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Safety advice and approval support within hydrogen/ammonia safety
Maritime vessels and facilities on land (> 100 clients in 10 countries since 2020)

Land facilities
▪ Hydrogen production systems
▪ Power-to-X facilities
▪ Green steel & metals
▪ Green ammonia
▪ Hydrogen to gas network
▪ Pilot and R&D facilities
▪ Bunkering facilities

Ships/vessels (20+)
▪ Hydrogen vessels (LH2, compressed H2, NH3 and other H2-carriers)
▪ Bunkering and storage solutions

R&D-involvement
▪ Ammonia Fuel Bunkering Network, HYDROGENi

Torghatten-Nord / TNSDC

Fjord Base – AZANE / Yara Clean Ammonia
Bunkering barge & Viridis Bulk Carrier

HYEX CFD model
Yara Skrei Herøya 
green ammonia

Kongsberg Maritime - Ågotnes 
HySEAs III pilot

IFE HyNor Kjeller 
Test Centre

Viridis Bulk Carrier

HYEX CFD model

Everfuel Fredericia 
HySynergy PtX

HYEX CFD model

OVAKO GREEN STEEL

HYEX Safety

LH2-yacht

Cruiseship LH2



Gas bunkering concepts LNG, H2, LH2 and NH3

TTS, STS, Shore-Ship and Swap
▪ Various gas bunkering concepts

▪ Optimal solutions vary with fuel

LNG – flexible (public quays & terminals)

 Good availability, energy density and holding time

NH3 – primarily refrigerated from terminals

 Fair availability, moderate energy density, good holding
time, toxicity concerns

LH2 – trucks/swap (public quays & terminals)

 Low availability, limited energy density and holding time

H2 – truck/plant filling or swap (public quays & terminals)

 Limited availability and low energy density

NH3 bunkering barge MF Hydra– LH2 bunkering truck through tower

Bodø-Moskenes – 3h crossing of open sea

2 ferries to bunker several tonnes compressed H2 daily

Torghatten-Nord / TNSDC

HYEX CFD model GreenH.no

HYEX CFD model

With Orca vessel concept

Bunkering by container swap

LNG ship-to-ship LNG truck-to-shipLNG shore-ship

HYEX CFD model

Viridis Bulk Carriers

AZANE Fuel Solutions



Land facilities (Port/municipality or National regulator)
▪ Hydrogen & Ammonia - two out of many hazardous substances
▪ National regulations based on various EU-directives (Seveso / ATEX ++)
▪ Differences within Europe  (NO/DK/UK/NL, SE and FR/IT)
Norway – risk contours (probabilistic) + bunkering zones - similar to ISO 20519 (LNG)

 Safety zone: Credible leak (HAZID) – e.g. hose rupture with mitigation, instrument connection
 – LFL-distance + 1% fatality probability (toxicity or fire radiation) proposed in new regulation
 – Norway: Expected to depower non-Ex equipment and ventilation intakes (may impact ship design)
 Monitoring & security area (prevent violation of safety zone)

Norway: Swap not bunkering (IMO – yes, it is)! Consent process for bunkering LNG (passenger 
ships), H2 and NH3, (STS, TTS and Shore-ship) + Swap from ship (not Swap from quay)

Ship/Vessels (National Maritime Administrations / IMO)
▪ Hydrogen & Ammonia – new fuels with very different (hazardous) properties 
▪ IMO – UN organisation – consensus-driven rules processes
▪ Interim guidelines for NH3 expected 2024 (?) and H2 (2025+) – rules additional years
▪ Conventional design by prescriptive rules “do this-do that”
▪ H2 & NH3-vessels follow IGF Part A “Alternative design” 
▪ Requires QRA and safety studies

Land versus sea – regulations 

Member of NGO ZESTA’s delegation at IMO CCC London, 2023/2024, 
contributing to the development of interim guidance for hydrogen ships

DSB.no
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security area

Truck
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Ship

HYEX risk contours 
Florø NH3 bunkering facility



What are the main hazards from LH2 releases?

Explosion hazards
▪ Explosion risk (DDT) from accumulation inside semiconfined bunker station, below quay or along ship side
▪ Flashfire/explosion hazards from denser than air plumes along quay or shipside
Assess using CFD-modelling, limit by design, ignition control, detection/ESD and safety zone

Thermal hazards jet-fire/cryogenic
▪ Jet-fires or cold LH2 releases exposing bunker station or shipside
▪ Detonation in solid/condensed oxygen-enriched air deposits
Fast detection/ESD, robust thermal design, and safety zone, consider (!) water mitigation

Other aspects
▪ Venting during flushing/purging or prior to truck departure – to be minimised and ensured safe even if igniting
▪ BLEVE – avoid LH2 truck falling off jetty upside down into mud blocking PSVs while losing vacuum …
▪ LH2 releases entrained into water frequently ignite – not normally expected to be a concern
▪ Cryogenic burns from LH2-leaks a hazard – ignition considered much more severe …
▪ LH2-spray two-phase region is limited, cooling of structures is expected less of concern than for LNG-sprays



How best to model dispersion from LH2 releases

Main challenges
▪ What is the leak rate?  - P, T, hose friction, boiling upstream leak
▪ Source term? - LH2 flashing, air multiphase zone, gas zone
▪ Will pools form? - Not for momentum leaks with suffiicent air
▪ Plume buoyancy? - With dilution and some air humidity/fog

HSL – LH2-release

NASA tests



How best to model dispersion from LH2 releases

Option 1 – try model the complex physics in detail [Not recommended - we tried with FLACS CFD for oil mists 25 y ago]
▪ Heat transfer (line/structures), flashboiling, droplet distribution, break-up/agglomeration, phase changes, pools …

Option 2 – find a simplified modelling approach [FLACS CFD is gas-phase tool]
▪ Estimate leak rate (pressure drop, flashing upstream leak?] V ~100 m/s – reduce slightly with 10% v/v ambient air entrained
▪ Assume no pool (momentum leaks with excess air)
▪ Ignore multiphase region (< 90 K) - Optimise pseudo-source 22-25 K LH2/mist => evaporate to H2 at -15 K => mix 10% air to 25 K
▪ Model humidty/fog – Necessary for plume buoyancy at dilution Possible to activate fog model in FLACS

Approximation - Not critical whether parahydrogen or normal hydrogen properties are assumed

How to define source to get correct flow-field?



FLACS simulations to support NPRA advisory board May 2020

Simulation parameters
▪ Pseudo-source term as described in [Hansen, 2020] (cold H2+air – mixture)

▪ Multi-phase region (LH2, frozen/condensed air) simulated as gas phase

▪ No pool assumed (outdoor releases)

▪ Pressure near orifice used to estimate outflow velocity (~100 m/s) 

▪ Average wind and ambient conditions used as specified 

▪ Air humidity (90%) simulated => plume lift-off at diluted concentrations for low wind

▪ Geometry model made based on photos and reports

▪ Instrumentation as described in reports

Simulations were presented at advisory board meeting

less than 1 week after receiving first draft reports

[NPRA – Norwegian Public Road Authority]

LH2-truck



NPRA LH2 tests at DNV Spadeadam site 2019/2020

DNV large scale LH2 experiments for NPRA/FFI
Outdoor (Tests 1-7): Releases 0.7-0.8 kg/s relevant for vessel bunkering safety

▪ NPRA stated goal => Study pool spread, dispersion and ignition

▪ My advisory board input => No outdoor pool expected, should focus on far-field concentrations

Indoor (Tests 8-15): Releases 0.4-0.5 kg/s inside TCS – tank connection space [Not covered in this presentation]

▪ NPRA stated goal => Study indoor dispersion, ventilation, N2-dilution, explosion, venting

▪ My advisory board input => Too high release rates – hazards more severe with 0.05 kg/s release

=> Nitrogen dilution/venting poor safety strategy – major LH2 indoor leaks not tolerable

LH2 tank
TCS – tank 
connection space



Test 5 (and Test 3) – 0.74 kg/s downwards

Temperature 4 °C     (90% humidity assumed – 0.75% v/v)
Wind 4 m/s
Release down from 0.32 m elevation

8%

4%

Test 5 – ignited at 18 m - 2nd attempt, 1st try failed to ignite at 24 & 18 m 2% LH2 contour



Test 5 (and Test 3) – 0.74 kg/s downwards

Concentrations

CFD: 7.0%

Test 5:  7.6%

CFD: 3.5%

Test 5:  2.0%
Test 3:  3.5%

CFD: 2.0%

Test 5: 1.5%

30 m 50 m

100 m



Test 5 (and Test 3) – 0.74 kg/s downwards

Temperatures (Ambient 4 °C))

30 m

CFD
-3.0 °C

Test 5
-2.5 °C

CFD
-9.0 °C

Test 5
-8.5 °C

50 m 100 m

CFD
0 °C

Test 5
N/A



Test 5 (and Test 3) – 0.74 kg/s downwards

Test 5 – pressure 10-15 mbar
CFD – pressure 10-12 mbar (one detector 40 mbar) 8%

4%

CFD - ignition at 18 m failed to burn back
Ignition at 15 m shown
 

2% contour



Test 5 (and Test 3) – 0.74 kg/s downwards

8%

4%

CFD - ignition at 18 m failed to burn back
Ignition at 15 m shown
 

2% contour

NPRA LH2 test 5 – 
1st release – ignition at 24 m and 18 m failed

NPRA LH2 test 5 – 
2nd release ignition 18 m successful –flame propagation stops >8%

30m pole – maximum 
concentration ~7% near ground
(ignition at 18 m)

Test confirms no horizontal flashfire below 8% hydrogen



Test 6– 0.83 kg/s horizontally

Temperature 4 °C    (90% humidity assumed i.e. ~0.75% v/v H2O (g))

Wind 2.5 m/s
Horizontal release at 0.50 m elevation

Low wind + humidity => plume lift-off at concentration ~6-7%

8%

4%4% contour Plume lift-off



Test 6– 0.83 kg/s horizontally

Concentrations

CFD: 22-23%

Test 6:  21%

CFD: 8.0%

Test 6:  2.0%
CFD:
Lift-off

Test 6:
N/A

30 m 50 m

100 m



Test 6– 0.83 kg/s horizontally

Temperatures (Ambient 4 °C))

30 m

CFD
-20 °C

Test 6
-3 °C

CFD
-50 °C

Test 6
-35 °C

50 m

100 m

CFD
4 °C

Test 6
4 °C



Test 6– 0.83 kg/s horizontally

Test 6 – Pressure 25 mbar (PD4) – rest 12 mbar
CFD – Pressure 23 mbar (PD1) – rest 12 mbar 8%

4%

CFD - ignition at 30 m (~20% H2)
 

30 m
23 mbar

25 mbar

12 mbar

12 mbar
CFD

Test 6



Summary and conclusions

Interesting but challenging experiments were simulated surprisingly well
▪ Concentrations, temperatures, buoyancy and explosion seem well reproduced with CFD (FLACS) using 

pseudo-source approach

▪ Good confirmation of ability to predict LH2 accident scenarios and applicability for bunkering assessments

▪ Simulation results valuable to help interpret and confirm quality of experiments

Main learnings from experiments
▪ LH2 releases outdoor gave no pool formation (despite 0.74 kg/s released downwards from 0.32 m elevation)

▪ Indoors with lack of air, pools would form

▪ Plume lift-off when diluted for low winds

▪ Major LH2 releases indoor not tolerable => very high pressures despite non-homogeneous clouds and large vent area

PS!  Outdoor releases gave low pressures – with gas accumulation in partial confinement/congestion DDT to be feared

Thanks to NPRA and FFI for making tests publicly available and to DNV for good quality experiments



Contact

Email: olav@hyexsafe.com
Telephone +47 91 17 17 87
www.hyexsafety.com
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