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Introduction 1/2
Background

= Self pressurisation in closed LH2 storage, driven by boil-off depends upon
o Heat transfer (magnitude, mode, location of heat ingress)
o Flow conditions (laminar or turbulent mixing)
o Storage fill level
o Initial conditions
= Existing CFD models’ limitations
o Boundary conditions restricted to constant and/or uniform heat flux
o Not accounted tank material properties dependence on temperature
o Use of ideal gas EoS for GH2 and Boussinesq approximation for LH2
o Use of laminar or RANS models to simulated transitional and weakly turbulent flows

J. C. Aydelott, ‘Normal Gravity Self-Pressurization of 9-Inch- /23 Cm/ Diameter Spherical Liquid Hydrogen Tankage’, Report Number: NASA-TN-D-4171, Oct. 1967.

M. M. Hasan, C. S. Lin, and N. T. Vandresar, ‘Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux’, presented at the 1991 ASME/AIChE National Heat Transfer Conference,
Minneapolis, MN, Jan. 1991.

M. Kassemi and O. Kartuzova, ‘Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank’, Cryogenics, vol. 74, pp. 138—-153, Mar.
2016

I. C. Tolias et al., ‘Best practice guidelines in numerical simulations and CFD benchmarking for hydrogen safety applications’, Int. J. Hydrogen Energy, vol. 44, no. 17, pp. 9050-9062, Apr. 2019.
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Relevance
= Safety implications
o Pressure relief valve or boil off valve malfunction
o Blockage of vent tube
= Practical application
o Modelling LH2 to GH2 conversion in fuel cell systems
o LH2 storage design with reduced boil-off

Scope of study

Modelling heat transfer to closed LH2 storage accounting temperature dependent radiative and
thermophysical material properties for both tank material and fluid
(particularly important for non-uniform and transient heat flux distribution simulation)

= Using NIST EoS for accurate representation of both phases
» Using LES turbulent model to simulate complex transitional and weakly turbulent flow
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Experimental setup

Experimental vessel
o Inner shell — & 9" spherical LH2 tank
(thickness — 0.254 mm)
o Middle shell - radiant heaters
(hemispherical top and bottom), T=273 K
o Outer shell — cold guard and vacuum
jacket
Vacuum: below 10 Pa(a)
Test 4 (out of 21): 50% fill, “uniform heating”
Experiment duration: 400 s
Pressure growth: 0.1 - 0.743 MPa(a)
Experimental data available:
o Pressure dynamics
o Temperature transients in multiple
locations
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Image adapted from: J.C.Aydelott “Normal Gravity Self- Pressurization of 9-
inch diameter spherical liquid hydrogen tankage” NASA TN D-4171, 1967




Validation experiment NASA (TN D-4171) 2/2
Key considerations

Radiation dominates heat transfer
Stratified temperature inside the tank
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Figure 12. - Rate of heat input as function of time for each heat source for typical
guiescent test.

Image adapted from: J.C.Aydelott “Normal Gravity Self- Pressurization of 9-

inch diameter spherical liquid hydrogen tankage” NASA TN D-4171, 1967
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CFD model 1/3
Calculation domain and numerical mesh

=  (Calculation domain includes

o Radiating middle shell & 249 mm with
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Boundary conditions

= Heater temperature
= Temperature elsewhere

293 K
72 Kto 86 K

» Radiative and thermophysical shell properties
o Black-painted surfaces emissivity 0.7 — 0.9
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Initial conditions

= Hydrogen tank pressure
= Vacuum jacket pressure
= GH, and upper tank temperature

= LH, and lower tank temperature
= Vacuum jacket temperature
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Heat flux distribution

Simulation results 1/4

Heat and mass transfer 1/2
= Radiator at 7T=293 K results in non-uniform,
time-dependant heat flux to fluid

* Heat flux to fluid is largest at LH2-GH2 A~ s e
interface R

= Heat flux distribution is affected by temperature L K
dependent radiative and thermal properties of ..o 0 /Q,j:f 1 S
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Heat and mass transfer 2/2

= LH2 at rest at initial moment promotes its local warming up and mass transfer rate
= LH2 convection development reduces the mass transfer rate

= LH2 natural convection is significant only close to wall (velocity ~0.05 m/s)

= Evaporation — only at LH2-GHZ2 interface and is amplified close the wall
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Temperature transients

» Temperature transients follow the experiment
= Maximum deviation is 12.5%
= Stratification is observed in GH2 and LH2 phases
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= Maximum deviation is 2.02%

= Wires, support structure and vent act as heat conductor

= Pressure underprediction/overprediction could be caused by initial net conductive heat
transfer to the tank and out of the tank at later stage
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Conclusions

= CFD model, based on LES and NIST hydrogen properties, provided good agreement
with experimental pressure and temperature dynamics

= Despite constant temperature radiation heaters, distribution of the heat flux to fluid is
highly non-uniform

= Accounting for temperature dependent tank material properties was crucial for correct
prediction of LH2/GH2 phase transfer

= Evaporation was localised around the liquid-vapour interface and particularly intensive
close to the vessel wall

= Temperature stratification was observed in both LH2 and GH2 phases

= [nitially higher pressure rise rate was observed in both experiment and simulation

= Model is planned to be extended to account for convective heat transfer (when data
are available for loss of vacuum condition)
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