions
- Empirical tests for RPT without fast reaction
- Electrostatics of cryogenic releases
- Worst case effects for small cryogenic inventories determined via variation of ignition time and position

Fundamental/Modelling "Combustion":

- ✓ Flame length correlations validated
- σ, σcrit and run-up distance for DDT determined at cryogenic conditions
 ...

Pre - ELVHYS SH2IFT Project Findings

(see van Wingerden, Kees, et al. *Chemical Engineering Transactions*, 2022, 90. Jg., S. 547-552)

Fundamental/Modelling "RPT": ✓ RPT observed in BAM tests spilling LH2 on water (see van Wingerden, Kees, et al.

"Experimental Investigation into

the Consequences of Release

of Liquified Hydrogen onto and under Water." (2022))

Co-funded by the European Union

UK Research and Innovation

Enhancing safety of liquid and vaporised hydrogen transfer technologies in public areas for mobile applications

Objective: provide indications on inherently safer and efficient cryogenic hydrogen technologies and protocols in mobile applications by proposing innovative safety strategies including selection of effective safety barriers and hazard zoning strategies, which are the results of a detailed risk analysis.

NTNU role: coordinator, consequence analysis, risk analysis

ELVHYS

Expected outcomes & objectives

- 1. Detailed risk analysis for LH2 transferring operations for mobile applications (ships, trucks, stationary tanks) fillings
- 2. Generic hazard distances for LH2 transferring operations in the different applications, also addressing SimOps
- 3. Guidelines for design of LH2 transferring facilities
- 4. Consensual loading procedures for LH2 transferring operations
- 5. Provide inputs for developing Standards, Technical Specifications, or Technical Reports at the international level

7

ELVHYS – Stakeholder Advisory Board

- At the moment 29 organizations are included in the SAB
- The organizations are based in 8 European (Belgium, France, Germany, Italy, Norway, Sweden, The Netherlands, UK) and 4 non-European countries (Canada, China, Japan, USA)
- Type of organizations: industries and companies (8), research centres (6), universities (5), national public institutes (3), association (HySafe), intergovernmental org. (IEA), industry org. (Hydrogen Council), rail operator (SNCF)

ELVHYS – Stakeholder Advisory Board

No	Organization	Туре	Country
1	Airbus	Industry	France
2	CEA (ESKHYMO project)	Research Centre	France
3	Daimler Truck AG	Industry	Germany
4	DNV	Certification body	Norway/UK
5	Technical University of Denmark DTU	University	Denmark
6	Energy Observer	Company	France
7	Fellow, Royal Society for the Encouragement of Arts, Manufactures and Commerce (FRSA)	Global network of changemakers	USA
8	Forschungszentrum Jülich (STACY project)	Research Centre	Germany
9	Hydrogen Council	Industry organization	
10	HYEX	Company	Norway
11	Hyunday Motor Company	Industry	South Korea
12	HySafe - International Association for Hydrogen Safety	Association	Belgium
13	IEA - International Energy Agency	Intergovernmental org.	
14	ISPRA - Italian National Institute for Environmental Protection and Research	Public body	Italy
15	Kawasaki Heavy Industries	Industry	Japan

ELVHYS – Stakeholder Advisory Board

No	Organization	Туре	Country
16	NavalProggetti srl (sHYpS project)	Company	Italy
17	Norled (MF Hydra – LH2 ferry project)	Company	Norway
18	Politecnico di Milano (e-SHyIPS project)	University	Italy
19	PPG	Company	UK
20	RISE	Research Centre	Sweden
21	RIVM - the Netherlands National Institute for Public Health and the Environment	Public body	The Netherlands
22	Shandong University (SDU)	University	China
23	SINTEF Energy (LH2 Pioneer project)	Research Centre	Norway
24	SINTEF industry	Research Centre	Norway
25	SNCF - DIRECTION TECHNOLOGIES, INNOVATION ET PROJETS GROUPE (rail operator)	Operator	France
26	University of Bergen	University	Norway
27	University of Salerno	University	Italy
28	University of South-East Norway USN	University	Norway
29	University of Trieste	University	Italy

The SAB list can be found on the project website (scan QR code)

ELVHYS – Collaboration with other projects

Intention to establish collaborations with other projects related to LH2 and cryogenic hydrogen transfer and storage

- e-SHyIPS Define the new guidelines for an effective introduction of hydrogen in maritime passenger transport sector (Horizon Europe, coordinator: Brendan Patrick Sullivan, Politecnico of Milano, Italy)
- 2. ESKHYMO Enhance Safety Knowledge for Hydrogen Measurements/Modelling in cryOgenic phase (France, 2022-2026, coordinator: Etienne Havret, CEA, France)
- **3.** LH2 Pioneer Ultra-insulated seaborne containment system for global LH2 ship transport (NFR, coordinator: David Berstad, SINTEF Energy)
- 4. MF Hydra (LH2 ferry, Norway, Norled)
- **5. sHYpS -** Sustainable Hydrogen Powered Shipping (EU, coordinator (Horizon Europe, 2022-26, coordinator: Pierluigi Busetto, NAVAL PROGETTI, Italy)
- 6. STACY Towards Safe Storage and Transportation of Cryogenic Hydrogen (EIG Concert Japan, 2022-2026, coordinator: Ernst-Arndt Reinecke, Julich, Germany)

ELVHYS – Work Plan

- WP1 Project Management & Coordination
- WP2 From industrial background and strategy to findings application
- WP3 Cryogenic hydrogen transfer facilities performance
- WP4 Fires & explosions from cryogenic hydrogen transfer facilities
- WP5 Risk Analysis for selected cryogenic hydrogen transferring operations
- WP6 Dissemination, exploitation and communication

WP3 - Cryogenic hydrogen transfer facilities performance

- Task 3.1 LH2 transfer devices definition
- Task 3.2 LH2 transfer tests: bunkering, fuelling, refuelling, defueling
- **Task 3.3** Support by theoretical and numerical studies for experimental setup, and numerical experiments to formulate cryogenic hydrogen transfer protocols

Tests will be carried out by DLR in Germany in 2024

WP4 - Fires and explosions from cryogenic hydrogen transfer facilities

- Task 4.1 Oxygen enrichment and condensed phase explosions
- Task 4.2 Leakage into cold room/tank connection space considering barriers and obstacles

HSE test (Hooker et al., 2012)

Tests will be carried out by HSE in UK in 2024

WP4 - Fires and explosions from cryogenic hydrogen transfer facilities

- Task 4.3 Performance of LH2 components and explosion consequences
- Task 4.4 Material testing against unignited and ignited jets (MLI, glass spheres, perlite layers and fire protecting wall) according to ISO 20088
- Task 4.5 Modelling in support of and utilising WP4 experimental activities

Tests will be carried out by KIT in Germany in 2024

Clean Hydrogen Partnership

o-funded by

European Union

15

WP5 - Risk Analysis for selected cryogenic hydrogen transferring operations

- Task 5.1 Hazard identification and damage state estimation
 - Sub-Task: 5.1.1 Hazard identification
 - Sub-Task: 5.1.2 Damage state of the installation resulting in the release of hydrogen
- Task 5.2 Consequence assessment
 - Sub-Task: 5.2.1 Modelling of accidental phenomena
 - Sub-Task 5.2.2: Vulnerability assessment
- Task 5.3 Frequency assessment and risk integration
 - Sub-Task: 5.3.1 Frequency of incident occurrence
 - Sub-Task: 5.3.2 Risk integration
- Task 5.4 Innovative safety strategies and engineering solutions
 - Sub-Task: 5.4.1 Safety barriers
 - Sub-Task: 5.4.2 Safety zoning strategies

ELVHYS – News

Some selected news from the last newsletter published on the project website

- ELVHYS project shortlisted for the Best Success Story Award 2023 by the Clean Hydrogen Partnership!
- ELVHYS first research outcomes were presented at International Conference of Hydrogen Safety (ICHS) 2023

Thank you for your attention

federico.ustolin@ntnu.no

ELVHYS project No. 101101381 is supported by the Clean Hydrogen Partnership and its members. UK participants in Horizon Europe Project ELVHYS are supported by UKRI grant numbers 10063519 (University of Ulster) and 10070592 (Health and Safety Executive).

Disclaimer: Despite the care that was taken while preparing this document the following disclaimer applies: Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen JU. Neither the European Union nor the granting authority can be held responsible for them.