

HEAVEN project: overview of the first piloted Flight of LH₂ Powered Electric Aircraft

Simon JALLAIS, Laurence BERNARD, Loic JEUNESSE

Air Liquide R&D / Air Liquide Advanced Technologies

Presentation to ELVHYS - 2nd Stakeholders' workshop, Buxton, November 29, 2023

THIS DOCUMENT IS PUBLIC

Contents

- 1. Introduction
- 2. Overview of Heaven project
- 3. Design and manufacturing
- 4. Tests before flight
- 5. Flight tests
- 6. Conclusions

H₂ aboard : 10 years of R&D in Air Liquide

2013-2019

350bar gaseous H₂ tank non-propulsive energy

Low gravimetric index (<5%)

Cryogenic tank competitive in mass 1 kg LH2 ~ 4 kg Kerosene **12 kg of CO**₂ saved BUT **3 X bigger**

LH₂

Kerosene

Projects co-financed by

2020-2023

Liquid H₂ tank for propulsive energy permit to fly

High gravimetric index (>15%)

Powering aircraft with liquid Hydrogen :

When the dream goes to

© Jean-Marie Urlacher / H2Fly

S5-MHY

S5-MHY

- Objectives
 - Demonstration of a manned flight powered by a FC fed supplied by a LH_2 Tank.
- Challenges
 - Put the tank onboard an existing aircraft called "HY4"
 - Interface the tank with the aircraft and the existing powertrain system (fuel cell fed with HP GH₂)
 - Sufficient performances to be able to fly
 - Safety (design , procedures, airport, Permit To Fly)

Not just a tank : a comprehensive cryogenic system

Many operational functions to perform

 Cool-down/warm-up, refueling/defueling, pressurization, FC feeding by LH₂ vaporization, standby, etc...

Performances of the LH₂ Tank

- Aluminium vessels, vacuum insulated, operates at 6.3 here
 barA
- 15 kg of usable LH₂ gravimetric index 11%
- Can feed up to 100 kW Fuel Cell

All safety analyses performed according to ARP4761 (SAE) guidelines in all operations

Ground refueler

• Interface between LH₂ trailer and aircraft

Design and manufacturing

Key design features of Heaven LH₂ tank

Aluminium inner and outer tank -> mass reduction Titanium neck -> mechanical and thermal optimization Welded stainless steel plate HX for vaporization -> reliable and compact Electrical heater for tank pressurization -> light and reliable

A dedicated control/command system

Developed internally at ALAT

Fully automatic system : it maintains a constant pressure in flight whatever the flow rate required by the fuel cell

Key informations only are sent to the pilot that can switch off the tank at anytime

All operational and safety functions are analogic

A complex integration process

Entirely designed, manufactured and tested in ALAT's premises

Tests before flight

Tests before flight

Before flight, a lot of tests have been performed to demonstrate that the tank :

- Can supply the FC at required flow rate (2.4 g/s) at a constant pressure, in transient
- Has a sufficient time to boil-off (10 to 20 h after filling before boil-off valve opening)
- Can withstand aeronautical environment without leak / mechanical integrity deterioration
- Generates no glitch by its control/command

Tests before flight : 1 - ALAT test center

LN₂ and LH₂ tests on ALAT test center with flight controller - key conclusions :

- Time to boil-off ~10 h between 1 and 7 barA
- Up to 3 g/s of LH₂ can be withdrawn while keeping pressure constant
- Absence of LH₂ leak validated / all safety functions tested

Tests before flight : 2 - Vibration tests

Tests successfully performed according to DO160 with 15kg of LN₂ at ALAT vibration test bench

THIS DOCUMENT IS **PUBLIC

Tests before flight : 3 - coupling tests on ALAT test center

<u>Target</u>: Test the whole system on ALAT test center before flight tests

- Refilling of Heaven LH₂ tank from an AL trailer through dedicated refilling station
- Supply the fuel cell with LH₂ to start the electrical motor
- Validate the safety switch between LH₂ tank / HP GH₂ tank

THIS DOCUMENT IS **PUBLIC

Tests before flight : 3 - coupling tests on ALAT test center

Flight tests Maribor airport (Slovenia) early September 2023

Flight test - refilling area

- Tests performed at Maribor airport Slovenia
- Air Liquide LH₂ container on site for 2 months (pre-tests + flight tests)
- LH₂ safety training on airport fire brigade
- Permit to test fly granted by Slovenian civil aviation authorities

CONCLUSION : A world premiere : a manned e-A/C powered by LH₂

- A 4 year project that led to the world first LH₂ flight with a fuel cell and pilots on board
- Perfect coordination with H2FLY (head of project) and Pipistrel (aircraft maker)
- Apart from minor glitches, the tank behaved as expected
- Authorizations and operations at the airport went smoothly
- All functions for future a/c implemented and tested

This HEAVEN tank can be replicated or adapted to other aircraft

It paves the way to liquid H_2 -powered a/c

