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• SINTEF and SINTEF Energy Research

• Large-scale LH₂ transport and loading

• The LH₂ Pioneer Project

• Modelling work on LH₂ loading operations
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OUR PROJECTS 
CONTRIBUTE TO
THE SUSTAINABILITY GOALS

The figure illustrates the fact that in 2022 SINTEF had 
significant activities related to the  SDGs.
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Strategic initiatives 
- provide multidisciplinary collaboration for complex challenges
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Global energy solutions
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92% of income comes from open competitions 
- a balanced portofolio of colloborative research and contract research
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Some comments about large-
scale LH2 transport and 
transfer
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LNG and LH2 – so far on completely different 
levels capacity-wise

Technology for a better society World's total LH2         : ≈  55   LH2/  ≈  .1  M  LH2/year output 

Total LNG plant capacity (2019): 393 Mt LNG/year output



Evolution of LNG and LH2 tanks
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Scaling up liquid hydrogen storage

Technology for a better society

≈ 45 m

≈ 12 m
≈ 2  m

NASA, USA
3 800 m3

270 t

JAXA, Japan
540 m3

38 t

40 000 m3

2 800 t
50 000 m3

3 500 t

LH2 truck
< 50 m3

< 3.5 t

Existing

Image source: https://www.nasa.gov/content/liquid-hydrogen-the-fuel-of-choice-for-space-exploration; Kawasaki Heavy Industries

https://protect.checkpoint.com/v2/___https://www.nasa.gov/content/liquid-hydrogen-the-fuel-of-choice-for-space-exploration___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6NWY4Yzo4MjIyNjBhYWNkNmY4MzRlZmUzZTJhNzJkYzJlYzk1MmQxZjI1ZTIzNzRkN2Q2ZmRiZDVjODFhYmEzNTJkMmNkOnA6VA


Examples of current «large-
scale» LH2 transfer operations

Technology for a better society

• The largest and common LH2 transfer operations today are 
to/from tanker trucks, with capacities typically in the range of 3–
4 ton per batch

• Kawasaki Heavy Industries has developed and built terminal for 
LH2 transfer from ship to shore
• Double-walled, vacuum-insulated

• 2 500 m3 LH2 storage tank

• Liquid hydrogen ferry in Norway (MF Hydra, NORLED)

• Aerospacial, e.g., NASA, Florida: Relative LH2-loss during transfer 
from truck to storage tank is reported to be around 13 % on 
average. About half of this is caused by precooling of the system

• Developments for using LH2 for air transport. 

Image source: 
https://www.energy.gov/eere/fuelcells/liquid-
hydrogen-delivery 

Kobe LH2 Terminal (Hy touch Kobe)
Image source: 
https://global.kawasaki.com/en/corp/newsroo
m/news/detail/?f=20201203_2378 

https://protect.checkpoint.com/v2/___https://www.energy.gov/eere/fuelcells/liquid-hydrogen-delivery___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6YzZjZTpkMTYzNDE1N2M5MmYwYzQxOWFhOTFjODU0NzRiNTcxNzI2MWUwNTgwMmZmMTAxMWVhYjE1OGM5NDE4NzI5OThmOnA6VA
https://protect.checkpoint.com/v2/___https://www.energy.gov/eere/fuelcells/liquid-hydrogen-delivery___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6YzZjZTpkMTYzNDE1N2M5MmYwYzQxOWFhOTFjODU0NzRiNTcxNzI2MWUwNTgwMmZmMTAxMWVhYjE1OGM5NDE4NzI5OThmOnA6VA
https://protect.checkpoint.com/v2/___https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20201203_2378___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6MjcwMzpjNTcyY2Y1NDE2ZGZmMzU3ZWIzYjZmZWYzM2IzNjYwYmRlOWFhMDg3ZWYyZjhjY2ZiZWE1ZGM5NmIyY2MxMjc4OnA6VA
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Marine LH2 Containment & Transport 
(Kawasaki H.I.)

"Suiso Frontier" (Image source: Kawasaki Heavy Industries)
https://global.kawasaki.com/en/corp/newsroom/news/detail/?f=20191211_3487



The hydrogen economy needs effective 
hydrogen transport solutions

Illustration by Moss Maritime: https://www.mossww.com/gas-technologies/

https://protect.checkpoint.com/v2/___https://www.mossww.com/gas-technologies/___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6N2NiYTo5ODFhMTQ2NmVlYmU1Y2EwMWRmYzY5OGQ4ZWY0ZGQ1NTY3YjBlY2Q3NTBjYmI5ZTkyMGRjZDc0MzM0OTZjODAwOnA6VA


LH2 Pioneer Project
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LH2 Pioneer: Ultra-insulated seaborne 
containment system for global LH2 ship 
transport

Technology for a better society

• KSP – Knowledge Building Project

• Project duration: 2021-2025



LH2 Pioneer  -  Project structure



LH2 Pioneer – Ultra-insulated seaborne containment 
system for global LH2 ship transport

Main objective

Develop a feasible conceptual design for the critical 
components and processes required to enable transport of 
liquid hydrogen on a similar scale as present-day LNG 
transport

• Develop a pioneering conceptual design for a large and cost-
efficient liquid hydrogen containment system with boiloff rates 
feasible for seaborne transport, targeting 0.1 % / day

• Derive concepts for efficient boiloff handling and reliquefaction
processes for LH2 carriers, including the use of boiloff for 
propulsion and auxiliary power generation

• Determine a conceptual design for a full-scale liquid hydrogen ship 
loading system

More information: https://www.sintef.no/en/projects/2021/lh2-
pioneer/ 

Teknologi for et bedre samfunn

https://protect.checkpoint.com/v2/___https://www.sintef.no/en/projects/2021/lh2-pioneer/___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6ZjMxMjpmY2NkY2Q3NjBkOGU1NmJhYWEyYmJlN2QzMjk5NjUxYWFlOTM4OWUxZDMxZDQ5MDU1YmU4ZGM3YjFlMzM5ZTEzOnA6VA
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Scaling up liquid hydrogen storage
 – Does it facilitate or impede performance?

Technology for a better society

Area-to-volume ratio for spherical tanks
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Estimates based on existing and conceptual 
tank systems
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0.011 W/(m2K)

0.010 W/(m2K)

0.009 W/(m2K)

0.008 W/(m2K)

0.007 W/(m2K)

0.006 W/(m2K)

0.005 W/(m2K)

0.004 W/(m2K)

Estimate [Linde]

Estimate [KHI, existing]

Estimate [KHI, existing]

Estimate [KHI]

Estimate [NASA, existing]

LH2 Pioneer target area

Berstad et al. (2021) Liquid hydrogen as prospective energy carrier: A brief review and discussion of underlying assumptions applied in value chain analysis. Renewable and Sustainable Energy Reviews

https://protect.checkpoint.com/v2/___https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6YmIzZjpkNDNmOTY1N2VlODUyY2Q0MGEyNWNlYTY2M2VkYmRkODYzMTQzMDc0ZmFjNzNjYzBjM2I5ZTljNDliMzZmNDA2OnA6VA


WP3 Loading operations

Technology for a better society

Operational 
requirements

Modeling and 
simulation -
Transient

System 
analysis and 
case studies



LH2 Pioneer Project – the 
loading system

Technology for a better society



Outlook: requirements for a large-scale LH2 
loading system

Technology for a better society

• Generally: large-scale requirements are larger than for any state-of-the-art or pilot 
systems made so far

• Energy flux: Expected to be typically 20–30 GW at rated capacity to cater to full-scale 
tankers 
• 150' – 200 000 m3 cargo capacity

• Adequate pre-cooling procedures/techniques
• The best option can vary depending on location

• Potentially very different options between an export terminal and import terminal

• Low overall LH2 "boil-off losses" for the full LH2 loading cycle



LH₂ loading system
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LH₂ loading system
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LH₂ loading system

Liquefier
H2 feed

 
 

 
 

 

 

LH2 ship loading line
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Vapour return 
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LH2 loading loop



LH₂ loading system

Technology for a better society

Component Parameter Value Unit

Seaborne tank Capacity 50 000 m3

Seaborne tank Heat ingress 50 000 W

Seaborne tank Pressure 1.105 bar

Onshore tank Capacity 50 000 m3

Onshore tank Pressure 1.105 bar

Onshore tank Heat ingress 50 000 W

LH2 pipeline Inner diameter 0.3 m

LH2 pipeline Length 500 m

LH2 pipeline Insulation 0.07 m

Vapor H2 pipeline Length 500 m

Liquefier
H2 feed

 
 

 
 

 

 

LH2 ship loading line

Vapour return line

Liquid line

Loading jetty vapour return line

LH2 pump

Crossover 
line

Onshore
tank

Seaborne
tank



Thermodynamic analysis
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• Specific volume increases rapidly with 
vapour fraction

• The occurrence of two-phase in the 
transfer line can therefore lead to 
escalating pressure gradients and low 
capacity

• The liquid should be kept in a subcooled 
liquid state during transfer

• This can be enabled by pumping the 
liquid upstream of the liquid transfer line
• Presumably by submerged pumps located on 

the bottom of the LH2 tanks



State points along the LH2 transfer line
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State points along the LH2 transfer line
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Drivers for evaporation along the LH2 transfer 
line

Technology for a better society

• The amount of vapour generated is 
proportional to the entropy increase 
through the transfer process

• A "loss-free"/reversible transfer 
would give State 5 ≈ State 1

‒  No friction or heat ingress

‒ Not possible in practice



Some observations from the thermodynamic 
analysis

Technology for a better society

• Each sub-process contribution to evaporation "losses" is proportional to its entropy generation

• The evaporation is not necessarily visible/detectable where it occurs, but the contribution can be 
quantified when analysed thermodynamically

• Pump efficiency is a major factor and element of uncertainty, and dissipation/inefficiency in the pump is a 
major cause for entropy generation

• Pressure losses due to hydraulic resistance seem to be generally more prominent than heat leak, when 
using typical values

• Additional heat losses are probable, but the impact will still be limited relative to dissipation and throttling

• High pump efficiency and low hydraulic resistance seems more of a concern to mitigate, in comparison 
with heat losses

• Heat ingress is still a major contributor e.g. during cooldown of the transfer lines.



Design vs Operation

Stabilizing control layer

Keeps operation in 
the active constraint 
region

S. Skogestad, ``Control structure design for complete chemical plants'', Computers and Chemical Engineering, 28 (1-2), 219-234 (2004)
Jacobsen and Skogestad "Active constraint regions for optimal operation of chemical processes". Industrial & Engineering Chemistry Research. (2011) 

• Degrees of freedom (DOF) for design:
‒ Layout of the process → process configuration/topology

‒ Design of equipment → capacities

• Degrees of freedom (DOF) for operation:
‒ Equipment and process configuration are selected
▪ What we can manipulate while we are operating the 

plant

‒ Depend on which control layer we are focusing on

‒ The control structure will affect:

▪ Steady-state → economics

▪ Dynamic behavior → stable process

https://protect.checkpoint.com/v2/___https://folk.ntnu.no/skoge/publications/2004/control_structure_design_cce___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOjFmYTk0NzU5N2UzYWI2ZmQ4YzI0OGUxMDgzMWY5Y2I4OjY6ZGFhZTpiN2M1NDNlMDk5NDA2YmJhNjE4YzRiYmMzN2ZkY2U5OGE2MmVlZmI4ODVjZjY4ZWJkNDgyMDY1ODM1ZmZiOTZkOnA6VA


Degrees of freedom for design in the LH₂ loading 
system

• Tanks
• Objective: Improve understanding for 

BOG handling/effect of evaporation 
during loading
• Total capacity

• Heat ingress

Liquefier
H2 feed

 
 

 
 

 

 

LH2 ship loading line

Vapour return line

Liquid line

Loading jetty vapour return line

LH2 pump

Crossover 
line

Onshore
tank

Seaborne
tank

• Transfer system
‒ Objective: Optimize transfer operations
▪ wrt  time, pressure losses, energy

‒ DOF for design we can analyze:
▪ Pipelines: diameter, insulation material, insulation 

thickness, layout, fittings

▪ Pump: efficiency/capacity

▪ Valves: size



Analysis of dynamic behavior and operation
Need to identify:

• Controlled variables (CV)

• Manipulated variables (MV)

• Disturbances (DV)

• Constraints

• Throughput manipulator (TPM)

Manipulated variables (MV): 
• "Input"
• What you can "directly" 

choose/manipulate
• e.g., valve opening, rotational 

speed

Disturbance variables (DV): 
• Type of input
• What you cannot 

choose/manipulate
• e.g., ambient temperature, 

desired production, upstream 
operationConstraints

• What limits your operation
• e.g., design, 

thermodynamics (max/min 
temperature, pressure, 
flowrate, level, etc.)

Throughput manipulator (TPM)
• DOF that affects the network flow and 

is not determined by the control of 
individual units

Controlled variables (CV): 
• "Output"
• Can be measurements or 

calculations
• What you want to keep at 

a certain set point
• e.g., temperature, 

pressure



Operation of the LH₂ loading system

Operational objective:
• To transfer LH₂ from the onshore 

tank to the seaborne tank

Constraints:
• Design capacities
• Maximum flowrate in LH₂ line
• Thermodynamics:

• Keep liquid phase in LH₂ 
line

• Fluid-dynamics:
• Pressure differences that 

allow transfer 



Operation of the LH₂ loading system

Controlled variables (CV):
• pseaborne tank

• ponshore tank

• (pLH₂ line)
• May define others…

pseaborne tank

ponshore tank

pLH₂ line



Operation of the LH₂ loading system

Degrees of freedom for stabilization:
• MV1

• MV2

• (MV3)

Throughput manipulator

• mLH₂

MV1

MV2

MV3

mLH₂



Operation of the LH₂ loading system

Loading procedure:
• mooring, 
• connection, 
• flushing, 
• precooling, 
• ramp-up, 
• "steady-state" transfer,
• ramp-down, 
• etc.



We want consistency in the inventory

• Consistency. 
• An inventory control system is consistent if it can achieve acceptable inventory regulation for any 

part of the process, including the individual units and the overall plant.

• Inventory

m

m

Aske and Skogestad. "Consistent Inventory Control". Ind. Eng. Chem. Res. 2009, 48, 10892–10902

m

m



Some guidelines for a consistent control 
structure

• We want both "local consistency" and "global consistency"

• Local consistency: 

• only local/close loops (short time delays)

• the control inventory of the unit depends on loops around the unit, i.e., its inflows or outflows: 

• local inventory regulation

• At least one flow in or out of any part of the process (unit) depends on the inventory inside that part of the process (unit)

• Pressure controllers:

• Pressure and inventory dependency: strong for liquids

• Pressure regulation = inventory regulation

• Flow controllers: 

• Fix a flow in every recycle loop 

• Cannot be used for inventory control because flow is not a measure of inventory

• For systems with several phases, the inventory of each phase of any part of the process must be regulated by its 
in- or outflows or by phase transition

• In closed systems, leave one uncontrolled inventory

Aske and Skogestad. "Consistent Inventory Control". Ind. Eng. Chem. Res. 2009, 48, 10892–10902



Checking consistency

m

OK consistency because: 
• Vapor outflow

depends on inventory
– controlled inventory

• Liquid inventory
depends on phase
transition

Valve controlling pressure

Valve controlling pressure

TPM: controlling flowrate

TPM: throughput manipulator

OK consistency because
outflow depends on

inventory – "not
controlled inventory"

OK consistency
because: 
• Vapor outflow

depends on
inventory –
controlled
inventory

• Liquid
inventory
depends on
phase
transition

If inlet to tank
was producing
liquid, there
would not be 
local consistency
for the liquid
phase!

m

m m

Assumption: 
maximum liquid
trasferred will
not exceed tank
capacity



Checking consistency

m

m

Valve controlling pressure

Valve controlling pressure

TPM: controlling flowrate

TPM: throughput manipulator

What if we fix the delivery
pressure of the pump?

Not consistent because then neither
inflow nor outflow of the the LH₂ line 

depends on its inventory

OK consistency
because: 
• Vapor outflow

depends on
inventory –
controlled
inventory

• Liquid
inventory
depends on
phase
transition

OK consistency
because: 
• Vapor outflow

depends on
inventory –
controlled
inventory

• Liquid
inventory
depends on
phase
transition

OK consistency because
outflow depends on

inventory – "not
controlled inventory"

m

m



Alternatives for controlling loading

TPM: throughput manipulator

• Use LH₂ flowrate as TPM
• Pump not controlling pressure/defining flow to

LH₂     

• Use pump as TPM
• Pump defining flow to LH₂     



LH2 Pioneer Project – dynamic 
model for the loading system
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Tools for the dynamic model

• Modelica: "physical modeling language"
• "High-fidelity" simulation that incorporates

• Thermodynamics

• Heat transfer mechanisms

• Geometry

• Modeling and simulation environment: Dymola

• TIL:
• Model library for thermal components and systems

• TIL Media:
• Model library for efficient calculation of thermophysical properties

• Using REFPROP (here, 100% para-hydrogen)



LH₂ loading system
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LH₂ loading system



Simulations results during priming (cooling 
and filling with LH2)

Heat ingress per segment
Temperature in pipeline

Initially, the pipeline is filled with hydrogen in vapour state (vapor quality =1) and the ambient temperature is 15°C.



Simulation results during loading

a) Level of onshore and seaborne tanks b) LH2 and BOG flowrate



Final comments

Technology for a better society

• Large-scale LH₂ transfer – possible in the future, first steps being taken

• Consistency analysis:
• understanding the dynamic behavior of the system and developing the control system

• understanding the implications and limitations of possible alternatives for loading 

• Identification of degrees of freedom for operation and regulatory control layer for the 
transfer system → steady-state transfer

• Improved understanding of the dynamic behavior of large-scale LH2 transfer 
operation of LH2 between tanks

• Important assumptions: Lack of data and experience upscaling components
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