

Enhance Safety Knowledge for Hydrogen Measurements/Modelling in cryOgenic phase

ESKHYMO

Enhance Safety Knowledge for Hydrogen Measurements/Modelling in cryOgenic phase

B. Truchot, N. Chaumeix in the name of E. Havret (project coordinator)

Eskymo in a nutshell

- ESKHYMO is a research project pertaining to the safety aspects of the use of liquid hydrogen financed by the French national research agency (ANR). The project has started officially on 3rd October 2022 and will last 4 years.
- Our consortium is composed of 5 partners:
 - INERIS,
 - Air Liquide
 - ICARE laboratory from CNRS,
 - IMFT,
 - 4 laboratories from CEA (CEA Liten is the coordinator)
- The research topics covered by the project ESKHYMO are :
 - 1. Quantifying the physical phenomena involved in a cryogenic tank consecutive to air ingress,
 - 2. Understanding the kinetic of LH2 evaporation during spillage
 - 3. Predicting the size of flammable clouds in case of LH2 spillage,
 - 4. Predicting the severity of ignition flammable clouds following a LH2 spillage.
- The project will deploy both modelling and experimental activities to better characterize and understand the phenomena that are involved.

Timeline of the project

	Resource	ces	2022					2023					2024					2025					2026							
Work Packages description	₩P&Task Leader	₩P m.m	1 2	3 4	5 6	78	9 10 M1 M2 1	11 12 V13 M4 N	1 2 : 45 M6 M	3 4 17 M8 1	5 6 7 M9 M10 M	7 8 S	10 11 12 13 M14 M15 M18	1 2 3 M17 M18 M15	4 5 9 M20 M21	6 7 M22 M23 I	8 9 10 424 M25 M26	11 12 M27 M28	1 2 M29 M3	3 4 0 M31 M32	5 6 M33 M34	7 8 4 M35 M36	9 10 M37 M38	11 12 8 M39 M40	1 2 M41 M	2 3 d 42 M43 M	5 6 14 M45 M41	7 8 6 M47 M48	9 10 1	1 12
WP0 Management	CEA	10.5																												
WP1 Quantifying the physical phenomena involved in a cryogenic tank consecutive to air ingress	CEA	42.5	_																											
T1.1 Review of available thermal fluxes	CEA								JA1.1																					
T1.2 Design and manufacturing of the test bench	CEA										D	.1			01	1.2														
T1.3 Thermal flux measurements	INERIS																D1.2			M1.3										
T1.4 Comparison modelling/measurement	AL																								1.4			D1.3		
WP2 Understanding the kinetic of evaporation	CEA	59																												
of LH ₂ during spillage																														
T1.1 Evaporation kinetic - Numerical approach	INERIS							D2.1									D2.2 M2.1	I												
T2.2 Evaporation kinetic - Experimental approach	CEA									M2.2 C	02.3					D2.4														
WP3 Predicting the size of flammable clouds	INERIS	58								Ϋ́																				
in case of LH ₂ spillage																														
T3.1 Dispersion characterization - Numerical approach	AL										M3.1								D3.	3										
T3.2 Dispersion characterization - Experimental approach	INERIS											D.3.1	113.2					D3.2												
WP4 Predicting the severity of the ignition of flammable clouds	CNRS	58											T I																	
following LH ₂ spillage																														
T4.1 Severity in case of ignition: Numerical approach	IMFT										444.1															D4.3				
T4.2 Severity in case of ignition: Experimental approach	CNRS													0.04.3	2			D4.1						D4.2						
WP5 Industrial background, findings application and dissemination	AL	11.9																												
	A1								A15.5			D5.1																		
T5.1 Description of LH ₂ ecosystem T5.2 outcomes	AL CEA								- Mid. I			00.1		100								D5.2								
T5.3 management	INERIS							_						(MD.2)				(MD)	-			05.2		15.4			D5.4	3 D5.4		
10.5 management	INERIS																						(III	10.4			05.4	00.4		

Work package structure

The project is composed of 5 WP

- WP1 Quantifying the physical phenomena involved in a cryogenic tank consecutive to air ingress
- WP2 Understanding the kinetic of LH2 evaporation during spillage
- WP3 Predicting the size of flammable clouds in case of LH2 spillage
- WP4 Predicting the severity of ignition flammable clouds following a LH2 spillage
- WP5 Industrial background, findings application and dissemination

→ Let's now go into details for each WP

WP1 – Behavior of an insulated tank

Typical accident for cryogenic tanks or circuits:

- Loss of insulating vacuum due to leakage.
- Often the more severe: air ingress → pressure relief device is mandatory

Four steps to size it:

- Power arriving on the system
 need to know the thermal flux during accidental scenarii
- Calculation of the mass flow rate to evacuate
- · Calculation of the pressure relief device upstream conditions
- Sizing of the safety device

For hydrogen the available input data about the thermal flux are poor and have to be completed

• This is the main objective of this work package by the manufacturing of a cryostat dedicated to this kind of measurement.

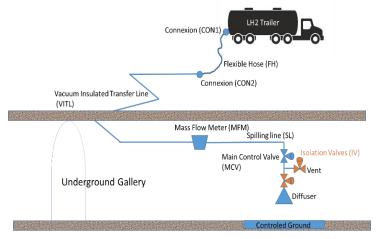

WP1 – Experimental set-up

A dedicated cryostat will be built

- Thermal flux measurement on tanks filled with liquid hydrogen
- Possible modifications:
 - Replacement of the tank to adapt the maximum allowable pressure (subcritical or supercritical discharge)
 - Adaptation of the instrumentation depending on the thermal flux to measure, possibility to test new measurement method
 - Capability to perform air ingress, hydrogen ingress, nitrogen ingress...
 - Modification of the discharge line to adapt its geometry (volume, diameter...)
 - Easy change of the thermal insulation: with or without MLI, aerogel...

Expected measurements

· Flowmeters, thermometers, void fraction of the fluid, level of liquid


WP2 – Spillage characterization

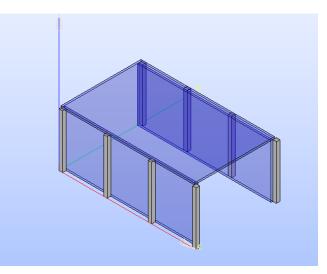
Main objective :

Understanding the kinetic of LH₂ evaporation during spillage

A dual approach:

- modelling
 - Algebraic / integral models (Hypond, ...)
 - CFD simulations (Neptune CFD, ...)
- experiments
 - Scaled experiments: pool size around 1 m²
 - · Control of the release conditions

WP3 – The flammable cloud

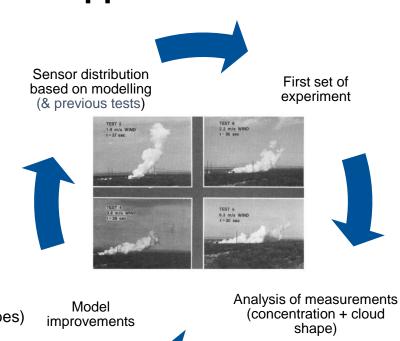

Explosion consequences directly depend on the cloud characteristics correct modelling of the cloud if a key milestone \rightarrow need for reliable data

Dispersion in a controlled environment

- · Air flow: velocity and profile
- Transparent roof (and walls) with visualization

Two set of hydrogen releases

- LH₂ pool evaporation
- Cold gas release through a porous media



WP3 – And once more, a dual approach

Model to design experiment Experiment to improve models

A detail set of measurements

- Local concentration measurement (catharometric technology)
- · Raman system: based on optical fiber distribution
- Tomography method, based on visible cameras
- Velocity and turbulent velocity measurements (Mac Caffrey probes)
- Temperatures, based on thermocouples

WP4 – Cloud explosion

Ignition of the formed hydrogen cloud

- Either resulting from the pool or from the gas release (or both)
- But also
 - Laboratory scale tests to provide fundamental data regarding the combustion of H2/air at very low temperatures
 - Medium scale tests in a cylindrical vessel to provide high precision measurements

Combination of numerous measurement systems

- · Gas sensors, thermocouples
- High frequency pressure transducers
- FAIRS Absolute radiative flux at high resolution
- High speed imaging, Raman spectroscopy

WP5 – The link with industrial needs

Using LH2 is mandatory for hydrogen energy large scale development

- Reducing delivery footprint and optimizing the availability for gaseous hydrogen uses
- Make possible cryogenic hydrogen system (trucks, planes, ...)

A relevant regulation will be required

- Detailed characterization of possible scenarios
- Associated safety distances

Thanks!