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Cooper et al. (1) claim that a weaker geomagnetic field 
starting at 42 thousand years ago (ka) triggered a “global 
environmental crisis.” To support this idea, they examine 
Australian and Eurasian megafauna, Neanderthals, and 
human cultural transitions, claiming that many happened at 
or immediately after 42 ka. What they describe as a 
repeated occurrence of the number “42” for ancient 
extinctions prompted them to name the geomagnetic 
transition after the author Douglas Adams (1). I examined 
the work that they cite, finding that Cooper et al. exaggerate 
or misrepresent the importance of 42 ka in this prior work. 

For example, Cooper et al. claim that thylacine 
mitochondrial diversity “indicates a bottleneck around 42 
ka” [supplement of (1)]. The cited work (2) actually states 
that “the timing of bottleneck and recovery in Tasmania are 
estimated to be 20,400 (6,440-36,520 95% CI) and 3,160 
(192.8-16,960 95% CI) year BP respectively.” Cooper et al. 
claim that Australian megafaunal extinctions happened 
around 42 ka, citing two sources. One cited paper (3) 
developed a Bayesian model that does show a “peak in 
extinction events at 42.1 ka.” However, this “peak” is the 
mode of a distribution, and it is a misrepresentation to take 
this as evidence of a pulse of extinctions at 42 ka. Instead, 
that cited work demonstrates extinctions of five genera 
“between 61 and 51 kyr” and 10 others “between 44 and 35 
kyr.” The conclusion of (3) is that the climate during the 
broad time interval represented by megafaunal extinctions 
is not different from earlier or later intervals, hence its title: 
“Climate change not to blame for late Quaternary 
megafauna extinctions in Australia.” The second cited work 
(4) documents that Australian extinctions followed a 
regional pattern influenced by human activity and climate, 
which began by 48 ka and concluded after 41 ka. Together 

these studies demonstrate that megafaunal extinctions were 
a long process initiated long before 42 ka, and do not 
support the claim that climate change at 42 ka caused a 
pulse of extinctions. 

Cooper et al. take a different approach toward Eurasian 
faunal and archaeological data, which show no extinctions 
or significant impacts at 42 ka. They instead suggest that “a 
cluster of megafaunal genetic transitions (woolly rhino, 
mammoth, bison) were previously observed around the 
timing of the Mono Lake geomagnetic excursion” 
[supplement of (1)], citing earlier work by Cooper et al. (5). 
This is a misrepresentation of the data in (5), in which 
extinction times for Eurasian Bison priscus, Mammuthus 
primigenius, and Coelodonta antiquitatis are modeled from 
36 to 27 ka, not a “cluster” near the Mono Lake excursion at 
34 ka. Nor are these three genera representative of the 19 
taxa with extinctions between 56 and 20 ka included in that 
paper (5). This Northern Hemisphere evidence does not 
suggest any pulse of faunal extinctions at 42 ka. 

The decline of Neanderthal biogeographic range began 
before 46 ka in Europe and earlier in southwest Asia. The 
recalibration of 14C dates for Neanderthals in (1) shows that 
they survived well past 42 ka. Cooper et al. instead suggest 
that not the Adams event but the “Laschamps in general” 
[supplement of (1)] was contemporaneous with the final 
Neanderthals, around GS 10. In support of this idea, they 
claim that “the Uluzzian in Italy also appears to end 
contemporaneously at this point,” citing (6). Here again the 
paper misrepresents the cited work (6), which discusses the 
beginning of the Uluzzian, not its end, noting a cultural 
hiatus coincident with GS 12 (at ~44 ka), not GS 10. The 
most comprehensive recent review (7), not cited by (1), 
suggests that the latest Uluzzian was roughly coincident 
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Cooper et al. (Research Articles, 19 February 2021, p. 811) propose that a weakening geomagnetic field prior 
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with the Campanian Ignimbrite, around 39.8 ka, although 
even more recent dates have been obtained from some 
Uluzzian contexts. Hence, the Uluzzian persisted through 
both the Laschamps and proposed Adams events. Cooper et 
al. also cite work on the early Aurignacian at Bajondillo 
Cave, Spain (8), acknowledging that it is “potentially slightly 
earlier” than “the severe cold and dry conditions of GS-
9/Heinrich event 4” [supplement of (1)]. This is also a 
misrepresentation of (8), which shows that the transition at 
Bajondillo occurred between 45 and 43 ka; this precedes 
both the Laschamps and proposed Adams events. 

Hominins have used deep cave environments from early 
Middle Pleistocene times, and the sensationalized claim that 
geomagnetic events caused “more intense utilization of cave 
environments” by hominins [supplement of (1)] ignores 
evidence from hundreds of caves worldwide showing both 
long-term and short-term hominin utilization in the period 
between 48 and 42 ka. Knowledge of the age of pigment 
markings on rock walls has indeed been transformed by U-
series dating of thin calcite laminae [e.g., (9, 10)]. But this 
method provides minimum ages, with a small known 
sample that is not suitable for any claim of “more intense” 
marking at 42 ka. What the evidence does demonstrate is 
that marking on cave walls had a long history prior to 43 ka 
in southwestern Europe (9), and a figurative art tradition 
occurred at multiple sites in Sulawesi prior to 43 ka (10). 
These data cannot be explained by geomagnetism at 42 ka. 

Biological extinctions and human cultural transitions 
are complex processes. Price et al. (11) point to the problems 
inherent in meta-analysis approaches to extinction, calling 
instead for close examination of the data for each individual 
species. The same is necessary for hominin populations and 
cultural events, about which we still have much to learn. 
Megafaunal extinction in Australia, Neanderthal extinction 
in Eurasia, and the beginnings of pigment marking in caves 
all involved factors that began thousands of years before the 
Laschamps excursion or associated geomagnetic field 
changes. We will not get closer to understanding these 
processes by misrepresenting data, making exaggerated 
claims about the “clustering” of events, or minimizing 
observations that do not match a magic number. Any reader 
of Douglas Adams should understand that the importance 
of “42” is that no one knows what the question is. 
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Our study (1) identifies multiple synchronous environmental 
and archaeological shifts consistent with a global event 
around 42 thousand years ago (ka), something not 
previously possible given the uncertainties in the 
radiocarbon time scale prior to this work. In addition, 
recent refinements of the radiocarbon calibration curve will 
compress the dates of many other events around this time 
even closer to the Laschamps (2). Although a common 
driver behind this set of observations is consistent with our 

chemistry-climate model predictions of the impacts of a 
collapsed magnetic field, solar minima, and solar energetic 
particle events, they remain only temporally associated and 
further study is required to reveal exact mechanisms. In this 
regard, Hawks (3) provides no evidence that challenges our 
model, and indeed nearly all his contentions are directly 
contradicted by the quoted references. 

For example, in the thylacine study (4), Hawks has 
confused the date for the mitochondrial genetic bottleneck 
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Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked 
considerable scientific and public interest, particularly in the so-called Adams Event associated with the 
initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, 
Hawks’ assertions of misrepresentation are especially disappointing given his limited examination of the 
material. 
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within the remnant Tasmanian population (3 to 20 ka) with 
that for thylacine populations across the whole of Australia 
[ancestral divergence, 42 ka; table 3 and figure 7 of (4)]. 
Mitochondrial diversity started accumulating within the 
Australian-wide population around 42 ka, leading us to 
propose a population bottleneck caused by the Adams 
Event. 

Similarly, we do not claim that Australian megafaunal 
extinctions occurred only at 42 ka and not earlier, as Hawks 
suggests, although the Signor-Lipps effect ensures that the 
last observation of poorly sampled taxa (which include the 
oldest apparent Australian extinctions) will occur well 
before the actual extinction. Although more detailed dating 
is required, Australian-wide compilations indicate a 
concentration of extinction events around 42 ka, 
contemporaneous with major climatic and vegetation shifts 
in paleoenvironmental records across Australia (1). As 
expected, regional studies differ slightly on the estimated 
timing of the final megafaunal extinction phase [figure 1 of 
(5)] and reflect the amount of accurate dating available, but 
have been explicitly linked to the Laschamps Excursion at 
Lake Mungo (6). Recent studies, including those referenced 
by Hawks (7), have concluded that climate change around 
this time was indeed the likely driver of Australian 
megafaunal extinctions, with humans a key additional 
stressor relative to previous glacial cycles. 

Hawks also did not take into account that our study of 
Eurasian megafaunal extinctions (8) explicitly highlighted a 
cluster around Greenland Interstadials 7 to 5 (35 to 32 ka) 
overlapping the date of Mono Lake [(1); figure 1 of (5)] that 
included bison, mammoth, and woolly rhino [figure 1 of 
(8)]. Although Eurasian megafaunal extinctions were 
broadly distributed through time, very few datasets have 
covered the 42-ka period in any detail (8), severely limiting 
the ability to detect any pulse of megafaunal genetic 
transitions during the Laschamps. Humans are the only 
megafaunal group with large amounts of dating and genetic 
data around this time, and they clearly show marked genetic 
extinctions [(1); figure 1 of (5)]. 

Our observation that the recalibrated extinction date 
for Neanderthals at 41 to 40.5 ka is contemporaneous with 
the end of the Laschamps Excursion [(1, 2); figure 1 of (5)] 
has drawn much attention. As with the Australian 
megafauna, although we highlighted that the final 
extinction phase occurred during the Laschamps, we noted 
that this represented the end of a much longer process. For 
European Neanderthals, we discussed the archaeological 
evidence for a spatiotemporally staggered replacement 
process by anatomically modern humans, as well as the 
fact that sterile layers separating the two groups within 
individual sites have been associated with cold Greenland 
Stadials 12 to 10 (9). Our new kauri-based radiocarbon 

calibration allows us to reveal that both GS-11 and GS-10 
are closely aligned to the transition phases of the 
geomagnetic reversal, when we expect the weak field 
strength to produce pronounced cooling effects over the 
North Atlantic [(1); figure 1 of (5)]. 

As we stated, the most comprehensive dating study of 
the Neanderthal extinction/replacement process (10) had 
indeed identified that the ends of the Uluzzian and 
Neanderthal cultures in Italy were near-contemporaneous 
[figure 2 of (10)], whereas recent work shows that the 
Uluzzian ended more than a millennium before the 39.9-ka 
Campanian Ignimbrite (11). Similarly, the Bajondillo Cave 
study noted that the most reliable radiocarbon dates (from 
short-lived taxa) dated the Proto–Early Aurignacian at 42.15 
to 41.2 ka (12), consistent with other sites across Europe 
[figure 1 of (5)]. 

Hawks also disputes the evidence that cave art becomes 
more intense from 42 ka. However, we present data showing 
a marked increase in the appearance and/or frequency of 
figurative cave art globally around 42 ka (1). As we noted, 
the increased preservation of art and the synchronous 
global change in artistic behavior around this time has 
previously been observed by archaeologists (13), along with 
the altered use of caves and ochre (1). Indeed, the puzzling 
observation that “similar cave art traditions appear to arise 
near-contemporaneously in the extreme west and extreme 
east of Eurasia” around this time has been noted (13) but 
the “cause remains unknown.” We explicitly proposed that 
previously extant artistic practices were shifted into caves 
during the Laschamps, enhancing preservation potential 
and generating an apparent marked change in anatomically 
modern human behavior (1). This is entirely consistent with 
earlier but relatively rare cave wall pigment markings (some 
potentially by Neanderthals). Hawks similarly neglects to 
mention that the dating of calcite layers situated above and 
below cave art has allowed tightly bracketed dating, such as 
the Mono Lake–aged red circle series in El Castillo, which 
itself parallels the maximum age–dated Laschamps red 
circle series (1). 

In our paper we presented a range of data showing 
marked global and long-term environmental and climate 
changes around 42 ka, which Hawks appears to have 
misunderstood or missed entirely. We clearly stated that the 
Laschamps represented the common endpoint of processes 
such as the Neanderthal and megafaunal extinctions, and 
marked changes in the occurrence of cave art, and it is a 
clear misrepresentation to suggest otherwise. Our study 
proposes a geomagnetic mechanism that can explain these 
and many other paleoclimatic and archaeological 
observations through a common forcing. As a result, despite 
the need for further work, 42 does indeed appear to provide 
an answer to many current mysteries concerning Life, the 
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role of the Universe (cosmic radiation), and a growing 
number of other things. 
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Cooper et al. recently reported a tree ring–based 14C dataset 
(42 to 36 ka 14C BP) based on four kauri trees, achieving 
high-precision data (±107 to 180 years, 1V), ideal for 
reconstructing the increase of 14C production during the 
Laschamps excursion and creating a detailed kauri-Hulu 
calibration curve (1). These data allowed the authors to 
model statistically possible variations of the global climate 
during the geomagnetic inversion. Although we appreciate 
the scientific advances accomplished in (1), we note with 
concern several statements relating the supposed impacts of 
the Laschamps on hominin and faunal extinctions and 
human behavioral changes, which misconstrue the current 
paleontological, archaeological, and genetic data. 
Geomagnetic reversals were frequent during the Pliocene 
and Pleistocene (2), and mass extinctions at the time of 
these inversions have not been documented in the 
paleontological and archaeological record so far. For 
example, the Blake excursion (~114 ± 1 ka BP) (3) occurred 
without apparent serious effects on the subsistence of 
Neanderthals in Eurasia, Homo sapiens in Africa, and 
megafauna in Australia. In our view, Cooper et al. have used 
the archaeological and paleontological data selectively in 
order to create a narrative that could support the 
Laschamps as the main driver of a global environmental 
crisis. Here, we contextualize the evidence at ~45 to 40 ka 
BP to show that the claimed huge impacts of the 
geomagnetic inversion on humans and megafauna go far 
beyond the available data. We observe three main issues in 
(1) that include the extinction of megafauna in Australia, the 

demise of Neanderthals and early groups of Homo sapiens 
in Europe, and the emergence of figurative art in caves. 

In our view, the Greenland ice cores and marine records 
do not document any notable effects of the Laschamps 
excursion on the global climate (4). However, Cooper et al. 
argue that Laschamps-associated changes in climate can be 
linked to megafaunal extinctions, especially in Australia, 
which they suggest peaked at 42.1 ka. Recent research now 
suggests that much of Australia’s megafauna survived 
beyond 40.1 ka BP (5). Although ancestry replacements 
frequently occurred during the last glacial period in 
Eurasian megafauna, synchronous bottlenecks or 
extinctions around 45 to 40 ka BP have not been noted (6). 
Most of these taxa, despite turnovers, survived the Last 
Glacial Maximum (e.g., Coelodonta antiquitatis) and even 
the Pleistocene-Holocene transition (e.g., Mammuthus 
primigenius). 

The second main issue of (1) is the presumed relation 
between the climatic impact of the Laschamps and the 
extinction of Neanderthals and contemporaneous European 
H. sapiens. We clarify that during their evolutionary history, 
Neanderthals survived glaciation events and climatic 
fluctuations harsher than the stadials GS-11 and GS-10 (7). 
During Marine Isotope Stage (MIS) 6 and MIS 4, the 
Scandinavian ice sheet reached central Germany and the 
coast of Poland, respectively. Therefore, climate change may 
have played only a minor role in the fate of the 
Neanderthals (8). A more likely factor is gradual competitive 
exclusion, caused by the dispersals of H. sapiens in Europe 
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after ~46 ka BP (9), which disrupted the Neanderthal niche 
structure and food web. 

Additionally, the radiocarbon dataset used by Cooper et 
al. [see figure S31 of (1)] for establishing the temporal range 
of Neanderthals’ demise is arbitrary in the selection of 14C 
dates. A better solution would have been to compare the 
chronological boundaries of key sites or the direct dates of 
human fossils (Fig. 1 and Table 1). In Iberia, Neanderthals 
may have persisted after a threshold of ~40 ka BP [(10) and 
references therein], whereas the chronology of the last 
Neanderthals in central and western Asia is still virtually 
unknown. Moreover, we note that the end of the Middle 
Paleolithic at one or a group of sites does not necessarily 
reflect the end of Neanderthals as a species, and current 
scenarios may change with further research in less 
investigated areas. 

The claim that the Laschamps event had a negative 
impact on some early European H. sapiens populations is 
also problematic. If the weakened geomagnetic field allowed 
a rise in ultraviolet radiation in equatorial and low 
latitudes, H. sapiens in Africa should have been even more 
affected than groups living in temperate environments. 
Hence, the Laschamps should have slowed the dispersal out 
of Africa and beyond, whereas data suggest that it had no 
such effect. Similarly, no large-scale impact at ~42 ka BP is 
observed in the known African archaeological, 
paleoanthropological, or genetic records (11). 

Furthermore, if we consider both the short (Uluzzian, 
45/43 to 40 ka cal BP; Protoaurignacian, 41.5 to 39.9 ka cal 
BP; Early Aurignacian, 39.8 to 37.9 ka cal BP) and the long 
(Early Aurignacian, 42.5 to 37.9 ka cal BP) chronology for 
the cultural succession of the Early Upper Paleolithic (12), 
we note that H. sapiens certainly survived the climatic 
consequences of the Laschamps. This evidence makes it 
unclear how ultraviolet radiation affected only some 
European inhabitants when no data currently support the 
greater use of ochre as sunscreen in the Aurignacian or any 
other Upper Paleolithic culture. In addition, although the 
end of the Uluzzian temporally overlapped with the 
Protoaurignacian in northern Italy (13), the lamellar 
technologies of the Aurignacian may have originated in 
western Asia rather than developing from previous technical 
behaviors of H. sapiens in Europe (12). 

Lastly, in the archaeological record, a large increase in 
the use of caves at 42 to 40 ka BP is not apparent in the 
data. Since the Lower Paleolithic, the occupations of these 
natural shelters were the results of complex settlement 
dynamics and subsistence strategies (14). Figurative cave 
paintings may have emerged as an artistic expression that 
tried to imitate and transfer natural patterns in new 
contexts. These behaviors had appeared in eastern Borneo 
by 52 to 40 ka BP, in Sulawesi by at least 45.5 ka BP, and 

possibly in Europe before 64 ka BP [(15) and references 
therein], a time period well before the increase in the 
ultraviolet radiation caused by the Laschamps event. 

All in all, not only have Cooper et al. failed to provide 
convincing explanatory mechanisms relating the Laschamps 
excursion to cultural and biological changes, but their 
chronological coincidence with this geomagnetic reversal is 
highly questionable. 
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Fig. 1. Neanderthals and Homo sapiens’ direct dates published before the Cooper et al. 2021 paper. Some 
hominins have more than one date (Spy, Goyet, Kleine Feldhofer, Vindija, Kostienki, Sungir, Peştera Mureii, 
Mladeč, and Bacho Kiro) and are merged together in one single line in the graph. The calibrated ranges are 
produced using IntCal 20 in the OxCal 4.4 program (16, 17). 
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Numerous geomagnetic excursions have occurred 
throughout geological time, but currently we know very 
little about their potential impacts (1). During the late 
Quaternary, ancient DNA records have demonstrated that 
major population (and even species) extinction and 
replacement events have occurred relatively frequently, but 
often remain invisible within the fossil record (2). As a 
result, it is unclear what impact many earlier geomagnetic 
excursions, such as the Blake (~114 ka) and post-Blake (~109 
ka), may have had on Neanderthal populations as 

mentioned by Picin et al. (3). However, recent studies on 
European Neanderthal populations around this time (4) 
suggest that environmental changes caused population 
fragmentation around 115 to 100 ka, while Spanish 
Neanderthal populations underwent a major population 
replacement around ~112 to 107 ka, similar to the 
Laschamps observations. 

As we noted (1), the environmental changes at 42 ka are 
more obvious in sediment and glacial records in the Pacific 
region, whereas the pronounced Dansgaard-Oeschger cycles 
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Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of 
the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an 
unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be 
tested with new data, and encouragingly, none of the studies presented by Picin et al. undermine our model. 
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in the North Atlantic potentially obscure similar impacts. In 
this regard, it is important to recognize that the Greenland 
ice records do not represent global climate, but preserve 
northern Atlantic regional environmental changes. 
Nonetheless, the refined timing created via the kauri record 
reveals that the periods of collapsed magnetic field strength 
and implied cooling impacts during the Laschamps align 
very closely to Greenland Stadial GS-11 and the climatically 
anomalous GS-10 (1, 5) (Fig. 1). 

The staggered spatiotemporal pattern of European 
Neanderthal extinctions during the repeated (cold) stadials 
GS-12 to GS-10 has been explained as competitive exclusion 
from invading anatomically modern human (AMH) 
populations reexpanding more rapidly after each cycle (6). 
Neanderthal population sizes and genetic diversity were 
decreasing throughout the Late Pleistocene, but their 
survival through multiple glacial-interglacial cycles makes it 
seem unlikely that a standard Greenland Stadial (i.e., GS-10) 
alone could have caused their extinction. However, we know 
very little about the nature or rate of change of 
geomagnetic-caused environmental changes during GS-10, 
which arguably could have been much faster or had more 
severe impacts (Fig. 1). We used the most comprehensive 
available compilation of high-quality radiocarbon dates (7) 
to show that the final ages of western European 
Neanderthal populations were coincident with the 
Laschamps excursion. This conclusion has been further 
reaffirmed by studies redating anomalously young dates 
such as from the site Spy (8), by the impacts of the latest 
radiocarbon calibration curve (IntCal20) for this period (9), 
and seemingly by the additional data and figure presented 
by Picin et al. (Fig. 1). 

Picin et al. point out that in Europe “H. sapiens 
certainly survived the climatic consequences of the 
Laschamps” (3); however, a recent study (led by one of the 
co-authors) demonstrated that the AMH populations before 
and after the Laschamps represent two genetically different 
populations (10), separated by a complete replacement 
around the Laschamps (Fig. 1). Specifically, Initial Upper 
Paleolithic AMH populations were replaced sometime after 
45.3 to 42.6 ka, immediately before Laschamps, whereas the 
subsequent Aurignacian populations appear during or 
shortly after the Laschamps. Indeed, both the (alternative) 
short and long Early Upper Paleolithic chronologies 
presented by Picin et al. indicate a major transition 
associated with the Laschamps (Fig. 1), while the start of the 
Early Aurignacian is contemporaneous when calibrated with 
IntCal20 (9) or kauri-Hulu (1). More remarkably, the 
Aurignacian itself appears to end during the next major 
geomagnetic excursion, Mono Lake at 35 ka (11) (Fig. 1), 
after which it is genetically replaced by Gravettian 
populations that first appear in eastern Europe at that time 

(12). The AMH record is important because there are few 
other detailed European megafaunal genetic records around 
Laschamps, making it challenging to detect local extinction 
events. However, a cluster of megafaunal genetic extinction 
events is apparent around Mono Lake, where records are 
more detailed (1, 3). 

We specifically stated that high ultraviolet levels during 
the Laschamps seem unlikely to have caused major negative 
impacts on early AMH populations, such as extinctions or 
altered migration patterns (1). However, our climatic and 
solar physics models suggested that the intense ultraviolet 
light radiation and other associated phenomena during 
short (1- to 2-day) solar energetic particle (SEP) events 
during the Laschamps would be consistent with a sudden 
increase in global cave use, including a clear intensification 
in the appearance and diversification of early figurative cave 
art, as well as the use of red ochre including hand stencils 
(1). As we suggested, the sudden increase in figurative art in 
disparate locations across Europe and southeast Asia 
probably represented a preservation bias associated with the 
increased use of caves (potentially as short-term shelter 
during SEP events). We also clearly stated that the quality 
and diversity of cave art at ~42 ka implied that figurative art 
was already well established, likely in the external 
environment such as rockshelter and cliff walls. 

In the Southern Hemisphere, the peak of megafaunal 
extinction events in Australia has previously been estimated 
at 42 ka (13), whereas recent work in northeast Australia 
(14) referred to by Picin et al. reveals that the youngest 
megafaunal layers (dated between 41.8 and 38.4 ka, 1 SD) 
appear to be associated with environmental deterioration 
starting around this period (Fig. 1). Similarly, the youngest 
radiocarbon-dated megafaunal remains in Tasmania are 
41.9 to 40.9 ka (1) when calibrated using the new kauri-Hulu 
curve. Within southern Africa, spatiotemporally staggered 
patterns of cultural transitions complicate interpretation, 
although we noted that the fully developed expression of 
Late Stone Age technologies at ~42 ka (Fig. 1) recorded at 
Border Cave matched parallel megafaunal changes at 
Boomplaas Cave. We had overlooked equatorial African 
palynological records that also detail major changes in 
vegetation patterns and moisture levels at 43 to 40 ka (15), 
parallel to those we report in the Pacific (1). 

Our hypothesis that the Adams Transitional 
Geomagnetic Event and Laschamps excursion caused major 
global environmental (and climatic) impacts is based on 
precisely aligned records and global chemistry-climate 
modeling. We do not claim to have resolved the full details 
of the mechanisms that drove global change or 
contemporaneous evolutionary events, as this will require 
further testing and analysis. However, Picin et al. (or 
Hawks) do not present any data that challenge our 
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hypothesis, such that geomagnetic excursions remain a 
potentially important new environmental and evolutionary 
driver that has been previously overlooked. 
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Fig. 1. Alignment of climatic, 
radiocarbon, anthropological, and 
paleontological data against the 
Laschamps and Mono Lake 
geomagnetic excursions. (A) NGRIP 
G18O with Greenland stadials (5). (B) 
Neanderthal extinction in western 
Europe recalibrated with kauri-Hulu 
calibration curve (1). (C) Early 
anatomically modern human (AMH) 
cultures in Europe, with genetic 
replacements of populations 
indicated with red asterisks. Initial 
Upper Paleolithic data are from 
Bacho Kiro cave (10). Alternative 
Aurignacian chronologies are from 
Picin et al. (3), with the End 
Aurignacian dated via the high-
resolution record at Abri Pataud 
Cave, France (11). Gravettian genetic 
groups appear across Europe from 
34 to 35 ka [dashed line (12)]. (D) 
Kauri and Hulu cave 14C values from 
(1). (E) Youngest megafaunal layers 
and fossils in northeastern Australia 
(14) and Tasmania (1). (F) Full 
expression of Late Stone Age 
cultural adaptations at Border Cave, 
South Africa (layer 1WA transition to 
1BS lower-BC) recalibrated with 
kauri-Hulu calibration curve (1). (G) 
West Antarctic (WAIS) G18O with 
Antarctic Isotope Maximum events. 
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