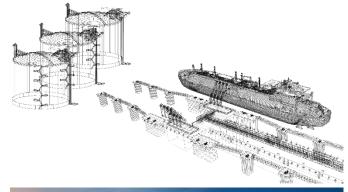


Large Scale Energy Transportation and Storage with Hydrogen

Robert Eberwein

11.10.2024

The markets for LH2


Mobile energy intensive applications

Large-scale transport which requires also storage

Large-scale and long-term storage

SoA and expected size

		LH2 Industry	LNG Industry
Ship tank	In application	1.250 m ³	65.000 m ³
	In design	40.000 m ³	
Storage tank	In application	5.000 m ³	180.000 m ³
	In design or construction	40.000 m ³	220.000 m ³

+ Two times the volume of an LNG tank is required to store the same amount of energy with LH2 +

SoA storage technology

Large-scale tank

Double wall

+ Vacuum

Fill material

MLI

Microspheres

Perlites

SoA evaluation

Advantages	Disadvantages
 ✓ Lowest surface / volume ratio ✓ proved manufacturability and process chain ✓ In use since > 50 years 	 ❖ Bad to install in technical applications ❖ Bad Process chain within production: ❖ Time intensive (>36 Month) ❖ Difficult for automation and parallelization or processes ❖ High manpower fluctuations ❖ Quality assurance is limited ❖ In case of an insulation failure: ❖ Non multi-failure tolerance ❖ Payload is lost ❖ Long service time ❖ Upscaling is expensive as known from LNG industry

Tank insulated by Vacuum Insulation Panels (VIP)

VIP advantages

NICOLHy

<u>Insulation</u>

- ✓ Industrial manufacturing in an industrial environment,
- ✓ Excellent quality control during the manufacturing process,
- ✓ Automation of manufacturing and quality control,
- ✓ Lower vacuum requirements of VIP (1 to 10^2 Pa) than e.g. MLIs (10^{-5} Pa),
- ✓ Parallelization of tank constructions.

<u>Tank</u>

- ✓ Flexibility in the selection of the tank shape due to the inherent stability of the insulation,
- ✓ Reduction of construction time and increase of plannability,
- ✓ Improved planning of manpower requirements during tank installation,
- ✓ Increased fault tolerance of the entire insulation system due to the high number of partial insulation elements (VIPs).

Technology Readiness Level (TRL) of VIP applications

Building industry (TRL9)

Transport of:

- Covid vaccines (TRL9)
- Human organs (TRL9)
- Large goods (TRL6)

Barriers and scope

Recent construction principles for VIP's don't fulfill the requirements:

- Temperature resistents up to 253°C,
 - Long-life performance,
 - Handling of thermal displacements,
 - Safety?

Need for research and new design principles to apply VIP's on LH2 storages with capacities of 40.000 m³ to 200.000 m³ LH2

Project structure

Risk analysis

NICOLHy

Identification of reference hazardous scenarios

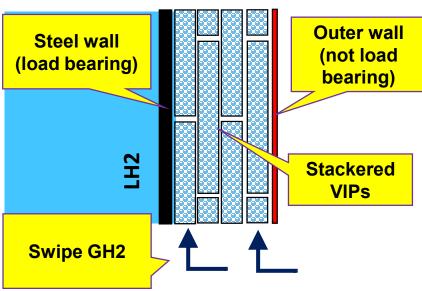
Reference schemes

CONVENTIONAL SYSTEM

SHAPE: Spherical tank

SIZE: $4'700 \text{ m}^3$ (approx. D=22m)

INSULATION SYSTEM: vacuum gap


"NOVEL" SYSTEMS

SHAPE: Cylindrical vertical axis

SIZE: 200'000 m³ (D=75m, H=60m)

INSULATION SYSTEM: stackered VPIs

Reference projects

EQHHP

Thanks for your attention

Project consortium

Partner

✓ BAM

✓ UniBo

✓ DLR

✓ NTNU

✓ NTUA

