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PS/KIT-Experiments for the PRESLHY-Project

Overview

WP3.4 & WP4.4
Unignited & Ignited POOL-Experiments

(LH2-pool formation, evaporation and ignition)

WP5.2
Ignited CRYOTUBE-Experiments

(cryogenic GH2 combustions
in a closed tube) 

GH2
LN2

WP3.1a & WP5.1
Unignited DISCHA-Experiments                 

(cryogenic GH2 releases) 

WP3.1b
Unignited CRYOSTAT-

Experiments
(cryogenic 

LH2 releases) 

WP4.2
Electrostatic Field Measurements

(cryogenic GH2 & LH2 releases) 

& Ignited DISCHA-Experiments
& WP5.1

Will be omitted due to
time constraints

WP5.3
Unignited & Ignited COLDCHANNEL-Experiments

(cryogenic semiconfined GH2 combustions) 



 

DISCHA-Experiments
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Main features of the DISCHA pressure vessel
• Designed for investigation of blow-down behavior of cryogenic hydrogen 

stored at elevated pressure and its dispersion in surrounding air, 
• stainless steel vessel (Di = 160 mm, Hi = 140 mm, V = 2.81 dm³) 
• designed for gaseous releases (p up to 200 bar, T down to 80 K). 
• Circumference equipped with:

• 2 nozzle ports (di = 12 mm, only lower port used),
• 1 rod opposite to nozzle ports for connection with force sensor.

• Nozzle Properties (release line: di = 10 mm): 
• 4 Nozzles with circular apertures di = 0.5, 1, 2 and 4 mm.



 

DISCHA-Experiments
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DISCHA-facility (in tent behind KIT-HYKA) equipped with: 
• 1 static pressure sensor in vessel and 1 dynamic pressure sensor close to nozzle
• 3 thermocouples in vessel, 1 close to nozzle and 5 downstream the nozzle,
• 5 sampling positions for H2-concentration measurements downstream the nozzle,
• 1 scale and 1 force sensor

Tests at ambient
temperature

and
Tests at approx. 80 K 
(LN2 boiling temperature)

DISCHA-Facility Instrumentation (UNignited experiments)



 

DISCHA-Experiments
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DISCHA-Facility Instrumentation (ignited experiments)

DISCHA-facility (on free field test site) equipped with: 
• 1 static pressure sensor in vessel and 1 dynamic pressure sensor close to nozzle
• 3 thermocouples in vessel, 1 close to nozzle,
• Neither temperature nor H2-concentration measurements downstream the nozzle,
• Ignition electrodes and 6 fast dynamic pressure sensors on ground,
• Neither scale nor force sensor.

Tests at ambient temperature and approx. 80 K
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DISCHA-Experiments
DISCHA-Facility Optical and additional equipment
Photos/Videos processed using different BOS-procedures optimized for different jet-regions.

Ignited experiments:
• HS: PHOTRON FastCAM SA 1.1 (≤ 5.000 fps)
• DAL: DALSA video camera (70 fps)
• PV: Panasonic video camera (24 fps)
• C2: CANON EOS5D Mark II
• IR: Thermocamera FLIR T450 (IR)  

Unignited experiments:
• 2 Photo-cameras (Canon EOS5D Mark I & II)
• 1 Panasonic video camera
• 2 Field mills (FM, electrostatic field), 
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Test matrix Unignited Experiments
• Test matrix for unignited DISCHA-experiments: 

7 initial pressure stages x 4 nozzle diameters 
x 2 initial temperatures = 56 cases, 
all cases tested at least once,

• Up to 7 repetitions to check reproducibility 
(facility improved several times), 

• In total > 200 experiments performed.  A: ambient temperature (290 K)    C: cryogenic temperature (80 K) 

Nozzle diameter [mm]
0.5 1 2 4

Pi
ni

[b
ar

]

5 A/C A/C A/C A/C
10 A/C A/C A/C A/C
20 A/C A/C A/C A/C
50 A/C A/C A/C A/C

100 A/C A/C A/C A/C
150 A/C A/C A/C A/C
200 A/C A/C A/C A/C

DISCHA-Experiments

Theoretical Utilization of Experimental Data
• Data of unignited DISCHA-experiments used by PRESLHY-Partners for validation of models 

on blowdown behavior of cryogenic GH2. 
(1) S. Giannissi, A. Venetsanos et al.: Cold hydrogen blowdown release: an inter-comparison study; International 

Conference on Hydrogen Safety - Online, Edinburgh, United Kingdom, Sept. 21-24 2021
(2) Cirrone, D., Molkov, V. et al.: Modelling the non-adiabatic blowdown of pressurised cryogenic hydrogen storage tank; 

International Conference on Hydrogen Safety 2023 (ICHS2023), Quebec, Kanada, 19.–21.09.2023



 

Reproducibility
• Extremal field values within a series mostly consistent,
• Extremal field values always at t < 1 s, 
• Within few hours positive and negative values measured.
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Unignited Experiments: Electrostatic field measurements (WP4.2)
• No ignition due to electrostatic discharge observed in complete experimental program,
• Highest positive and lowest negative electric field values measured for T ≈ 80 K:

DISCHA-Experiments

è Assumption:
Electrostatic field built-up 

during release mainly 
connected with ice crystals due 

to frozen humidity at 
cold nozzle prior to release. 

• Max. field values >> 1000 V/m measured,
• Most extremal values measured for largest dnoz (4 mm) 
• Max. field values >> 1000 V/m measured,
• Most extremal values measured for largest dnoz (4 mm) 

and highest pini (20 MPa),

Reproducibility
• Extremal field values within a series mostly consistent,
• Extremal field values always at t < 1 s,



 

Test Matrix Ignited Experiments
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• Test matrix of main ignited DISCHA-experiments: 
4 initial pressures x 3 nozzle diameters x 5 ignition 
distances x 2 initial temperatures = 120 cases,
Experiments on almost complete test matrix 
performed for both initial temperatures,

• Variation of ignition delay time in initial test series:
è Main series with ignition delay time of 120 ms.

DISCHA-Experiments

Z. Ren, J. Wen et al.: The evolution and structure of ignited high-pressure 
cryogenic hydrogen jets; Int J Hydrogen Energy (2022) Volume 47, Issue 50, 
pp. 21596-21611

Theoretical Utilization of Experimental Data
• Ignited DISCHA-experimental data used by PRESLHY-

Partners for model validation ignited cryogenic H2. 



 

Test Matrix Ignited Experiments
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• Warm/cold experiments differ concer-
ning influence of ignition distance on 
maximum combustion overpressures.

DISCHA-Experiments

• After ignition flame can either burn 
back to nozzle or not, determining 
whether the flame continues to burn 
when ignition is 
turned off.

• Pressure waves 
generated by the 
ignition could be 
visualized using 
the BOS method.
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Cryogenic GH2 combustions in tubes



 

Dimensions:
L =  5000 mm
Din =   54 mm
Dout = 73 mm. 

Combustion-Tube
• Combustion of H2-air-mixtures in an obstructed tube at cryogenic temperatures
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Cryogenic GH2 combustions in tubes

Temperature uniformity

• Tube placed in basin filled with LN2 (77K) to cool it down for 
cryogenic experiments, uniformity of temperature checked 
with an array of 6 calibrated thermocouples,

• In experiments flame position detected by:
• 13 Pressure Sensors (with/without thermal compensation),
• 15 Phototransistors (InGaAs)



 

Combustion-Tube: Test Matrix
• Temperatures: ambient (293 K), 

above LN2-temperature (90-130 K)
• Blockage ratios: 0%, 30% and 60%
• H2-concentrations: 8 to 60 Vol% H2
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Cryogenic GH2 combustions in tubes

• Higher hydrogen concentration in 
mixture leads to lower condensation 
temperature, mainly for air 
components

• To cover flammable range, lowest 
initial temperature should be higher 
than 80 K to avoid condensation.
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Cryogenic GH2 combustions in tubes
Hydrogen Combustion regimes
• For gaseous hydrogen combustions three main combustion regimes are distinguished:

Slow Deflagration
(laminar flame)

v ≈ 1 m/s (Ma << 1),
dp ≈ 3 – 5 p0

Fast Deflagration
(turbulent flame)
v ≈ 300 m/s (Ma ≈ 1),

dp ≈ 6 – 9 p0

Detonation

v > 1000 m/s (Ma > 1),
dp ≈ 15 – 20 p0

Ignition
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Cryogenic GH2 combustions in tubes
BR = 30%

BR = 60%

Critical expansion ratio for effective 
flame acceleration in cold 
experiments (T = 90 – 130 K)
• For cryogenic temperature 

T ≈ 100 K critical expansion ratio is 
σ* = 12.5 (corresponds to 16% H2)

• Detonation achieved when 
flame speed becomes larger than 
speed of sound in products (cp) 
and approaches theoretical 
detonation velocity (DCJ).
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Cryogenic GH2 combustions in tubes
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Cryogenic GH2 combustions in tubes
Conclusions
• Three typical flame propagation regimes were experimentally observed: 

(1) slow subsonic deflagration, (2) fast sonic deflagration, and (3) detonation.  
• Critical conditions for FA evaluated as a function of Tini within range (Tini = >90 - 650 K).
• Detonation cell sizes at cryogenic temperature T = 100 K were evaluated on the basis of 

existing criteria for detonation onset in smooth and obstructed tubes,
• Maximum combustion pressure at cryogenic temperatures found to be 2-3 times higher 

than for ambient conditions, resulting in much higher hazard potential of cryogenic 
combustions, compared to combustions at ambient conditions.

• Run-up distance to detonation at cryogenic temperatures found to be 2 times shorter 
than at ambient temperature,

• Further information see:
M. Kuznetsov, T. Jordan et al.: Shock tube experiments on flame propagation regimes and critical conditions for flame 
acceleration and detonation transition for hydrogen-air mixtures at cryogenic temperatures; International Conference on 
Hydrogen Safety - Online, Edinburgh, United Kingdom, Sept. 21-24 2021



 

POOL-Experiments
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POOL-Experiments
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Motivation
• Leakages or failures during LH2 transport and refueling lead to LH2-releases that will 

produce large clouds of GH2 and might even form LH2-pools.
• Pool evaporation and mixing of GH2 with air leads to generation of flammable H2/air 

clouds that can produce huge temperature and pressure loads in case of ignition. 
• Evaporation rates of LH2 from pools above different substrates are of fundamental 

interest for safety assessments of LH2 applications, but only limited data are available. 
• Most data concentrate on free spills above flat grounds and water surfaces, where mostly 

expansion and shrinking of puddle is investigated and computational models are 
proposed. 

• Only few data is available for confining basins, in which LH2-pools of considerable depth 
might form and where evaporation is governed by heat transfer from ground material. 



 

Pool properties
• Box-material: stainless steel
• Inner dimensions: 50 x 50 x 20 cm (L x W x H), 
• Insulated with styrofoam plates on bottom and sides,
• In-substrate instrumentation positioned with holders,
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• 3 Pools filled up to half the height (10 cm) with 
different substrates 

Concrete
(prepared > 1 month prior to 

1st experiment)

Sand
(equipped with baffle plate)

Gravel
(gravel removed for tests with water)

Water
(water removed for tests with gravel)

POOL-Facility, test procedure and test matrix



 

Instrumentation 
Every pool is equipped with:
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• Balance for weight measurement of LH2-pool,

0
mm

• Experiments observed with up to 5 cameras,
• Wind conditions recorded with anemometer

Balance

Substrate
Pool

Insulation
(PU-Foam)

Box
(stainless steel)

-100

100

1000

550

250

• 8 Thermocouples in substrate,
• 6 Thermocouples in pool,
• 10 Thermocouples above pool,
• 3 H2-concentration measurement positions 

above pool,

• In ignited tests no sensors (T, cH2) above pool, but 
additional fast pressure sensors on ground around 
facility.

POOL-Facility, test procedure and test matrix



 

Test procedure
• Hose positioned and fixed above pool,
• Data acquisition started manually and then 

controlled remotely from shelter, 
• Cameras started manually,
• LH2-release started manually at trailer 

(same valve opening) & stopped remotely,
• After pool evaporation following release 

again started manually (after safety check
with H2-sensor) and stopped remotely,
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POOL-Facility, test procedure and test matrix

LH2 pool

scale

BOS background pattern

LH2-Trailer

hose

• Unignited experiments:
Pool usually filled 3x in one experiment,

• Ignited experiments: 
Ignition during evaporation after 2nd filling



 

Test matrix unignited experiments
• In total 10 unignited experiments performed with pool-facility,
• Experiments performed with 

all 4 substrates (concrete, 
sand, gravel, water),

• 4 Experiments performed 
with “artificial side wind” 
of known velocity and 
direction.
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POOL-Facility, test procedure and test matrix

Date Substrate Procedure Conditions Comments
20.03.2020 Concrete01 2 Fillings Natural No scales data (Not used)
24.03.2020 Concrete02 4 Fillings Natural
08.04.2020 Gravel01 3 Fillings Natural
09.04.2020 Sand01 3 Fillings Natural
15.04.2020 Sand02 3 Fillings Wind No natural wind data
16.04.2020 Sand03 3 Fillings Wind
17.04.2020 Concrete03 3 Fillings Wind
22.04.2020 Gravel02 3 Fillings Natural Gas-Samples
23.04.2020 Gravel03 3 Fillings Wind Gas-Samples
23.04.2020 Water01 3 Fillings Natural



 

Test matrix ignited experiments
• In total 14 ignited experiments were performed with the pool-facility,
• Experiments performed 

with all 4 substrates 
(concrete, sand, gravel, 
water),

• Main variable apart from 
substrate was ignition 
height.
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POOL-Facility, test procedure and test matrix

Date Substrate Procedure
Ignition 

Height [cm] Comments
24.04.2020 Sand04 2 Fillings 25
24.04.2020 Sand05 2 Fillings 25 T100 moved near ignition
24.04.2020 Sand06 2 Fillings 15
27.04.2020 Sand07 2 Fillings 45 No ignition
27.04.2020 Sand08 2 Fillings 40
27.04.2020 Sand09 2 Fillings 35
27.04.2020 Sand10 2 Fillings 8
27.04.2020 Sand11 2 Fillings 45 Repetition of Sand 07
27.04.2020 Concrete04 2 Fillings 45
27.04.2020 Concrete04 2 Fillings 25
27.04.2020 Concrete04 2 Fillings 15
27.04.2020 Concrete04 2 Fillings 8 Ignition in 3rd attempt
27.04.2020 Water02 2 Fillings 25
04.05.2020 Gravel04 2 Fillings 25
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Unignited Experiments with the POOL-Facility

1. Beginning LH2-release 4. End (1st) evaporation 
2. Beginning (1st) pool-formation 5. 2nd release and evaporation
3. End (1st) release, beginning (1st) evaporation 6. 3rd release and evaporation

1 2 3 4 5 6

LH2-Evaporation above sand and concrete (Example SandPool02)



 

LH2-Evaporation above sand and concrete (Example ConcretePool02)
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Unignited Experiments with the POOL-Facility

• For filling periods (yellow arrows in left graph) no clear order of TCs reaching Tb(LH2) in 
positions above substrate can be determined è no detailed analysis of pool formation. 

• For evaporating pool, passing-times of LH2 level for pool-TCs can be clearly identified and 
when plotted over time, vaporization velocity of boiling LH2 pool in form of a height 
reduction velocity can be determined from slope, 

• Further evaluation yields mass reduction velocity and heat transfer from substrate to LH2.

(2nd filling)



 

• In similar manner, analysis of evaporation behavior in all other experiments with concrete 
and sand as substrate was performed.

• Evaporation of cryogenic fluids is governed by heat conduction from ground into liquid. 
• Phenomena might be described by one-dimensional heat conduction equation, whose 

solution gives LH2 evaporation rate in kg/s:
dmLH2/dt = L² k ΔT / [Δhfg (π α t)1/2], (8)

where L – side length of square pool ground face, m; k – thermal conductivity of substrate, W/mK; 
ΔT – temperature difference between boiling temperature of liquid and environment, K; Δhfg – heat of LH2 
vaporization, J/g; α –thermal diffusivity of substrate, m²/s; t – time after coverage of ground with liquid pool.

• Derivation and further results presented in:
Friedrich, A., Breitung, W. et al.: Liquid hydrogen pool evaporation above four different substrates; 
International Conference on Hydrogen Safety 2023 (ICHS2023), Quebec, Kanada, 19.–21.09.2023

LH2-Evaporation above sand and concrete (Example ConcretePool02)
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Unignited Experiments with the POOL-Facility



 

Test procedure - Ignited Pool Experiment Sand05 
• After second filling LH2-level in pool was closely monitored, 
• Increase in temperatures indicates that respective thermocouple is no longer 

covered by LH2,
• At filling level 3 cm (increase in T03) 

ignition was prepared, 
• Ignition was activated at filling level 

of 2 cm (increase in T02),
• Thermocouple TA100 positioned 

close to electrodes to record 
moment of ignition,
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• According to graph: 
in experiment Sand05 
approx. 300 g LH2 was in pool 
in moment of ignition. 

Ignited Experiments with the POOL-Facility



 

Degree of damage in Ignited Pool Experiment
• Almost undamaged: minor burns (e.g.: Water02),
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• More severe damage: torn off insulation (e.g.: Sand11, Concrete05),

• Complete destruction of facility with 
substrate gravel. 

Ignited Experiments with the POOL-Facility



 

• When ignition was activated after 2nd filling (t ≈ 859 s) additional mass 
in pool was about 1100 g,

• Complete
LH2-
inventory
consumed
in only one 
combustion 
event.

Ignited Pool Experiment Gravel04
Possible explanation for different behavior of experiment Gravel04:
• Main difference to other ignited experiments is phase of mass 

increase after 1st evaporation of pool above substrate (t ≈ 390 - 450 s),
• Mass increase most likely due to condensation/solidification of air,
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Ignited Experiments with the POOL-Facility



 

Ignited Pool Experiment Gravel04
Video observation (PHOTRON High-Speed Camera, 2000 fps)
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Ignited Experiments with the POOL-Facility
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Experimental Data available from: https://publikationen.bibliothek.kit.edu/1000145885

https://publikationen.bibliothek.kit.edu/1000145885

