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Introduction

2

▪ Transport and storage of liquid hydrogen (LH₂) is currently the most attractive option for 
scaling up the hydrogen supply infrastructure. 

▪ LH₂ vacuum insulated tanks are equipped with pressure relief devices (PRD) to vent hydrogen 
and avoid the pressure build-up in a tank exchanging heat with the ambient, e.g. fire. 

▪ If the PRD fails, or the structural integrity is compromised, the tank may fail with consequent 
blast wave, fireball and projectiles, as occurred in 1975 for a 76 m3 LH2 (Shen et al., 2024).

▪ A wide research was performed on hydrocarbon boiling liquid expanding vapour explosions 
(BLEVE), while there is a lack of knowledge for BLEVE occurrence for LH2 storage systems.

▪ To the authors’ knowledge, only two experimental studies on catastrophic rupture of LH₂ 
storage systems are available in literature:

➢BMW tests on “controlled rupture” of 0.12 m3 LH2 tank (Pehr, 1996).

➢SH2IFT tests on rupture of 1 m3 LH2 tank in a fire (van Wingerden et al., 2022).



 

Real scale BMW experiments on BLEVE
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▪ BMW experiments on the “controlled” rupture of LH₂ storage systems by an explosive charge. 

Test No. 1 2 3 4 5 6 7 8 9

Tank storage pressure, 
MPa abs

0.2 0.21 0.37 0.4 0.4 1.1 1.1 1.13 1.5

Blast overpressure at 3 m, 
kPa gauge 16.7 3.3 6.0 7.7 11.0 13.3 47.0 15.0 16.0

▪ Stored H₂ mass varied in the range of 1.8-5.4 kg (0.12 m3).

▪ Experimentalist explained pressure transients in Fig.(c) as:

➢ Peak 1: explosive charge initiating the tank bursting.

➢ Peak 2: pressure wave originated by the LH₂ evaporation 
and expansion of GH₂.

➢ Peak 3: additional pressure event followed by the 
acceleration of flames and expansion of burnt gas 
behind the progressing flame front.  

Typical pressure transients at 3 m from the tank 
centre with one (a), two (b) and three (c) 

distinctive peaks in BMW experiments 

a

b

c



 

Rethinking of “BLEVE” in BMW tests
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Previous study in Cirrone et al. (2023) proposed a rethinking of the LH₂ storage tanks BLEVE 
overpressure transients observed in BMW tests: 

 
▪ Peak 1: explosive charge.

▪ Peak 2: starting shock from the GH₂ phase enhanced by 
combustion at the contact surface with air.

▪ Peak 3: attributed to what is called BLEVE with 
probable contribution of the comparatively slow non-
premixed combustion of hydrogen.

Development of a CFD approach to reproduce the blast 
wave maximum pressure by modelling the energy source 
associated to the GH₂ phase in the tank prior to rupture. Typical pressure transients at 3 m from the tank 

centre with three distinctive peaks in BMW tests 

https://doi.org/10.1016/j.ijhydene.2022.09.114



 

Results of CFD approach (2023) 
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▪ Simulated maximum overpressure was seen to increase with storage pressure and 
fraction of GH₂ in the tank prior to its rupture. 

▪ Combustion significantly affects the maximum overpressure reached at 3 m. Effect 
increases for decreasing storage pressure. 

▪ If combustion is not included in the CFD model, simulations would significantly 
underpredict experimental overpressure.
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Need of an advanced CFD approach
There is a lack of well-established CFD methods that comprehensively account for all the 
physical processes involved in BLEVE of LH₂ storage systems to accurately estimate pressure and 
thermal effects. A comprehensive CFD approach shall fulfil the following requirements:

▪ Modelling of LH₂-GH₂ phase mass transfer to account for the effect of LH₂ evaporation on the 
overpressure dynamics beyond the shock overpressure peak generated by the vapour phase.

▪ Modelling of combustion to account for contribution of hydrogen reaction at the contact 
surface with air to the blast wave strength and assess the fireball and thermal hazards.

▪ Three-dimensional modelling to account for effect of directionality and complex geometries.

Scope of the research

The present research aims at the development of a novel three-dimensional comprehensive CFD 
approach that advances the model developed in 2023 to include the effect of evaporation of LH₂ 
phase in the tank on the blast wave pressure dynamics and reproduce the overpressure multi-
peak structure of what is called “BLEVE” experimentally observed in BMW tests.
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Numerical model and domain
▪ LES approach with Volume of Fluid for multiphase modelling.

▪ Finite Rate/Eddy Dissipation Model for combustion.

▪ The numerical domain is a poly-hexacore grid (400-700k CV). 

▪ The approach in Cirrone et al. (2023) is adapted to the multiphase model to conserve the 
real gas internal energy stored in the GH₂ phase for modelling with ideal gas EoS.

▪ For each test pressure we assess the cases with min (1.8 kg) or max (5.4 kg) H₂ mass.
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CFD simulation results
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Overpressure dynamics, Ps=1.1 MPa
▪ Overpressure results for Ps=1.1 MPa and mtot≈5.4 kg (Max LH₂ fraction).

▪ Maximum overpressure is higher in direction perpendicular to the tank axis.

▪ Overpressure first peak is associated with the gaseous phase shock fed by combustion.

▪ The series of secondary pressure peaks is associated to evaporation of LH₂.

Overpressure at 3 m Dynamics of GH2 and LH2 masses
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Blast wave and combustion dynamics (1/2)
▪ Case Ps=1.1 MPa, mtot≈5.4 kg. 
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Temperature dynamics on z=0 planePressure dynamics on z=0 plane

Phase transfer dynamics on z=0 plane

Temperature on x=0 plane
at t=0.5 ms

Pressure on x=0 plane
at t=0.5 ms



 

Blast wave and combustion dynamics (2/2)
▪ Case Ps=1.1 MPa, mtot≈5.4 kg. Distributions on x=0 plane (perpendicular to the tank axis).  
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Pressure, 
Pa

Temperature, 
K

GH₂ mole 
fraction

LH₂ volume 
fraction

Phase transfer 
rate, kg/m3/s

T= 0 ms T= 2 ms T= 4 ms T= 6 ms T= 8 ms T= 12 ms



 

Overpressure dynamics, Ps=1.1 MPa
▪ Overpressure results for Ps=1.1 MPa for the limiting cases of stored mass equal to 2.0 kg (Max 

GH₂ fraction) and 5.4 kg (Max LH₂ fraction).
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Typical pressure transients in BMW tests Overpressure at 3 m, P=1.1 MPa

a

b

c



 

Advancement of the CFD approach
Comparison of overpressure simulated by:

▪ CFD, Single-phase Model: previous CFD approach developed in Cirrone et al. (2023).

▪ CFD, Multi-phase Model: advanced CFD approach with phase transition modelling.

Overpressure at 3 m, P=1.1 MPa, mtot≈5.4 kg
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Overpressure at 3 m, P=0.2 MPa, mtot≈5.4 kg



 

Effect of combustion contribution

▪ Overpressure results for Ps=1.1 MPa and mtot≈5.4 kg (Max LH₂ fraction).

Overpressure at 3 m, P=1.1 MPa, mtot≈5.4 kg
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▪ Effect of combustion contribution to the blast 
wave strength:

➢45% increase of the maximum overpressure 
peak generated by the GH₂ phase.

➢Absence of negative pressure phase after the 
first overpressure peak.

➢Faster secondary waves and more than twice 
larger maximum overpressure peak associated 
to the “BLEVE”.



 

BLEVE modelling results VS BMW tests
▪ Simulations were carried out for the limiting cases corresponding to the possible minimum and 

maximum quantity of hydrogen mass in the tank for a given storage pressure.

▪ The CFD approach is able to reproduce the minimum and maximum experimental overpressures. A 
certain conservatism is due to neglecting mechanical energy losses on projectiles and ground cratering. 

▪ Simulated maximum overpressure increases with the storage pressure and GH₂ volumetric fraction. 
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Overpressure at 3 m in parallel 

direction to the tank axis
Overpressure at 3 m in perpendicular  

direction to the tank axis



 

Research on BLEVE thermal hazards
▪ The maximum fireball diameter is calculated through correlation in Makarov et al. (2021) as:

➢Df,bf=11.9-17.2 m for m= 1.8-5.4 kg 

➢Df,c=13.0-21.4 m for m= 1.8-5.4 kg 

▪ Fireball estimates by the reduced model are in agreement with experimental measurements of 
Df ranging from 6-15 m while on the ground, to up to 20 m after lift-off.

▪ The research findings suggest that employing liquid filling ratios as high as possible would limit 
the pressure hazards originated by the LH₂ tank rupture in a fire. 

▪ However, pressure hazards should be counterposed by the thermal hazards.

▪ Further research should be performed towards modelling of a fireball and associated thermal 
hazards.

16



 

Conclusions and future research
▪ The significance of the work lies in the advancement of the current understanding and modelling  

of the pressure multi-peak structure observed in BMW tests on BLEVEs of LH₂ storage systems.

▪ Findings suggest that the maximum blast wave pressure is generated by the gaseous phase 
starting shock enhanced by combustion reaction of hydrogen at the contact surface with air.

▪ The slower LH₂ evaporation process of the BLEVE produces a series of secondary pressure peaks 
with smaller amplitude but larger impulse. 

▪ The release of chemical energy in the reaction of hydrogen with air contributes to the blast wave 
strength and dynamics also for the “BLEVE” phase.

▪ The simulations successfully reproduced BMW experimental maximum overpressure measured 
at 3 m from the storage tank.

▪ Future research on BLEVE should focus on:

▪ Evaluation of a fireball and associated thermal hazards.

▪ Experimental investigations for a deeper understanding of the phenomena and validation.
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