ELVHYS project

Procedures for LH₂ transfer from trailer to a stationary storage tank

Air Liquide

ELVHYS Workshop #3 - 2024.06.07

Athens - NCSRD

ELVHYS project - Workshop #3 | LH₂ transferring procedures for stationary storage - 2024.06.07

Introduction

Topic

- Procedures for LH₂ transfer from trailer to a stationary tank
- Described procedures
 - Based on Air Liquide information
 - Potentially some deviations regarding to the company

The LH₂ trailer - the "mother storage" Main parts and functions

LH₂ stationary tank - the "daughter storage" AL technical specifications

Horizontal liquid hydrogen tanks

20 to 75 m³
9.9 to 12 barg
LH₂ capacity up to 4 tons

Technical specifications	Horizontal storage* RH20 - 143 PSIG / 9.9 BARG (up to 12 barg with PED)	Vertical storage* C56 - 143 PSIG / 9.9 BARG (up to 12 barg with PED)	
Range of products	From 20 up to 75 KL (gross tank capacity) for vertical storage and equivalent for horizontal storage		
Total gross tank capacity @ ambient temperature (US Gal / liters)	5,051 / 19,121	14,754 / 55,850	
Total net tank capacity @ cold temperature (US Gal / liters)	5,005 / 18,948	13,160 / 49,816	
Ullage volume (%)	10	10	
LH ₂ payload (lbs/ kg) (LH ₂ density @ 101 325 Pa)	2,734 / 1,240	7,776 / 3,527	
Maximum Allowable Working Pressure (MAWP) (psig / barg)	143 / 9.9 (up to 12 barg with PED)	143 / 9.9 (up to 12 barg with PED)	
Normal Evaporation Rate (NER)	< 1% per day	< 0.9% per day	
Length (inches / m)	220 / 5.59	147/3.73	
Width (inches / m)	132 / 3.35	154/3.91	
Height (inches / m)	119 / 3.02	579 / 14.70	
Estimated tare weight (lbs / kg)	22,267 / 10,100	47,180 / 21,400	
Design temperature (°F / °C)	-423 °F to +212 °F / -253 °C to +100 °C		
Design code	ASME Section VIII Division 1 / PED Europe Pressure Equipment Directive / Korea Gas Safety certification		

* Datas given for indicative purpose only.

Vertical liquid hydrogen tanks •44 to 75 m³ •9.9 to 12 barg

·LH₂ capacity up to 4 tons

Perlite

8 THIS DOCUMENT IS PUBLIC

LH₂ stationary storage tank filling *Principle*

- For transferring LH₂ from the LH₂ trailer to a LH₂ stationary storage tank the main method is the pressure build-up
 - This method is widely used in the industrial gas industry
- Pressure build-up is "natural" or a voluntary vaporization of LH₂ via a small external heat exchanger (PBU)
- Hence, for LH₂ transferring from the LH₂ trailer
 - the pressure in the "mother storage" i.e. the LH₂ trailer is higher than the pressure in the "daughter storage" - i.e. the LH₂ stationary storage tank
 - LH₂ transfer driven by the pressure difference is easy

The main drawbacks of this method are

- a long operating time
- and an increase of the pressure in the LH₂ trailer leading sometime to the need of a voluntary and controlled pressure venting
- Pumping in the "mother storage" using an appropriate transfer centrifugal cryogenic pump is possible, but not yet used for LH₂

LH₂ transfer procedures

In detail, Step-by-Step

Conventional LH₂ unloading/transfer Main steps

LH₂ transfer Generic characteristics

Trailer filling

- Loading of a trailer
 - Filling center: 8 000 to 10 000 L.h⁻¹ depends on the initial conditions:
 - trailer temperature, level of residual H₂
 - Gravity-based filling
 e.g. 37 m³ filling in 2h (1 t.h⁻¹)
- Unloading at the customer
 - 50 kg.min⁻¹
 ΔP-based filling

Stationary tank

- Process
 - Temperature = 20 to 24 K

Pressure = 1 to 10 bara

Characteristics

- Time: ~ $2\frac{1}{2}$ hrs ($\frac{1}{2}$ + 1 + $\frac{3}{4}$)
- Mass flow: Up to 2 t.h⁻¹
- Losses: could be 5%

About safety

Examples of safety features for *LH*² **trailers & stationary storage tanks**

LH₂ trailers

What	Where	For what	
Two safety valves with at least one pneumatics	Tank	According to ADR, during transportation all storage are isolated by a valve	
Road safety valve	Tank	Evacuate overpressure	
Rupture disc	Tank	Avoid burst of the storage in case of pressure increase	
PRD	Tank	Limit the risk of boil-off	

*LH*₂ stationary tanks

What	Where	For what
Pressure and temperature monitoring	Tank	Detect insulation default
Level monitoring	Tank	Avoid overfilling
Rupture disc	Tank	Avoid burst of the storage in case of pressure increase
PRD	Tank	Limit the risk of boil-off

LH₂ transfer

Additional safety considerations & Potential improvements

Conventional LH₂ unloading/transfer *Remarks*

 Slight changes can appear depending on the type of the liquid hydrogen trailer and on the local liquid hydrogen stationary storage

Nevertheless, as shown through the main steps of the unloading of liquid hydrogen from the liquid trailer to a local liquid hydrogen storage, the transfilling requires lots of manual actions and checking operated by the driver alone

Main safetv risks ď

during delivery		POTENTIAL RISK	EXAMPLE SCENARIO
	Trailer connections	External fire	Trailer Emergency Shut Off (ESO) not connected to site, fire & detection system
Root causes Focus on 2 areas: INTERFACES Site configuration, safety rules		Loss of utility	Instrument air supplied from brake circuit instead of point of delivery
	\checkmark	Ignition source	Grounding failure
	Hose Prefill	Small Leakage	Hose coupling failure
		H ₂ /O ₂ mixture	Wrong purge of the hose
PROCEDURE Human factor		Large Release	Automatic valve opening when hose disconnected
		High pressure	Trailer delivery pressure above receiver tank pressure
	Transfilling	High level receiver tank	Overfilling
		Large release	Hose rupture
		High pressure trailer	Forget closing Pressure Builder Unit before departure
	Post Fill before disconnection	Large release	Residual LH ₂ in hose when disconnecting
	Trailer venting	Unsafe venting	Trailer vent stack used instead of customer
	Trailer departure		

Conventional LH₂ unloading/transfer

Next steps

- Some improvements are under development in order to deploy safer filling aiming - for instance - to decrease the likelihood of non respect of the procedure
 - Advanced monitoring and more automated procedures when possible
 - Equipment is a part of the solution as well

In fine, modelling could bring additional information for procedures improvement/optimization for safety, efficiency and limit losses

Conclusions

Air Liquide is developing semi-automatic delivery in public area with LH_2 trailers

Loading/unloading guidelines and advanced procedures

Define safety rules minimum requirements and guideline for interface panels (e.g. interoperability of delivery)

Standardization workgroups are in progress

Thank you for your attention

ELVHYS project No. 101101381 is supported by the Clean Hydrogen Partnership and its members. UK participants in Horizon Europe Project ELVHYS are supported by UKRI grant numbers 10063519 (University of Ulster) and 10070592 (Health and Safety Executive).

Disclaimer: Despite the care that was taken while preparing this document the following disclaimer applies: Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen JU. Neither the European Union nor the granting authority can be held responsible for them.

