

Exceptional service in the national interest

Experimental research on cryogenic hydrogen behavior at Sandia National Laboratories

Ethan S. Hecht

ELVHYS 2nd workshop on safety of cryogenic hydrogen transfer technologies

November 29, 2023

SAND2023-14034C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SANDIA IS A FEDERALLY FUNDED RESEARCH AND DEVELOPMENT CENTER (FFRDC) MANAGED AND OPERATED BY

National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc.

Government-owned, contractor-operated

FFRDCs are long-term strategic partners to the federal government, operating in the public interest with objectivity and independence and maintaining core competencies in missions of national significance

WE HAVE FACILITIES **ACROSS THE NATION**

Main Sites

Sandia provides deep, quantitative understanding and a scientific basis for.... *Materials* – for hydrogen production, storage, delivery, conversion and utilization *Safety* – risk analysis and the creation of risk-informed standards Hydrogen Storage

Hydrogen Production

Materials Compatibility

4

Discovery of advanced water-splitting materials for large-scale H₂ production

Hydrogen Delivery

crack -

Fuel Cells

Develop new membrane systems for enhanced electrochemical performance

Elucidation of hydrogen embrittlement phenomena at the atomistic scale

D-Mat

Systems Engineering

Hydrogen for marine, rail, and aviation

Safety, Codes & Standards

State-of-the-art characterization of thermophysical & thermochemical behavior of H₂ integrated with Bayesian theory

Sandia's H₂ safety codes and standards program has coordinated activities that facilitate deployment of hydrogen technologies

https://hyram.sandia.gov

We developed a cryogenic release platform inside the laboratoryfor small-scale releasesP = 1 bar, d= 1mm, T = 37 K, distance = 325 mm

Enables studies of:

- Dispersion
- Ignition
- Heat transfer

Measurements of dispersion from round releases have been used to validate models

- Experiment: thick, dashed lines and shading
- Model: think, solid lines

Radiant fraction data was shown to collapse onto a single curve, regardless of aspect ratio, temperature, or even fuel

 $X_{rad} = 2.33 \times 10^8 (\tau_g a_P T_f^4)^{0.44}$

- Radiant fraction for hydrogen lower than for methane
- No clear aspect-ratio dependence
- All data collapses onto a single curve

At moderate distances downstream (40 diameters), concentration profiles are the same along the major and minor axes

Aspect ratio 32

Aspect ratio 16

- Concentration profiles are Gaussian and self-similar
- No significant difference between high aspect-ratio nozzles and round nozzle profile

A mobile laser scanning system was developed for outdoor use and deployed at the LLNL liquid hydrogen pad

Experiments demonstrated that humidity has little effect on hydrogen/visible plume trajectory

 Additional humidity does not lead to larger (wider) visible plume

- Buoyancy not affected by humidity (trajectories similar)
- Raman signal similar for all (19-74%) relative humidity

Condensation of water vapor has minimal influence on dispersion

Qualitative comparisons show good agreement to the model predictions

 Predicted trajectory slightly less buoyant for lower flow rate and slightly more buoyant for higher flow rate

- Trajectory also affected by light winds
- Raman signal nearly all falls within predicted 20% mole fraction contour shown in white
- Challenges quantifying small Raman signal with shifting winds

High humidity (RH = 74%), 16 g/s

Validated models from HyRAM+ were used to update the 2023 edition of NFPA 2 for bulk liquid hydrogen

Consequence-based distances from dispersion, heat flux, and unconfined overpressure criteria

 Distances are most often reduced for group 1 exposures

- Distances for group 3 exposures are increased in many cases
- Distances can be reduced through the use of fire-barrier walls and welded, vacuum-insulated piping

Upcoming liquid hydrogen pooling and vaporization experiments will enable additional development of science-based codes and standards

- Experiments will measure extent of pooling and vaporization rate for various controlled crosswinds
- Using thermocouples and HyWAM sensor array (in collaboration with NREL) for concentration measurements
- Pooling and heat flux measured with visible and IR cameras and embedded thermocouples

> Data will be well suited for model validation, with careful control of boundary conditions

Summary and conclusions

Sandia has coordinated experimental and modeling activities on cryogenic hydrogen

- HyRAM+ contains reduced order models for compressed and cryogenic hydrogen
- Laboratory experiments using a heat exchanger and releases through small nozzles
 - Data on flames and dispersion used to validate models
 - Little difference observed between high-aspect ratio releases and round releases
- Outdoor vent-stack release experiments measured larger releases
 - Condensation of water vapor has minimal influence on dispersion
 - Challenges quantifying small Raman signal with shifting winds
- Upcoming experiments to study pooling and vaporization
- Models from HyRAM+ were used to update the 2023 edition of NFPA 2 for bulk liquid hydrogen

Thank you!

Questions?

<u>ehecht@sandia.gov</u>

SANDIA IS BUILDING CLIMATE SECURITY THROUGH SCIENCE, TECHNOLOGY AND ACTION

- Advance the state of the art within three climate focal areas: measurement and modeling, clean energy and processes, and resilient infrastructure
- Apply climate expertise to strategic crosscutting issues including risk assessment and decision support, intervention, arctic science and security, mitigation and adaptation, and treaty monitoring and verification
- Develop cutting-edge R&D facilities like a next generation concentrating solar power plant and climate security analysis center
- Model the way forward in site sustainability with the goal of net-zero emissions at Sandia/California by 2040 and Sandia/New Mexico by 2045

HYDROGEN H2

Decades of Hydrogen Research at Sandia

