

1

Modelling of LH2 transfer operations with engineering tools

Dr. Alexandros G. Venetsanos

National Centre for Scientific Research "Demokritos" (NCSRD), Greece

venets@ipta.demokritos.gr

International Stakeholders' Seminar (ISS) of ELVHYS project 30 September – 1 October 2024, Bologna, Italy

ELVHYS project No. 101101381 is supported by the Clean Hydrogen Partnership and its members. UK participants in Horizon Europe Project ELVHYS are supported by UKRI grant numbers 10063519 (University of Ulster) and 10070592 (Health and Safety Executive)

International Stakeholders' Seminar (ISS) of ELVHYS project | 30 September – 1 October 2024, Bologna, Italy

Outline

- Introduction to DISCHA engineering tool
- Tool features
- Recent Validation
 - Emptying of an LH2 tank due to boil-off
 - Self pressurization of LH2 tanks
- Tank to tank transfer simulations
 - Filling of an LH2 truck from a stationary tank at 2 and 5 bars

Introduction

- DISCHA tool for
 - Physical properties at single phase and two-phase conditions
 - Discharge calculations
 - Tank to tank transfer calculations
- DISCHA development / validation in previous EC projects
 - NET-Tools

NET-Tools_Venetsanos

- PRESLHY

PRESLHY_Venetsanos.mp4

PRESLHY_Venetsanos.pdf

- HyTunnel-CS

HyTunnel-CS_D4.4.pdf

GUI (Python), Main code (Fortran)

bstance = Normal H2					
ustance = Normarnz					
lect state definition mode					
 Pressure, Temperature, vapor quality 	Pressure (MPa)	20.0	Saturation temperature (K)	0.000000	
C Pressure, Enthalpy	Temperature (K)	298.15	Saturation pressure (MPa)	0.000000	
C Pressure, Entropy	Vapor quality (-)	1.0	Spinodal temperature (K)	0.000000	
C Pressure, Density	Density (kg/m3)	14.482045816958072	Vaporization enthalpy (kJ/kg)	0.000000	
C Density, Enthalpy	Enthalpy (kJ/kg)	102.03636692038039	Compressibility factor (-)	1.123107	
C Density, Entropy	Entropy (kJ/kg/K)	-21.94833617669984	Volumetric thermal Expansion coefficient (1/K)	0.003066	
C Density, Temperature	Total Enthalpy (kJ/kg)	102.036367	Internal energy (kJ/kg)	-1278.983984	
C T, P, x from file	Mass flux (kg/m2/s)	0.000000	Specific heat under const pressure (kJ/kg/K)	14.710106	
C P, G, h_tot	Void (-)	1.0	Specific heat under const volume (kJ/kg/K)	10.340361	
			Sound speed (m/s)	1.489242e+03	
			Joule-Thomson coefficient (K/MPa)	-4.029625e-01	
Set saturation temperature	Compute properties:	Reset State Figures	Velocity (m/s)	0.000000	
Set saturation pressure					

15

12.5

10

7.5

5 ·

2.5

0 -

Pressure (MPa)

15

12.5 10

7.5

2.5

5 -

0

Pressure (MPa)

102

In

Temperature (K) 1200 1200 100

50

- Substances
 - Normal H₂, Para-H₂, CH₄, CO₂, H₂O, NH₃, O₂, N₂, He
- EoS
 - Helmholtz free energy, SRK, PR, RKMC, Abel-Noble, Ideal gas
- Two-phase modelling
 - Ideal mixture of liquid and vapor phase
 - HEM
 - HRM, DEM mainly for H₂O
- Various input modes for thermodynamic state definition
 - Pressure + temperature + vapor quality
 - Pressure + (enthalpy or entropy or density or internal energy)
 - Density + (internal energy or entropy)

- Discharge / tank to tank transfer calculations
 - Arbitrary network of tanks connected by transfer lines.
 - A transfer line either connects 2 tanks or connects a tank with the ambient environment
 - No direct connection between different lines (branches).

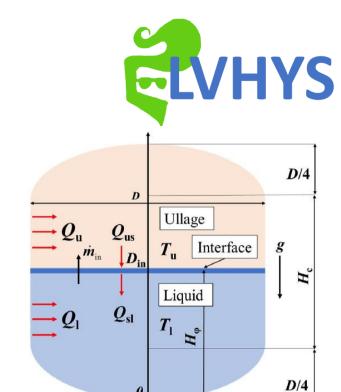
- Tank modelling
 - Single zone
 - Liquid and vapor phases share the same (sat) temperature
 - Transient mass and energy equations for the entire tank volume.
 - Multizone
 - Two distinct volumes (liquid below, vapor above) separated by one interface
 - Liquid phase subcooled or saturated
 - Vapor phase superheated or saturated
 - Liquid-Vapor Interface saturated
 - Various models for evaporation/condensation through the interface
 - Transient mass and energy equations for the vapor phase
 - Transient mass and energy equations for the liquid phase
 - Wall heat transfer
 - Time-dependent energy equation within tank walls.
 - Different material layers within tank walls

Tank conservation equations

Single zone

8

$$V\frac{d\rho}{dt} = \dot{m}_{in} - \dot{m}_{out} \qquad V\frac{d\rho u}{dt} = \dot{m}_{in}h_{tot,in} - \dot{m}_{out}h_{tot,out} + \dot{q}A$$

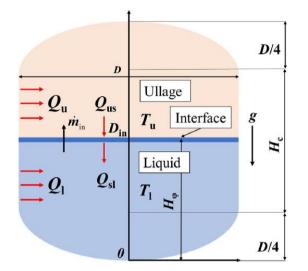

Multizone zone (Wang et al. 2022)

$$\frac{d\rho_L V_L}{dt} = \dot{m}_{L,in} - \dot{m}_{L,out} - \dot{m}_{LV} \qquad \frac{d\rho_L V_L u_L}{dt} = \left[\dot{m}_{in}h_{tot,in} - \dot{m}_{out}h_{tot,out} + \dot{q}A\right]_L + \dot{q}_{SL}A_S - \dot{m}_{LV}h_{sat,L}$$

$$\frac{d\rho_V V_V}{dt} = \dot{m}_{V,in} - \dot{m}_{V,out} + \dot{m}_{LV} \qquad \frac{d\rho_V V_V u_V}{dt} = \left[\dot{m}_{in}h_{tot,in} - \dot{m}_{out}h_{tot,out} + \dot{q}A\right]_V - \dot{q}_{VS}A_S + \dot{m}_{LV}h_{sat,V}$$

$$V_L + V_V = V$$
 Volume constraint

Wang H.R. et al., Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks, IJHE, 47 (2022)


Evaporation/Condensation model

$$\dot{q}_{VS} - \dot{q}_{SL} = \dot{m}_{LV} \left(h_{sat,V} - h_{sat,L} \right)$$

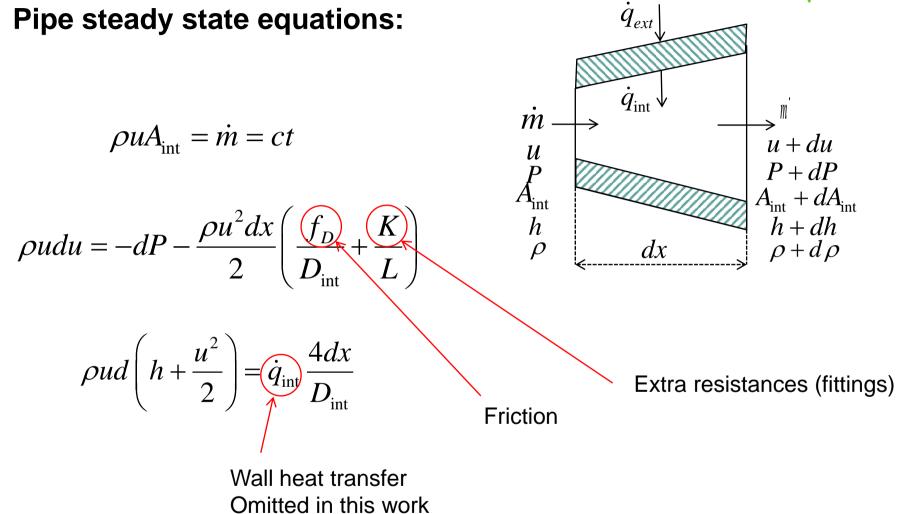
$$\dot{q}_{VS} = K_V q_{VS} \left(T_V - T_{Sat} \right) \qquad \dot{q}_{SL} = K_L q_{SL} \left(T_{Sat} - T_L \right)$$

$$Nu_{VS} \equiv \frac{a_{VS}D}{\lambda_{VS}} = 0.27 Ra_{VS}^{\frac{1}{4}}$$
 Mc Adams

$$Nu_{SL} \equiv \frac{a_{SL}D}{\lambda_{SL}} = 2.5 \left\{ \ln \left\{ 1.0 + \frac{2.5}{0.527 Ra_{SL}^{0.2}} \left(1.0 + \left(\frac{1.9}{Pr_{SL}}\right)^{0.9}\right)^{\frac{2}{9}} \right\} \right\}^{-1} \text{Nellis \& \text{Klein}}$$

 $K_V = K_L = 0.1$ Account for non-equilibrium

Wang H.R. et al., Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks, IJHE, 47 (2022)



- Discharge/transfer line modelling
 - Conservation equations
 - Steady state momentum and energy balance
 - Line resistance, area change, wall heat transfer both for single phase and two-phase conditions
 - Transient internal energy equation within pipe walls.
 - Choked flow
 - Calculated using general Possible-Impossible-Flow (PIF) algorithm
 - Discretization along discharge line is necessary (refine grid near pipe exit !!!)
 - Mach = 1 at exit is an output result not a BC
 - Fictitious nozzle
 - 7 available models

Line modeling

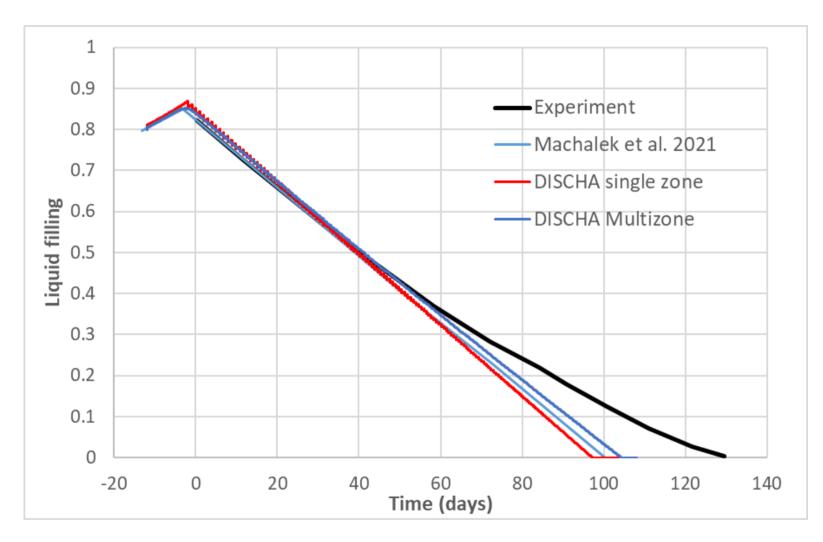
DISCHA validation Emptying of an LH2 tank due to boil-off

Experiments

- From Lawrence Livermore National Laboratories, see also Machalek et al., ICHS-9, 2021.
- System
 - Tank
 - Vertical cylindrical tank 2 m diameter, 3.97 m height, 12.47 m³ volume.
 - 11.1 mm inner steel + 50.8 mm MLI vacuum + 8.3 mm outer steel walls
 - 80% initial LH2 fill
 - Line

13

5 mm PRV, opens at 3.1 bar and closes at 2.9 bar


Material	Inner steel	MLI	Outer steel
Conductivity	3	2e-4	15
Specific heat	25	0.1	450
Density	8050	0.1	8050

Machalek et al., Influence of non-equilibrium conditions on liquid hydrogen storage tank behavior,

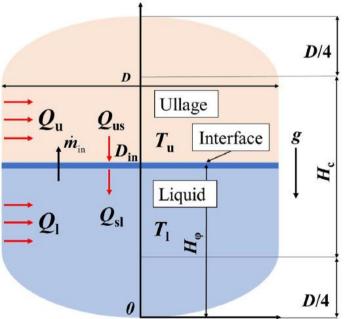
9th Int. Conf. on Hydrogen Safety, 21-23 Sept. 2021, Edinburgh, UK

International Stakeholders' Seminar (ISS) of ELVHYS project | 30 September – 1 October 2024, Bologna, Italy

DISCHA validation Self pressurization of LH2 tanks

15 International Stakeholders' Seminar (ISS) of ELVHYS project | 30 September – 1 October 2024, Bologna, Italy

Self-pressurization of LH2 tanks



Experiments

- NASA multipurpose hydrogen test bed (MHTB) tank experiments see Hastings et al., (2003) and related modeling by Wang et al. (2022).
- System

16

- Tank volume 18.09 m³,
- tank diameter D = 3.05 m
- Cylindrical height $H_c = 1.525$ m
- No venting

Hastings et al., Spray bar zero-gravity vent system for on orbit liquid hydrogen storage. NASA TM-12926 (2003)

Wang H.R. et al., Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks, IJHE, 47 (2022)

Self-pressurization of LH2 tanks

International Stakeholders' Seminar (ISS) of ELVHYS project | 30 September – 1 October 2024, Bologna, Italy

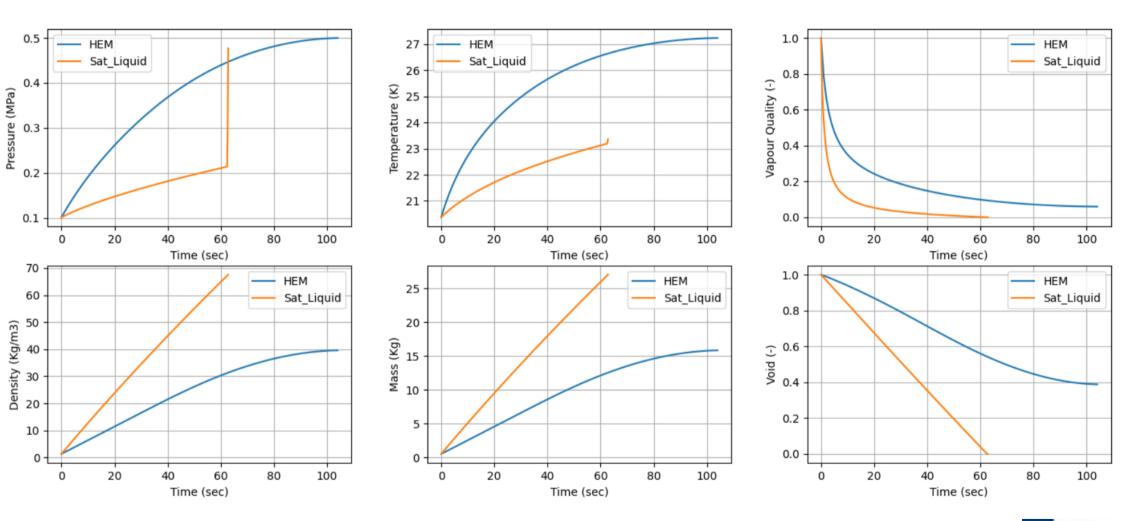
Tank to tank transfer Filling of an LH2 truck from a stationary tank

Tank to tank transfer

EVHYS

- System Components:
 - Supply tank 12 m³ (2 or 5 bars, sat LH_2)
 - Transfer line (30 m, 2.54 cm) + (5 cm, 10mm) nozzle
 - Receiving tank 0.4 m³ (1 atm, sat GH2) without vent
 - All components are considered adiabatically isolated.
- Models:

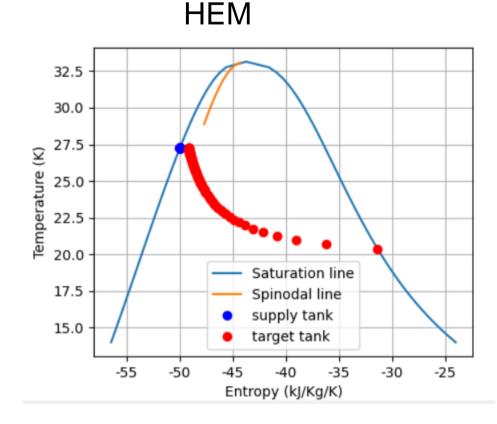
- Constant pressure for supply tank (2 or 5 bars abs.)
- HEM or Sat_Liquid for transfer line
- Single zone or Multizone for receiving tank

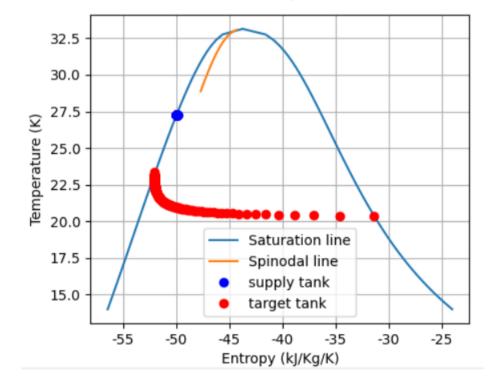


5 bars, single zone

20

Predicted conditions in receiving tank

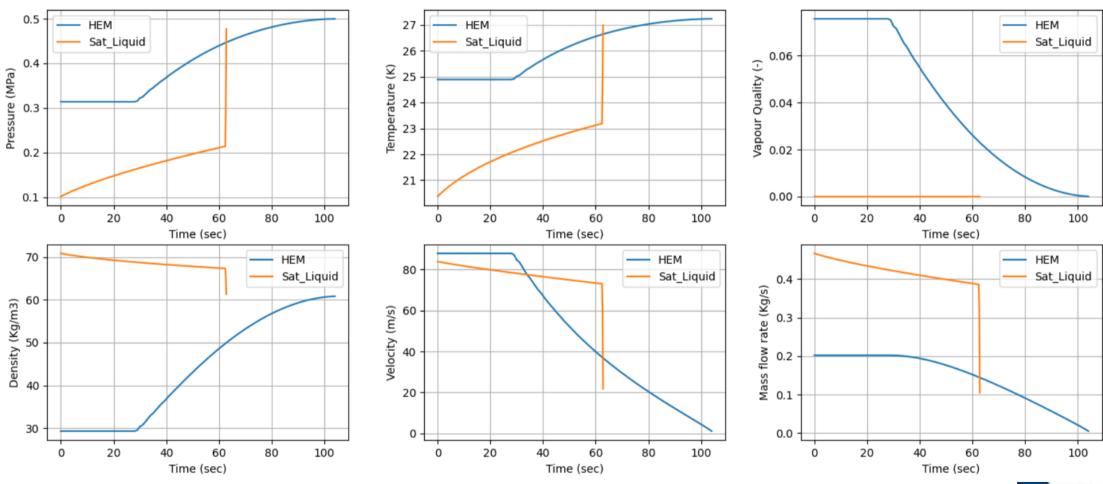




Filling path on the TS chart

21

Sat_Liquid



5 bars, single zone

22

Predicted conditions at transfer line exit

International Stakeholders' Seminar (ISS) of ELVHYS project | 30 September – 1 October 2024, Bologna, Italy

5 bars, Multizone

200

Time (sec)

250

300

350

400

0.5

0.4

0.3

0.2

0.1

50

40

20

10

0

23

0

50

100

150

Pressure (MPa)

HEM

300

50

100

150

0

200

Time (sec)

250

300

350

Sat_Liquid

HEM

400

Sat_Liquid

1.0 27 26 0.8 Vapour Quality (-) Temperature (K) 25 0.6 24 HEM TSat ----- TV 23 0.4 TL - - - -22 Sat Liquid TSat 0.2 HEM ----- тv 21 Sat Liquid --- TL 0.0 200 250 50 100 150 350 400 50 100 150 200 250 300 350 0 50 100 150 200 250 0 300 400 0 Time (sec) Time (sec) Time (sec) 1.0 HEM HEM 20 Sat_Liquid Sat_Liquid 0.8 15 Mass (Kg) (-) piov 0.6 10 0.4 5 0 0.2

Predicted conditions in receiving tank

.....

200

Time (sec)

250

300

350

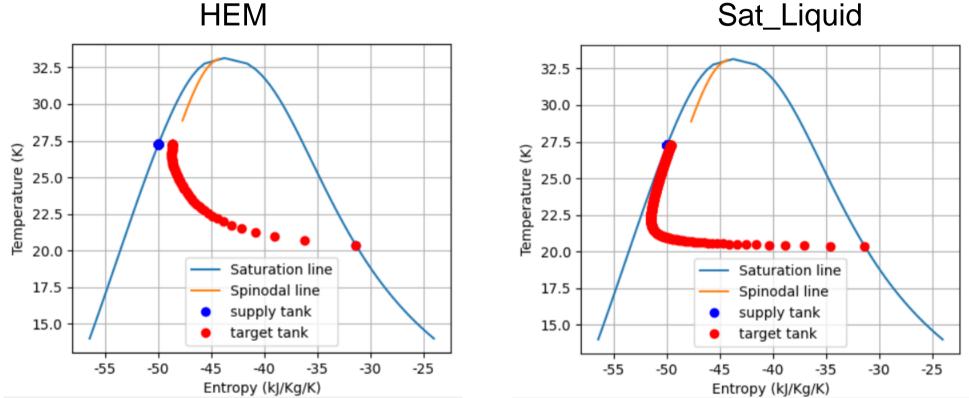
400

350

400

0

50

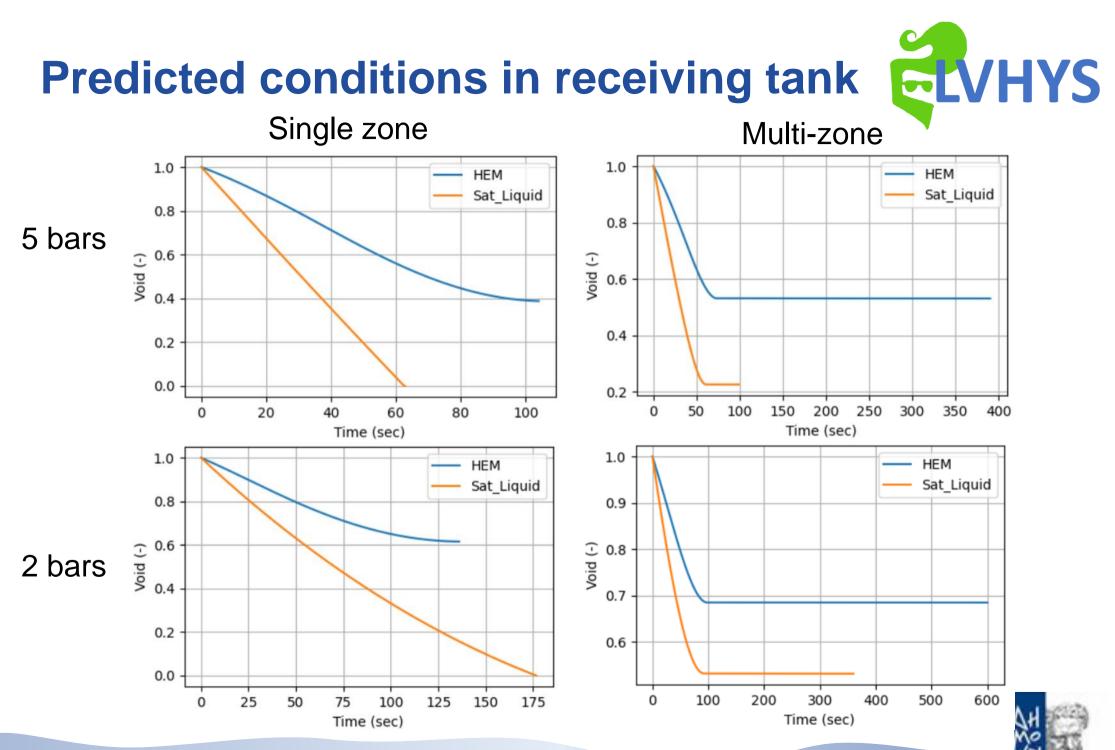

100

24

Filling path on the TS chart



5 bars, Multizone


25

Predicted conditions at transfer line exit

International Stakeholders' Seminar (ISS) of ELVHYS project | 30 September – 1 October 2024, Bologna, Italy

Conclusions

- DISCHA validation
 - Reasonable agreement against LLNL LH2 boiloff tests and NASA MHTB pressurization tests
- Tank to tank transfer simulations
 - Non-vented pressure filling can be blocked (never reach 100% fill). Happens always with HEM.
 - Multizone model gives lower tank fill compared to single zone
 - Saturated liquid in transfer line gives higher fill compared to HEM
 - Higher pressure gives generally larger fills

Acknowledgments

Thank you for your attention

venets@ipta.demokritos.gr

This work was undertaken as part of the ELVHYS project No. 101101381 supported by the Clean Hydrogen Partnership and its members. UK participants in Horizon Europe Project ELVHYS are supported by UKRI grant numbers 10063519 (University of Ulster) and 10070592 (Health and Safety Executive). Funded by the European Union.

Disclaimer: Views and opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the Clean Hydrogen Partnership can be held responsible for them.

