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Introduction
The PRESLHY project:

PRESLHY was an EU FCH JU 2.0 co-funded research and innovation 
activity (Project ID 779613), addressing pre-normative work for the safe 
use of liquid (cryogenic) hydrogen LH2 as an energy carrier

HSE carried out experimental work supported by co-funders Shell, 
Lloyd’s Register Foundation and Equinor

The experimental work was undertaken in the following work packages:

• WP3 – Release and mixing

• WP4 – Ignition

• WP5 – Combustion
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WP3 – Release and mixing
Aims:

The main aim of this series of experiments was to investigate the 
propensity for rainout to occur when LH2 is released from elevated 
positions 

The experiments also investigated:

• Vaporisation 

• Characterisation of the flow at the point of release

• Dispersion of the gaseous hydrogen cloud (near and far field)

• Capacity for these releases to form pools
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Experimental overview
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Dispersion Release station and 
measurements

Storage



Experimental overview
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• Green: LH2 release 
station

• Yellow: tanker and vent 
stack 

• Blue: the near-field 
array

• Red: far-field stands



Release station

Electrically isolated section Flowmeter

Release/recirculation 
valves

Local weatherShield (not used for 
dispersion tests)
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Instrumentation
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Experiment list
Test No Release Orientation Release Height 

Above Ground (m)
Orifice 

Diameter 
(mm)

Pressure 
(barg)

3.5.1 Horizontal 0.5 25.4 1
3.5.2 Horizontal 0.5 12 1
3.5.3 Horizontal 0.5 6 1
3.5.4 Horizontal 1.5 25.4 1
3.5.5 Horizontal 1.5 12 1
3.5.6 Horizontal 1.5 6 1
3.5.7 Vertical Up 0.5 12 1
3.5.8 Vertical Down 0.5 12 1
3.5.9 Horizontal + 

obstruction
0.5 12 1

3.5.10 Horizontal 0.5 25.4 5

3.5.11 Horizontal 0.5 12 5

3.5.12 Horizontal 0.5 6 5

3.5.13 Horizontal 1.5 25.4 5

3.5.14 Horizontal 1.5 12 5

3.5.15 Horizontal 1.5 6 5

3.5.16 Vertical Up 0.5 12 5

3.5.17 Vertical Down 0.5 12 5

3.5.18 Horizontal + 
obstruction

0.5 12 5
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Data acquisition and processing
• Clean and synchronise the data to a common 

time base, convert to meaningful units:
• Pipework pressures & temperatures

• Near field concentration & temperatures
• 31 hydrogen sensors, 24 thermocouples

• Far-field concentration & temperatures
• 30 hydrogen sensors, 30 thermocouples

• Flow meter

• Weather stations

• Current & resistance

• Video
• Drone, thermal & high speed

Sensor Manufacturer Model Range Accuracy
Pipework 

thermocouples
TC Direct 1.5 mm Type T 

Mineral 
insulated

–200 to 350°C ±1.5% of Reading

Near-field 
thermocouples

TC Direct 1.5 mm Type T 
Mineral 

insulated 

–200 to 350°C ±1.5% of Reading

Far-field 
thermocouples

TC Direct 1.5 mm Type T 
Grounded 

Chamfered tip

–200 to 350°C ±1.5% of Reading

Pressure Wika IS-3 0-10 barg ±0.5% of Full 
Scale

Tank Pressure N/A Dial gauge 0-15 barg Visual 
Mass flow Emerson Micro Motion 

Coriolis meter
0-7.5 kg/s ±3% of Reading*

H2 
concentration

Xensor XEN-5320 0-100 Vol % ±3% of Full Scale

H2 
concentration

Dräger Xam 5000

XXSH2 HC

0-4 Vol % ±2% of Reading

H2 
concentration

Dräger Xam 5000

Cat-Ex 125 

0-100% LEL ±1% of Reading

H2 PPM Dräger Xam 5000

XXS H2 

0-2000 ppm ±1% of Reading

O2 depletion Dräger Xam 5000

XXS O2 

0-25 Vol % ±1% of Reading

Near-field 
weather 
station

PCE 
Instruments

PCE-FWS-20 0-240 km/h

10-90 % 
humidity

Indicator

Far-field wind 
sensor

Gill 
Instruments

Windsonic 0-60 m/s 

0-359°

±3% of Reading

±2°
Far-field 
humidity 

sensor

Skye 
Instruments

SKH 2053 0-100 %

-20 to 70°C

±2%

±0.05°
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Experiment procedure
• Condition LH2 in tank

• Flatten the fluid by venting gaseous H2 from the tanker
• Allow LH2 into the heat exchanger until the desired pressure is reached

• Purge the pipework with N2 then warm H2

• Initiate recording and prepare triggers
• Implement safety zones and open manual release valve
• Operate remote release valves
• Stop release and complete post-test tasks
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Release system measurements
• Temperatures

• “Warm” temperatures logged as cold junction compensated temperature
• “Cold” temperatures (pipework, near-field array) logged as voltage

• Voltage converted to temperature using cold junction measurement 
and lookup table

• Thermocouples in pipework not indicating BP for LH2

• Post-test investigation of thermocouples conducted using LN2:
• low temperature error found on thermocouples in pipework (TC1-5 only)
• error increases as temperature decreases, and
• investigation reported in D3.6
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Release system measurements
Mass flow meter

• Extensively modified to help cope with the conditions
• Mass flow output based on factory calibration for expected 

temperatures
• Drive gain (excitation power) provides useful information
• Density can be derived from measurement of tube frequency 

(not in two phase flow cases)

𝜔 ∝ 2𝜋
𝑚

𝑘 tube mass (volume, density, temperature)

tube stiffness (temperature) tube period
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Flow rate calculation
Mass flow rate calculations completed and reported:

• Mass flow rates derived from a combination of flow meter and calculations 
based on pressure data

• Results included in deliverable 3.6

Pressure Nozzle diameter Mass flow 

5 bar 6mm ( ¼ ”) 90-100 g/s 

5 bar 12mm ( ½”) 265 g/s 

5 bar 1” (open pipe) 298 g/s 

1 bar 6mm ( ¼ ”) Unknown 

1 bar 12mm ( ½”) 104-107 g/s 

1 bar 1” (open pipe) 135-144 g/s 
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Near-field dispersion
• Collaboration with National Renewable Energy Laboratory (NREL) 

for near-field concentration measurements
• System of pumped sampling tubes and remote sensors
• Up to 32 detectors based on thermal conductivity
• Up to 12 co-located TCs
• Deployment of NREL’s system for measurements in the jet
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Near-field dispersion
• In some tests, solid material accumulated on the sampling point and caused 

horizontal displacement of the location and possibly interfered with sampling 
• Generally, good correlation of temperature and concentration was observed 

across all tests
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Far-field dispersion
• 30 Dräger X-am 5000 units mounted at three heights on stands in the 

far field, 0.5, 1.5 and 2.5 m
• Each instrument contained:

• PPM H2 sensor
• LEL H2 sensor
• O2 sensor

• Each instrument co-located with a thermocouple
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Images from dispersion video 
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Dispersion – some observations
• Rainout did not occur during the established flow of these releases, some 

dripping seen after valve closure (probably liquid air)
• Solid deposits formed around the release point and on impingements with 6/12 

mm nozzles, thought to be solidified air
• Pools can form with vertically downward releases
• Flow meter was only effective at higher pressures and smaller nozzle sizes (i.e. 

void fraction is low)
• Heat gains due to the flow meter and additional pipework reduced effectiveness 

of the meter (two phase flow)
• Transient pockets with an H2 concentration above LEL were measured at 14 m 

distance from LH2 release point for 12 mm or 25.4 mm or larger holes
• Following the initial jet dispersion region, approximately 1.5 m for the 1 bar 

releases and 3 to 6 m for the 5 bar releases, the dispersion of the hydrogen cloud 
was heavily dependent of the wind, including transient localised gusts
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WP4 – Ignition
Aims

To help understand the propensity for an electrostatic charge capable of 
igniting a hydrogen cloud to be generated during a release, or accidental 
spill scenario. The experimental programme measured:

• Charge within a dispersing LH2 plume
• In the free-field and using a Faraday cage

• Charge within a section of electrically isolated pipework
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Experimental overview

Plume  charge measurement (7 trials):
Field meter, faraday cage

Isolated pipeworkFaraday cage and field meter

Wall current (30 trials): 
Isolated pipe section, electrometer
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Results – Plume measurements

21

• Seven trials in total
• No positive charge results on the majority of trials

21

Trial 
No

Test 
No

Field meter 
configuration 

Orifice 
Diameter Pressure Results

1 4.3.2 Free-field layout 1 6 mm 5 Bar No significant charge 
measurements

2 4.3.2 Free-field layout 1 6 mm 5 Bar No significant charge 
measurements

3 4.3.2 Free-field layout 2 6 mm 1 bar No significant charge 
measurements

4 4.3.4 Free-field layout 2 12 mm 1 bar No significant charge 
measurements.

5 4.3.6 Free-field layout 2 25.4 mm 1 bar Initial & mid-flow peaks

6 4.3.3 Faraday cage 12 mm 1 bar No significant charge 
measurements

7 4.3.5 Faraday cage 6 mm 5 bar Initial peak



Results – Plume measurements
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Results – Isolated pipe section
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Work 
Package 

Trial 
No. 

Orifice 
Size (mm)  

Pressure 
(bar) 

Wall Current 
peak Range 

Resistance 
(Ω2) 

3.5 2 25.4 1  3.8 (nA)* -2 to 2 nA 1.06x107 
3.5 3 25.4 1  230 (nA)* -200 to 200 nA 1.02x106 
3.5 5 6 1 240 (nA)* -200 to 200 nA 2.48x106 
3.5 6 12 1 -9.6 (nA) -2 to 2 μA 

 3.5 7 12 1 -9.6 (nA) -2 to 2 μA 
 3.5 8 12 1 2.8 (μA)* -2 to 2 μA 2.07x107 

3.5 10 25.4 5 0.16 (μA) -200 to 200 μA 2.67x104 
3.5 18 6 1  -0.27 (nA) -200 to 200 nA 

 3.5 23 12 4.5  -0.25 (nA) -200 to 200 nA 
 3.5 25 25.4 4.5  -0.99 (nA) -200 to 200 nA 1.03x107 

4.3 3 6 1  0.20 (μA) -200 to 200 μA 6.06x104 
4.3 5 25.4 1  -0.35 (nA) -200 to 200 nA 

 

• Wall current measurements taken in a total of 30 trials
• Positive results on 12 trials, shown below
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Results – Isolated pipe section
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Ignition – some observations
• Hydrogen did not hold a significant charge in these tests
• Multiphase hydrogen flow can generate a current in 

isolated steel pipework
• Occasional charge spikes have been identified, possibly 

caused by ice breaking off the nozzle or air being ejected 
from un-purged pipework
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WP5 – Combustion
Aim:

The aim of this experimental campaign was to determine the effect of 
differing levels of congestion upon the ignition behaviour of a cryogenic 
hydrogen plume
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Facility
• Release pipework as WP3 dispersion trials

• In-flow temperature, pressure and mass flow measurements

• Congestion provided by congestion rig
• “High” congestion provided by additional 99 scaffold poles
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Experimental setup – plan view
Key
TC and concentration sensors
Pressure transducer
Ignition points
LH2 release
Congestion rack
Frame 

PT1 PT2

TC4

TC2

MFM

TC3

To vent

TC1
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Congestion levels
Bottom half area 
blockage ration 
(m2/m3)

Top half area 
blockage ration 
(m2/m3)

Bottom half volume 
blockage ratio (%)

Top half volume 
blockage ration (%)

Low congestion 0.80 1.00 1.54 1.93

High congestion 1.53 1.33 4.20 4.60
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Instrumentation
• Pressure, temperature & concentration sensors
• Video including high speed & thermal
• Far-field sound meters
• Pyrotechnic ignition source
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Experiment matrix
Trial No Test No Orifice Diameter Pressure Ignition point Congestion level Noise

1 5.5.1 1/4" 1 bar Front Low
2 5.5.2 1/2" 1 bar Front Low
3 5.5.3 1" 1 bar Front Low
4 5.5.2 1/2" 1 bar Front Low 123 dB
5 5.5.3 1" 1 bar Front Low 117 dB
6 5.5.2 1/2" 1 bar Front Low 125 dB
7 5.5.3 1" 1 bar Front Low 114 dB
8 5.5.2 1/2" 1 bar Rear Low
9 5.5.2 1/2" 1 bar Rear Low 123 dB

10 5.5.3 1" 1 bar Rear Low 108 dB
11 5.5.1 1/4" 5 bar Front Low 122 dB
12 5.5.2 1/2" 5 bar Rear Low 132 dB
13 5.5.2 1/2" 5 bar Front Low 131 dB
14 5.5.2 1/2" 5 bar Rear Low 127 dB
15 5.5.2 1/2" 5 bar Front Low 132 dB
16 5.5.2 1/2" 5 bar Rear Low 134 dB
17 5.5.2 1/2" 5 bar Front Low 129 dB
18 5.5.3 1" 5 bar Front Low 120 dB
19 5.5.3 1" 5 bar Rear Low 137 dB
20 5.5.4 1/4" 1 bar Front High
21 5.5.5 1/2" 1 bar Front High 134 dB
22 5.5.5 1/2" 1 bar Front High 132 dB
23 5.5.5 1/2" 1 bar Front High 145 dB
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Comparison of repeated tests

32



Friedlander waveform

Test 23 – Friedlander curve fitting of pressure gauges response K1: 6.5 m (left figure) and K2: 11.5 m 
(right figure) distance from centre along jet axis. 
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TNO Multi-Energy Method
• Using the pressure waves at 11.5 m 

from the centre, Test 23 energy is 
between 16 and 27 MJ

• Test 23 was a TNO level 8-10
• Test 21 was a TNO level 4
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TNT equivalence
• Difficulty expressing a single TNT equivalence
• Overpressure of 0.19 bar at 11.5 m is achieved by 2 kg TNT
• This is an explosive energy release of 9 MJ, about half of the energy 

from the Test 23 gas explosion
• There is uncertainty around DDT in Test 23. There were higher 

overpressures and characteristic shape, but flame speed was not as 
high as expected
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Wind effects

t=0.48 s

t=2.56 s

t=2.52 s

t=2.60 s
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Combustion – some observations
• Significant variability when tests were repeated (Tests 21-23) 
• Average concentrations in congestion rig slightly higher in Test 23 (2 

%Vol.)
• Wind effects were noted on dispersion and hence overpressures 

generated
• For low congestion, TNO level 5 was a conservative assumption
• For high congestion, high level explosion and possibly DDT could 

occur
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