

STACY – Towards Safe Storage and Transportation of Cryogenic Hydrogen

Ernie Reinecke, Nabiha Chaumeix, Ahmed Bentaib, Hirohisa Tanaka

ELVHYS Workshop No. 1, Air Liquide, June 21, 2023

European Interest Group (EIG) CONCERT-Japan

European Interest Group (EIG) CONCERT-Japan

- 13 science, technology and innovation (STI) funding agencies from 11 European countries and Japan
- supporting Japanese-European research collaboration in a variety of fields
- supporting sustainable and multilateral research cooperation, especially promoting the transnational mobility between European and Japanese researchers

Focus on Networking

European Interest Group (EIG) CONCERT-Japan

Call 2021: "Sustainable Hydrogen Technology as Affordable and Clean Energy"

- Ammonia hydrogen combustion in micro gas turbines (ADONIS)
- Structure-based metabolic engineering of algal H₂ production (H2M)
- Towards Safe Storage and Transportation of Cryogenic Hydrogen (STACY)
- Japanese-European Research Collaboration of New Affordable and Durable Electrocatalysts for Fuel Cells (NADC-FC)
- Sustainability development and cost-reduction of hybrid renewable energies powered Hydrogen stations by risk-based multidisciplinary approaches (SUSHy)
- Enhancement of Hydrogen Storage Properties of AlTiVCr Light Weight High Entropy Alloys (HEA) by Ti₃C₂ MXene and Severe Plastic Deformation (EHSAL)

STACY – Towards Safe Storage and Transportation of Cryogenic Hydrogen

Background

- World-wide efforts to decarbonize the energy sector with increasing fraction of renewable energies
- Energy storage technologies required to store excess energy generated from fluctuating sources
- Large-scale storage and transportation of liquefied (cryogenic) hydrogen (LH2) expected to play a fundamental role in a potential future hydrogen economy

Safe implementation of LH2 storage and transportation technologies mandatory with regard to economic benefit and public acceptance

LH2-related safety issues

HySafe Research Priority Workshop, Québec, October 2023

- LH2 spills on water \rightarrow spontaneous ignition
- Impact of fire-loads on multi-layer insulation and tanks
- Maritime High ranked hazards:
 - Confined and unconfined explosions
 - Cryogenic spills on steel
 - Accumulation of flammable gas mixtures
 - Dense gas dispersion from LH2 releases
 - Rapid Phase Transition

STACY – Main Objectives

Contribute to the safety assessment of LH2 storage and transportation on long-distance carriers

- (1) determine **fundamental safety-related combustion parameters** not yet available in the open literature,
- (2) study **mitigation by means of catalytic recombiners** to prevent the formation of flammable gas mixtures in case of leakages,
- (3) simulate potential hydrogen release scenarios and efficiency of mitigation measures.

Federal Ministry of Education and Research

STACY.

STACY – Main Objectives

Contribute to the safety assessment of LH2 storage and transportation on long-distance carriers

and Research

(1) dete para	& Sus on Notworking and Collaboratio	ustion ature,	Japan Science and Technology Agency
(2) stud to p	between European and Japanese	biners xtures	AGENCE NATIONALE DE LA RECHERCHE
in ca	Institutions		Federal Ministry of Education

(3) simulate potential hydrogen release scenarios and efficiency of mitigation measures.

STACY – Research Team

Expertise in the fields of combustion, recombination, catalysis, hydrogen safety assessment

- **CNRS-ICARE**: Flame and explosion dynamics, explosion safety, involved in industrial projects and research programs
- IRSN: Hydrogen safety assessment in nuclear power plants, involved in development of safety assessment methodologies and risk prevention procedures
- KGU: Catalyst development, involvement in "intelligent catalyst" development at Daihatsu Motor Co., Ltd.
- FZJ: Hydrogen recombiners, involvement in industrial recombiner development and recombiner qualification

STACY.

STACY – Specific Objectives (1)

(1) Fundamental safety-related combustion properties of H₂

- Background: Knowledge gaps for low temperatures identified in the PRESLHY project
- Experiments at combustion laboratory at CNRS/ICARE
 - the flammability domain
 - the flame speed
 - the expansion ratio

Criteria for e.g. flammability, laminar flame speed and flame acceleration under low temperatures

STACY – Specific Objectives (2)

(2) Mitigation by means of catalytic recombiners

- Develop and qualify a specific catalyst to operate under the typical conditions of a LH2 carrier
- Catalyst development, manufacturing, and lab-scale testing at KGU (Japan)
- Recombiner qualification at FZJ (Germany)

➔ Numerical model to describe recombiner operation

STACY – Specific Objectives (2)

(2) Mitigation by means of catalytic recombiners

• Performance assessment of both commercial and generic recombiner

Numerical model to describe recombiner operation

STACY – Specific Objectives (3)

(3) Simulation of potential hydrogen release scenarios and efficiency of mitigation measures

- Further develop numerical methods to describe hydrogen release and mixing under specific conditions of LH2 transportation
- Application of well-proved codes
 - to study potential accident scenarios, and
 - to provide information on potential boundary conditions and locations for additional mitigation measures
 - Information on hazardous areas and the efficiency of mitigation measures (active and passive venting, catalytic recombiners)

STACY – Industrial Advisory Board

Ensuring the relevance of the scientific research

- Kawasaki HI LH2 carriers
- Daihatsu Motor Co. LH2 storage, car catalyst
- JAEA Hydrogen safety in nuclear power plants
- Air Liquide Production, storage, and distribution of GH2/LH2
 - Prototyping catalytic systems
- EnerSys-Hawker

• CCD

Catalytic recombiners

STACY – Work Packages

- WP 1: Critical review and scenario identification
- WP 2: Combustion fundamentals
- WP 3: Catalytic recombination
- WP 4: Safety methodology assessment
- WP 5: Coordination and Dissemination

STACY – Schedule

	2022			2023			2024			2025					
Towards Safe Storage and	QII	QIII	QIV	QI	QII	QIII	QIV	QI	QII	QIII	QIV	QI	QII	QIII	
Transportation of Cryogenic Hydrogen (STACY)		M4-6	M7-9	M10-12	M13-15	M16-18	M19-21	M22-24	M25-27	M28-30	M31-33	M34-36			
		M1-3	M4-6	M7-9	M10-12	M13-15	M16-18	M19-21	M22-24	M25-27	M28-30	M31-33	M34-36		
		M1-2	M3-5	M6-8	M9-11	M12-14	M15-17	M18-20	M21-23	M24-26	M27-29	M30-32	M33-35	M36	
AP 1 - Critical Review and Scenario Identification															_
Task 1.1 - Critical review of methodologies/practices															_
Task 1.2 - Identification of relevant scenarios				MS1											_
AP 2 - Combustion Fundamentals															1
Task 2.1 - Experiments on flammability limits															
Task 2.2 - Experiments on laminar flame speed											MS2				_
AP 3 - Catalytic recombination					L.										j
Task 3.1 - Catalyst selection and preparation															
Task 3.2 - Catalyst/recombiner characteristics															
Task 3.3 - Development of correlation model											l	MS3			
AP 4 - Application of the Safety Methodology										L					1
Task 4.1 - Implementation of results]
Task 4.2 - Assessment of safety measures															
AP 5 - Coordination and Dissemination									ļ 	ļ 					
Task 5.1 - Project coordination															
Task 5.2 - Dissemination							R1							R2	

JÜLICH

Intensifying International Collaboration

September 5-9, 2022: KGU@FZJ Jülich

• Collaborative use of experimental facilities

September 12-14, 2022

- Visit of KGU@CNRS Orléans
- Visit of KGU@IRSN Paris

1st STACY Workshop

December 15, 2022, Kobe International Conference Center, Japan

- Organized by Tanaka Laboratory, Endorsed by Kwansei Gakuin University
- Symposium
 - Lectures by STACY PIs and IAB
- LH2 excursion through the courtesy of Kawasaki Heavy Industries
 - Hydrogen co-generation system
 - LH2 receiving terminal
- Young Generation Workshop

STAC'

Technical Tour to SPring-8 synchrotron radiation facility

International Dissemination

International Workshops and Seminars

- HySafe Research Priorities Workshop November 21-23, 2022, Quebec, Canada
- CNL Hydrogen Safety Workshop November 24-25, 2022, Ottawa, Canada
- Int. Workshop on Hydrogen Safety for NPPs January 19-20, 2023, Fontenay-aux-Roses, France
- 1st SUSHy Joint Workshop March 9-10, 2023, Bergen, Norway (online)
- ESKHYMO: LH2 Technical Workshop March 29-30, 2023, Paris, France

International Knowledge Management

Collaboration on Accident Databases

- Effort to stimulate collaboration between the European Hydrogen Safety Panel and Japanese experts
- Effort to exchange information, e.g. through databases on hydrogen incidents and accidents
- Meeting with High Pressure Gas Safety Institute of Japan (KHK) on June 16, 2023

HIAD 2.0 – Hydrogen Incident and Accident Database

Conclusions

- Contribution to LH2-related safety technologies, numerical models and methodologies for risk assessment
- Stimulate networking activities to promote hydrogen safety between European and Japanese institutions
- Exchange of hydrogen safety-relevant information through databases

C Kelm et al., Simulation of H2 mixing and PAR operation during accidental release in an LH2 carrier engine room, ICHS, 2021

Thank You For Your Kind Attention !

https://stacy-project.eu

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

