
KIT – The Research University in the Helmholtz Association www.kit.edu

A condensation model based on Greens Function solution of heat 
transfer equation at GH2-LH2 interface

3rd workshop on safety of cryogenic hydrogen transfer technologies

NCSR, Athens, Greece, 7 June 2024

Z. Xu



Zhanjie Xu - ELVHYS 3rd project meeting, Athens, Greece Institute for Thermal Energy Technology and Safety (ITES), KIT

Background

Motivation of this work

What is condensation blocking 

Dynamics of filling process

Traditional model of condensation

New heat-flux-based condensation model

Greens function solutions for heat flux at interface

Reasons for condensation blocking during LH2 filling

Conclusions

June 11, 20242

Contents



Zhanjie Xu - ELVHYS 3rd project meeting, Athens, Greece Institute for Thermal Energy Technology and Safety (ITES), KIT

Task definitions in ELVHYS Agreement

WP3: LH2 transfer facilities performance

Subtask 3.3: Theoretical support to the LH2 transfer tests and protocols

Condensation blocking phenomenon had been observed in practice of 
LH2 transfer into closed vessels

It turned out that, condensation blocking at the GH2-LH2 interface 
dominates the efficiency of LH2 transfer

June 11, 20243
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To understand condensation blocking phenomena thoroughly

To model condensation blocking properly

Venting of the LH2 receiving tank is a reasonable way to alleviate 
condensation blocking

The design of a suitable venting system, e.g., nozzle diameter and timing of 
venting, relies on proper condensation model and thus proper simulation of 
the filling process

The developed condensation model will be verified against experimental 
data, which can be supplied by DLR and/or KIT through LH2 transfer tests

June 11, 20244

Motivation of this work
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LH2 tank: no vent, vacuum insulated, almost adiabatic

LH2 inflow: Jin = k (p0 - p)

Condensation rate: Jcd

Expected filling time is ~ 10 min

In reality it takes longer than 2100 min (1.5 days) 
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Condensation blocking (1/2)
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Condensation rate starts to decay while ~ 40% of tank is 
filled

Decaying condensation rate is called “blocking”

Condensation blocking: → vapor accumulates → p↑→ 
T↑ → vaporization↑ → net flux of condensation ↓
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Condensation blocking (2/2)
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Dynamics of filling process
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( Liquid mass equation)

(Vapor mass equation)

(Internal energy change equals to 

compression work)

Assumptions:
Incompressible LH2, i.e., �� is constant

Ideal gas (GH2):
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Well-known Hertz-Knudsen-Schrage relation

Derived from molecular statistical mechanics

��� depends solely on thermo-dynamic states of vapor and liquid and the 

accommodation coefficient �
Implicit assumption: latent heat is transferred away from the interface in a sufficiently fast 
speed. I.e., thermal accumulation is not considered

Suitable to equilibrium or quasi-equilibrium state of a vapor/ liquid system

Can it explain the condensation blocking phenomenon in case of LH2?
June 11, 20248

Traditional model of condensation (1/2)
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Assumptions
Saturation at the gas/ liquid interface: ��, ��
Pure vapor of H2: � = ��
Ideal gas law: � =���

Dynamics equations were solved for 
condensation rate and filling level

Result: Condensation blocking does not occur, 
no matter what value is taken for the 
accommodation coefficient “�”

Conclusion: The equilibrium-based condensation 
model does not work for the dynamic LH2 filling 
process

� varies by orders of magnitude in literatures, 
there is no clear definition
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Traditional model of condensation (2/2)
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What’s happening on interface during the filling process?
   phase change →latent heat →heat up interface →heat transfer to liquid

If heat transfer is sufficiently fast, the interface temperature is maintained 
at a relatively low level, condensation is maintained without “blocking”, like 
filling water into a closed vessel.
However, if heat transfer is not fast enough, the interface temperature 
increases, vaporization is enhanced and net condensation rate drops, 
until vaporization rate compensates condensation rate. Then net 
condensation is stopped, like “blocking”

Latent heat of condensation from phase change  is the major heat source 
for heat transfer from interface to liquid. Thus, condensation rate can be 
determined by heat transfer flux

June 11, 202410

Heat-flux-based condensation model
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Assumptions

Both vapor and liquid at interface are in saturated state

Saturation temperature Ts(t) is determined by partial pressure of vapor ps(t) 

If no other incondensable gas like He is present, ps(t) = p(t), bulk gas pressure

Initial temperature of liquid: TL = 20 K, pressure is 1 bar

Fourier equation with boundary value (Type I)

June 11, 202411

Greens function solutions for heat flux at interface 
(1/3) 
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Greens Function solution of T 

Greens Function solution of ∇T

June 11, 202412

Greens function solutions for heat flux at interface 
(2/3) 
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In ideal case, 

    Unfortunately, due to mathematical singularity at origin (boundary), value of GF 
solution at � = 0 is not valid or not defined

As a compromise, heat flux at � =��ℎ
can be determined by using GF solution

      where,

 ��ℎ
- length scale determined by ��ℎ

= � ∙��ℎ

 ��ℎ
- relaxation time of filling, e.g., 0.1 s, ��ℎ

~ 0.1 mm for LH2

According to energy conservation,

If  
�
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Greens function solutions about heat flux at interface 
(3/3) 
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Three unknowns ℎ � , � � , � �  and three ODEs form a closed time dependent equation system

The convolution integral can NOT be computed in a straightforward way, because every individual value at a given 
time is always related to the historic evolution in the whole time range

It has to be handled by numerical iterations over the whole filling time, which is not addressed in the present 
presentation 

June 11, 202414

Condensation blocking in dynamic LH2 filling process 
(1/3)
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Condensation blocking in dynamic LH2 filling process 
(2/3)
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Condensation blocking is 
reproduced in a perfect 
agreement with practice

Due to the condensation 
blocking, it needs 1,5 days to 
fill the closed vessel with LH2

Core of the simulation work is 
the Greens Function-solution-
based condensation model

The convergence of the 
solutions has been proven
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Condensation blocking in dynamic LH2 filling process 
(3/3)

Heat transfers at the vapor/liquid interface,
Radiation: ignorable
Forced convection: no
Natural convection: no, because of the vertically stratified 
temperature distribution with a higher temperature on the top 
and the lowest on the bottom of the vessel
Thermal conduction from vapor to the interface is ignored 
owing to

Explicit heat is far less than latent heat of phase change
Thermal conductivity of vapor is far less than that of liquid

Therefore,

Latent heat released from condensation is almost the only 
major source of heat. This is the foundation of the heat-flux-
based condensation model
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Same procedure has been 
applied to water filling with 
water/steam properties

As expected, water level 
increases almost linearly. Vessel 
is filled up in ~ 550 s

Condensation rate increases 
monotonically without “blocking”

Steam vapor pressure shows 
slight increase, only a little 
pressurization occurs
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Comparison to water filling process
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Obviously, the special thermo-dynamic properties of LH2 determine the 
condensation feature with “blocking”

Open question: which properties dominate the phenomenon of 
condensation blocking ?

June 11, 202418

Reasons for condensation blocking during LH2 filling 
(1/2)
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Comparison of LH2 (sat.@20 K, 105 Pa) and water (sat.@293 K, 2340 Pa)

Can it be a general criterion for condensation blocking in filling process?    E.g., 
if �� >����������, then condensation blocking would occur.

Further tests needed, e.g., is it relevant to density ratio btw. vapor and liquid?
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Reasons for condensation blocking during LH2 filling 
(2/2)
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Traditional condensation model (HKS relation) is not able to explain the 
condensation blocking phenomenon occurring in the dynamic process of 
LH2 filling into a none-vented vessel

Instead, using the Greens Function solution of heat conduction equation, 
a new heat-flux-based condensation model is proposed, which can 
explain the condensation blocking effectively

A dimensionless number is proposed to judge if condensation blocking 
occurs in fluid filling processes. However, more fluids like liquid O2, N2, 
He, etc., need to be tested in next steps

June 11, 202420

Conclusions
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