TECHNOLOGY TRANSFER FROM THE INSTITUTE OF SPACE PROPULSION

STORAGE AND HANDLING OF LH₂ AT DLR INSTITUTE OF SPACE PROPULSION

ELVHyS Workshop, June 2023

Dr.-Ing. Birgit Gobereit, Institute of Space Propulsion, Applied Hydrogen Technologies

Outline

- German Aerospace Center (DLR)
- Institute of Space Propulsion
- General Aspects of LH2 Storage and Handling
- Example Filling of Storage Tank by Trailer
- LH2 Transfer Process Example at Rocket Test Bench
- LH2 Fueling Capabilities at H2 Container Test Center
- Related Projects

German Aerospace Center (DLR)

- About 10.000 employees
- 55 institutes and facilities
- at 30 locations.
- External offices in Brüssel, Paris, Tokio und Washington.

Research Activities at DLR

DLR Sites with Hydrogen Activities

Production electrolysis & solar thermal processes

Storage & Distribution

Application

System/market analysis, technology assessment, sustainability

....

Hidden in the Harthäuser Forest...

... european test center for space propulsion systems

... one of the big hydrogen consumers in the world

DLR-Institute of Space Propulsion

7

Site Overview

- Founded 1959 by Prof. Sänger (DLR - Institut für Raumfahrtantriebe - Die Geschichte des Standorts)
- Operation of DLR and ESA test facilities
- H2 consumption about 380 t/a (mainly liquid)
- Operational experiences of hydrogen systems since decades
 - Knowledge about
 - H₂-resistant materials, Components and H₂ systems
 - Safety infrastructure and permissions for H₂ plants (12.BImSchV/StöV)
- Knowledge- and technology transfer
 - Annual hydrogen day since 2013
 - Dept. for Applied Hydrogen Technologies

Site video: www.dlr.de/ra

Test Facilities & Infrastructure

Low pressure test facilities

High altitude simulation
N₂O₄, MMH, H₂O₂
Thrust range 200 - 600N

•ESA test facility •Ground tests •LH₂, LNG and LOx

•Up to 4.000 kN

•ESA test facility
•High altitude simulation
•P4.1: LH₂, LOx, up to 250 kN
•P4.2: N₂O₄, MMH, up to 30 kN

•Turbo pump and system tests
•ground and high altitude simulation tests
•LH₂, LOx, LNG, GNG, up to 75 kN

Low pressure test facility for upper stage and tanks

•ESA test facility

•Testing the complete cryogenic upper stage ULPM of Ariane 6 (engine with tank system) •autarchic control

•Up to 32 tons fuel (LOx and LH₂)

•900 seconds hot run

•ESA test facility •ground and high altitude simulation tests •LH₂, LOx, LNG •Mass flow up to 330 kg/s •I/F-pressure up to 280 bar

•DLR-CNES-ArianeGroup •LH₂, LOx, GCH₄, LNG Ethanol •ground and high altitude simulation •Mass flow up to 12 kg/s •I/F-pressure max. 360 bar

•GH₂ (cooled), LOx, LN₂, LNG •Mass flow up to 1,25 kg/s •I/ F-Pressure max. 95 bar

Test Facilities & Infrastructure

Test centres for hydrogen applications

H₂ test center •container-based test facility •6 test positions for components and demonstrators •green GH₂ (30/300 bar)~60kg/h •2 LH2 test positions (1000 kg/h at 16 bar)

 Large test facility with focus on LH₂ supply •up to 4000kg/h peak at 16bar •GH₂ up to 150kg/h Peak at 300bar

•Big and small test positions

Special hydrogen infrastructure

•LH₂ storage tank, 270m³ •LH₂ pilot tank, 55m³ •Transfer delivery rate of up to $200m^3 LH_2$ per day

H2ORIZON

Electrolyser

•PEM-Electrolyser research platform •880kW P_{el} from wind park •14,1 kg/h green hydrogen

•35,8kg/h green H₂

Other facilities

•Chemical Lab, e.g. gas and exhaust analysis, energy carrier development (ionic liquids) •Cryogenic laboratory Physical laboratory Micro combustion chamber with LH₂, LOx, LCH₄

Calibration lab

•Green propellants •Gel propellants Vacuum plant Scramjet research

Centralized Storages at Lampoldshausen

LH2-Tanks at Storage Area

Storage Tank B101

 270 m^3 / 0,1 bar storage pressure, 1,1 bar working pressure, max. 2,9 bar

Pilot Tank B102

50 m³ / working pressure 4,5 bar, max. 6,5 bar

Filling of tanks by trailer.

Transfer of LH2 to test benches
 or to evaporator to provide GH2 for consumer.

Overview and Extension of Main Media Supply Systems

12

- Low temperature: storage of liquid hydrogen requires insulated tank
 - Typical design: double walled, vacuum insulated, additional insulation in space between inner and outer vessel, e.g. multi layer insulation, perlite, glass bubbles.
 - Inner vessel has to withstand mechanical stresses, due to temperature gradient, and defined max. working pressure; structural material has to be adequate for H2 operation.
 - Outer vessel: protection against outside conditions, vacuum tight.
- Transfer:
 - Pressurization of tank with (1) evaporator or (2) pressurized gas, or
 - LH₂ pump (currently still expansive and high risk of failure, usually restricted operation range, thus maybe not suitable for application with wide range – aircraft with high consumption at start and low in normal operation)

- Safety of components and system
 - design and manufacturing according norms and standards, e.g. Pressure Equipment Directive (PED)
 - grounding and lightning protection to avoid unintended ignition
 - commissioning, leak tests stepwise starting with inert media (e.g. GN₂, water), inert cryogenic media (e.g. LN₂), and finally with LH₂

Operational Safety

- avoid over-pressure due to boil off -> safety valves for normal operation; exhaust valve for operation with high evaporation rates (cool down)
- every possibly separated piping segment has to be equipped with safety valve
- avoid explosive atmosphere at critical areas by releasing evaporated H2 via vent or flare stack

Purging:

- LH2 infrastructure must be clean, dry and inert bevor filling process !
- Purge gas GN₂
- Removal of not wanted rest gases (air) and humidity
- Removal of dirt (e.g. after modification or repair work)
- Methods
 - Flow through
 - Pressurization and venting
 - Pressurization, venting and evacuation

Conditioning:

- Preparation of piping, tank, etc. for filling with cryogenic media.
- Bring system after run back in inert state.
- Objective:
 - gases (expect of GH2 and GHe) will freeze, and can block or destroy plant.
 - avoid any contamination for end user.
- Purge gases to eliminate N₂: GH₂ or GHe
 - Advantage GH₂: price, availability
 - Advantage GHe: lower risk; no warm up for purging

Filling of Storage Tank by Trailer

- Air Liquide coupling extended with adapters from Air Product and Linde
- The unloading station is an EX protection zone
- Weather protection by a roof for the tank and the pipeline
- Additional protection by Teflon cap and welded protection tube

Preparation for Transfer

- Trailer in parking position secure locked
- Grounding
- Connection of flexible hose
- Positioning of catch bin below locations with no or worse insulation, to catch condensate

Example of Transfer Duration

- Arrival LH2 Trailer: 10:30 h
- Start purging: 10:45 h
- Start filling 50m³ Tank: 11:20 h
- Switch to 270m³ Tank: 12:31 h
- End of filling: 12:31 h
- End of purging an warm up: 13:45 h

Duration: 3 h 15 min

Transfered LH2: 2400 kg

LH2 Transfer Process Example at Rocket Test Bench

- P5 test bench for low pressure cryogenic testing facility for lower stage engines under sea level conditions
- Vulcain engine test with liquid oxygen and hydrogen
- LOX 300kg/s @ 17 bar
- LH2 50 kg/s @ 5 bar
- Local storage tank 600m³ @ 7 bar

Preparation of vulcain 2 engine at test bench P5

LH2 Transfer Process Example at Rocket Test Bench

 European Research and Technology Test Bench with cryogenic propellants

P8.1/2

- high pressure cryogenic facility for sub-scale testing, highaltitude simulation capacity
- LH2 12 kg/s @ 300 bar

P8.3

- Turbo pump, power pack and engine test capability with cryogenic propellants
- LH2 20 kg/s @ 14 bar
- Local storage tank 11m³ @ 6bar

High pressure cryogenic lines

LH2 Fueling Capabilities at H2 Container Test Center

Hydrogen Supply

100% green hydrogen (gaseous)

- From electrolyser (30bar) (directly connected to windpark)
- Supply for technical center at no wind
 - 2 bottles with 12m³ at 300bar as buffer
 - Transfer from central storage via pipeline

Liquid hydrogen (delivered)

- LH₂ supply tank 12m³
- Interface for discharge DN25
 - about 1000kg/h at max. 16bar
- max. test specimen size: 2m³
 - Quick discharge with He in 5min

H₂ TECHNOLOGY TRANSFER PROJECTS (EXTRACT)

High pressure hydrogen tank

24

Liquid hydrogen run tank

Hydrogen Aviation Lab

Ground demonstrator for usage of liquid hydrogen in a common airplane (A320)

Partner

- Lufthansa Technik (LHT)
- Zentrum f
 ür angewandte Luftfahrtforschung (ZAL)
- German Aerospace Center (DLR)

Scope of DLR Lampoldshausen

- Design und Erection of the complete H₂ system on board until fuel cell interface
- simulation of system behavior for various scenarios (filling, taxiing, flight)
- Optimization regarding to
 - safety
 - efficiency
 - Boil-off

Dornier 228 Flying Fuel Cell (Do228FFC) Emission free flight demonstrator Dornier 228

Partner

- MTU Aeroengines
- German Aerospace Center (DLR)

Overview

- Hydrogen powered fuel cell
- unilateral electrical propeller engine (> 500 KW)
- Development of a complete power train with cooling line suitable for aviation
- Planned maiden flight 2026

Scope of DLR Lampoldshausen

 Planning and Erection of an LH₂ ground filling station for the flight field in Oberpfaffenhofen

Foto: Walther Präzision: Hydrogen Refueling Technology

Thank you for our attention!

<u>Contact</u>

Dr.-Ing. Birgit Gobereit Department for Applied Hydrogen Technologies Phone: +49 6298 / 28 - 758 E-Mail: birgit.gobereit@dlr.de