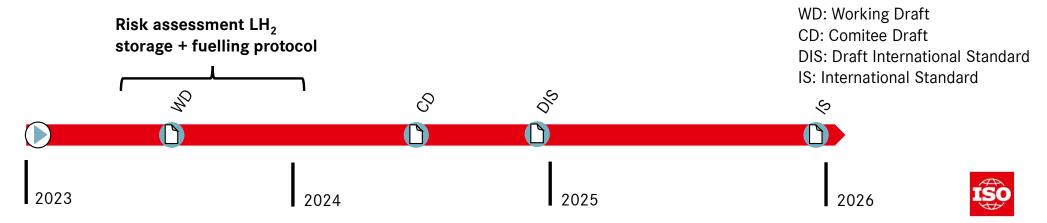
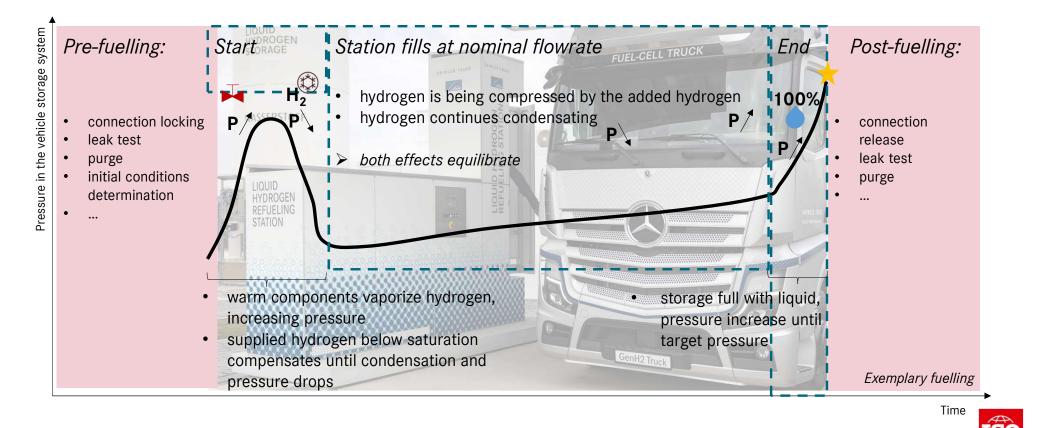


Development of LH2 fuelling procedures and risk assessment within ISO/TC197/WG35

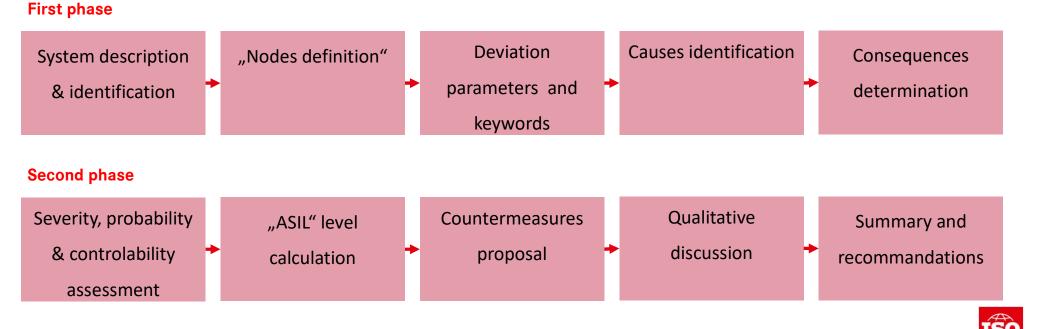

Baptiste Ravinel (<u>baptiste.ravinel@daimlertruck.com</u>) Daimler Truck – ISO TC197/WG35 convenor

ELVHYS Workshop 3 – June 7th, 2024


iso.org

Introduction – ISO 13984 revision

- Revision of the original standard from 1999 started last year
- New title: Liquid Hydrogen Land Vehicle Fuelling Protocol
- Risk assessment performed with the group working on LH₂ storage standard (ISO 13985) between April 2023 and January 2024


Liquid Hydrogen Fueling Protocol Introduction

3

Risk assessment - introduction

• Risk assessment HAZID like, at the crossroad of automotive ISO 26262 and industrial systems IEC 61508.

Risk assessment - introduction

						Controllability class												
					C1	C2	C3											
	Severity class				Probability class													
					Simply controllable			Difficult to control or uncontrollable										
			E1	Very low probability	Operational situation occurs once by year or less often	QM	QM	QM										
S1	Light & moderate injuries	More than 10 % probability of AIS 1-2 (and not S2 or S3)				More than 10 %							E2	Low probability	Operational situation occurs few times by year	QM	QM	QM
51			E3	Medium probability	Operational situation occurs every month or more often	QM	QM	Α										
			E4	High probability	Operational situation occurs every day of use	QM	Α	В										
	Severe and life-			Very low probability	Operational situation occurs once by year or less often	QM	QM	QM										
S2	Inreatening	More than 10 %	E2	Low probability	Operational situation occurs few times by year	QM	QM	Α										
32	injuries (survival	val probability of AIS 3-4 (and not S3)		Medium probability	Operational situation occurs every month or more often	QM	Α	В										
	probable)	(unu not 55)	E4	High probability	Operational situation occurs every day of use	Α	В	С										
	Life-threatening	atening		E1		Very low probability	Operational situation occurs once by year or less often	QM	QM	А								
S 3	injuries (survival More than 10 % uncertain), fatal probability of AIS 5-6		E2	Low probability	Operational situation occurs few times by year	QM	Α	В										
33			E3	Medium probability	Operational situation occurs every month or more often	А	В	С										
	injuries		E4	High probability	Operational situation occurs every day of use	В	С	D										

S0

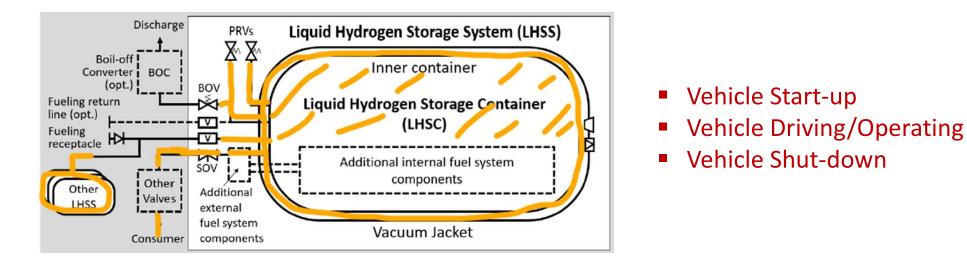
Caption

Abbreviated Injury Scale (AIS)

- AIS 1: light injuries such as skin-deep wounds, muscle pains, whiplash, etc.;

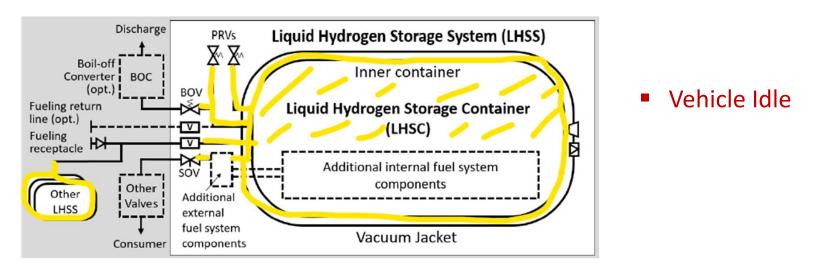
- AIS 2: moderate injuries such as deep flesh wounds, concussion with up to 15 minutes of unconsciousness, uncomplicated long bone fractures, uncomplicated rib fractures, etc.;

- AIS 3: severe but not life-threatening injuries such as skull fractures without brain injury, spinal dislocations below the fourth cervical vertebra without damage to the spinal cord, more than one fractured rib without paradoxical breathing, etc.;

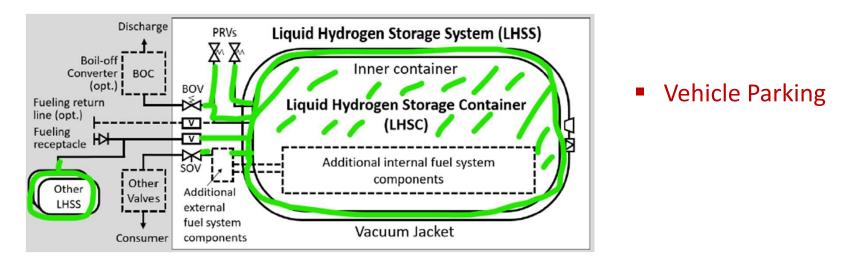

- AIS 4: severe injuries (life-threatening, survival probable) such as concussion with or without skull fractures with up to 12 hours of unconsciousness, paradoxical breathing;

- AIS 5: critical injuries (life-threatening, survival uncertain) such as spinal fractures below the fourth cervical vertebra with damage to the spinal cord, intestinal tears, cardiac tears, more than 12 hours of unconsciousness including intracranial bleeding;

- AIS 6: extremely critical or fatal injuries such as fractures of the cervical vertebral above the third cervical vertebra with damage to the spinal cord, extremely critical open wounds of body cavities (thoracic and abdominal cavities), etc

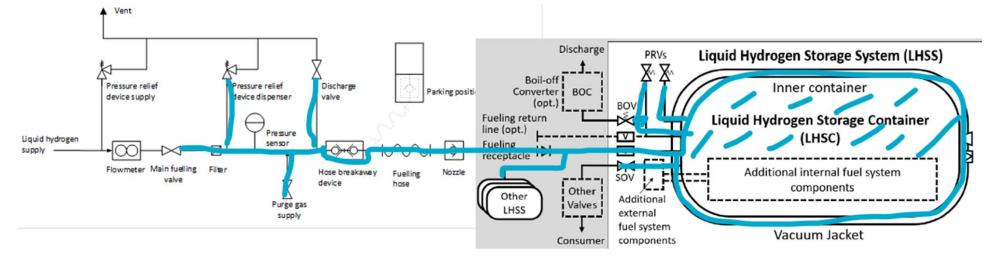

• Node 1.1, 1.2 and 1.3

This three phases and related nodes correspond to the ramp-up, operation and ramp-down of the power train using hydrogen supplied by the storage


• Node 2

This phase and related nodes correspond to the vehicle operating but without supply requested from the storage system

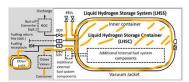
• Node 3



This phase and related nodes correspond the vehicle power train shut down, i.e. not rolling and without supply requested from the storage system

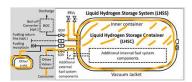
• Node 4.1, 4.2 and 4.3

- Fuelling Start-up
- Main Fuelling
- Fuelling Shut-down


This phase and related nodes correspond to the different fuelling steps of the vehicle at a hydrogen fuelling station

HAZID matrix overview

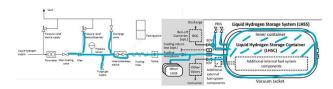
				e 1 - Identification							Phase 2 - Ranking		
Parameter		Guideword	Deviation	Cause	Elfect	Consequence	Sevenity 51.52.53	Probability E1. E2. E3. E4	Controlability 4 C1.C2.C3	ASIL QM.A.B.L	Countermeasures	Discussion on residual risk (ALARIP)	
Temperatu	e ľ	No	No Temperature	Temperature sensor fault	Operation	Missing information on tank conditions and state of charge	S0	E3	C2	FALSCH			
Temperatu	e I	More	More Temperature	Major tank insulation fault (e.g. vacuum loss)	Safety	Fast pressure increase of the tank leading to a rupture and major H2 release (cryo spill, explosion, major jet fire, extended flash fire)	53	E2	C3	В	PSV redundancy designed to handle vacuum loss → vacuum loss test - end of line test (first fill with LH2) - pressure cycling of the tank - mechanical qualification (adressed below) - material design / qualification (adressed below)		E2: in terms of operation the probability of failure is fairly low and field experience is positive. On the other hand considering manufacturing constraints, the probability of having products failing in the field might be higher. Chosen here in a conservative view Detection mean to prevent
Temperatu	e l	More		Major heating supply system control failure	Safety	Fast pressure increase of the tank leading to a rupture and major H2 release (cryo spill, explosion, major jet fire, extended flash fire)	53	E3	C3	C	 Boil-off management system + detection of activation -> Boil-off flowrate to be discussed (boil-off management is designed at least to the highest consumption of the heater) PSV redundancy Control loop of the heater Fuse of the heater 		permanent telease Heater loop sufficiently controlled if trespassing maximum design pover
Pressure	1	More	More Pressure	loe build up limiting the relief of H2	Safety	Fast pressure increase of the tank leading to a rupture and major H2 release (cryo spill, explosion, major jet fire, extended flash fire)	53	E4	C3	D	- Validation scenario - Design - Recommendation for extinguishing fire - Redundancy of the safety valve - Water protection	Residual risk can only be reduced through strict design rules	Protection from atmospheric conditions for the inner part. Design external parts not to be affected by ice freezing
Vibration	r	More		Fluctuations due to driving profile, causing fluid dynamic shaking, impacting the tank wall and accelerating the boil-off rate	Safety	Fast pressure increase of the tank leading to a rupture and major H2 release (cryo spill, explosion, major jet fire, extended flash fire)	53	E2	C3	B	– Testing and design (Shaker test with LH2 or equivalent fluid) – Design of the Boil-Off valve – PSV	Residual risk ok	Shaking might even contribute to reduce pressure
Errosion/Co				Excessive supply flow to fuel- cell/engine causing errosion in the pipeline	Safety	Material damage leading to H2 release (cryo spill, explosion, major jet fire, extended flash fire)	S3	E1	C3	A	- Qualify the components for the maximum flowrate	Residual risk ok	
Errosion/Co			Less Errosion/Corrosion	Norelevance						FALSCH			
Errosion/Co			As Well As Errosion/Corrosion							FALSCH			
Errosion/Co	rosion F	Part of	Part of Errosion/Corrosion	Norelevance						FALSCH			

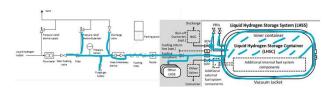


• Node 1.1, 1.2, 1.3, 2 and 3 => ISO 13985

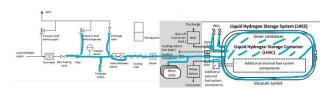
Identified scenarios with specific attention	Proposed countermeasures		
Cryogenic leak towards non-cryogenic parts	 - External leaks: components qualification, minimisation of interfaces and leak detection - Internal leaks: component design and qualification, even if not intended for cryogenic uses 		
Icing of relief devices	 Protect inner parts from atmospheric influence External parts designed not to be affected by freezing 		
Venting system not reclosing	 Design, qualification, maintenance & inspection Installation rules Additional barriers possible for boil-off system 		
Extreme road and environmental conditions	Individual assessment by manufacturers		
External leakage	Combination of design & qualification , inspection & maintenance and leak detection		

• Node 1.1, 1.2, 1.3, 2 and 3 => ISO 13985


Scenarios with the highest risk level	Mitigation
Ice build up, limiting pressure relieve	Design rules, redundancy of relief devices, protection against water, recommendations for fire extinguishing
Tank or components materials not appropriate	Choice and design of material, qualification of materials, especially accounting for cryogenic conditions
Vehicle dynamics, shock or braking, causing excessive mechanical stresses	Mechanical acceleration tests, design of the structure and crash simulations and tests

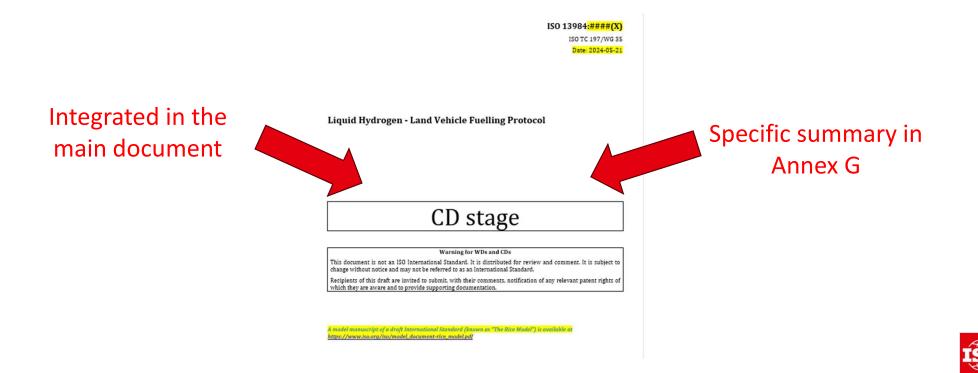


Identified scenarios with specific attention	Proposed countermeasures
Components or storage too warm	 Vehicle side: qualification for warm tank situation, detection and preliminary countermeasures, pressure relief devices Station side: initial fuelling routine, warm tank detection, measurement
 Initial pressure conditions: storage pressure > station pressure storage pressure < station pressure 	 Boil-off management and relief devices Design of maximum allowable working pressure Initial procedures Purge against contamination
Pressure sensor upward deviation - fuelling of an empty storage	 Vehicle detection and fuelling prevention Redundancy, safety level of station pressure sensor Leak test Maintenance



Identified scenarios with specific attention	Proposed countermeasures
Purge and leak test system: - pressure increase through leak - contamination	 Constructive and design measures Supply control (pressure, flowrate) Helium or hydrogen for purge Pressure relations between sub-systems
Check-valve issues: - chattering - receptacle check-valve remaining open at disconnection	 Design and receptacle check-valve neutralization no stop and flow behaviour Connector qualification Locking pin safety User information
Excessive flowrate	 Relief devices design Pressure control Flowrate direct or indirect safety loop
Air ingress	 Vehicle leak detection Initial purge and leak test

Scenarios with the highest risk level	Mitigation			
Components or storage too warm	Qualification of components and storage, redundancy and setting of relief devices Initial warm tank procedure			
Components materials not appropriate	Choice and design of material, qualification of materials, especially accounting for cryogenic conditions			
Lifetime and full environmental range	Design measures and sufficient qualification of the components			
Too fast temperature variations	Appropriate design rules (e.g. limiting sharp bends) and qualification Controlled cool down station procedure			
Initial pressure relations	See previous slides			



Scenarios with the highest risk level	Mitigation			
Remaining contamination from previous fuelling	Nozzle design, as well as docking of the station and systematic purge procedure			
Vehicle drive away while still connected	Breakaway device Possible additional measures			
Nozzle misconnection or damaged	Standardized design and specification of the connector Protection and qualification against drop Systematic initial purge and leak test procedure			
Check valves not properly closed at connection or disconnection	Check valve design and qualification, including independency/redundancy Safety Integrity Level on the locking pin function			

Where to find information

• Available in ISO 13984 to come next year

Thank you.

Making lives *easier*, *safer* and *better*.

Questions

iso.org