
LIQUID BASIC 2025
Quick Reference Guide
Version 3.1 - Released May 1st, 2025

Written by Bryan Flick

© Copyright 2025 All Rights Reserved

Introduction

Liquid BASIC 2025 is a modern BASIC (Beginner’s All-purpose Symbolic Instruction Code) dialect. It includes all the
standard legacy BASIC commands, plus support for structured programming, user-defined types, arrays, matrices,
functions, fibers, error handling, interrupts, files, databases, artificial intelligence, graphics, sound, and more.

Getting Started

Liquid BASIC runs in a 1280x800 window. Once initialized, it will display a “Ready.” prompt. Commands can be entered
and executed immediately. This is known as Direct Mode. If the line entered starts with a line number instead, then the
current line is inserted into the program currently in memory based on the line number. Valid line numbers range from 0
to 65535.

Press the CTRL + F12 keys together to load and run the included Menu.bas program. This program has a simple menu
interface to browse and run the demonstration programs. Use the up/down arrow keys to move the selection up or
down. Press Enter to run the selected program (printed in white) or change to the selected directory (printed in green).
Press ESC to exit most of the demonstration programs or press the CTRL + C keys together to force a program to end.

Press the CTRL + Home keys together to reset the user interface (soft reset).

Legacy Mode vs. Modern Mode

Liquid BASIC has two unique modes: Legacy mode and Modern mode.

Legacy mode has several features to maintain compatibility with older BASICs from the 1970’s and early 1980’s:

- Line numbers are used for branching (i.e. GOTO and GOSUB).
- Line numbers are saved to disk.
- Numeric constants can start with a period ‘.’ (for example, .123 is the same as 0.123).
- Arrays will automatically dimension to ten elements the first time they are referenced.
- When printing numbers, a leading space is printed if the number is positive, and a trailing space is printed after

all numbers.
- When printing numbers, the leading 0 is not printed if the number is between -1 and 1.
- When printing a comma, the cursor will advance to the next “zone”, which is 15 characters wide.

Modern mode has features that make programming easier and more relevant:

- Line numbers are not used for branching; they are simply used to sort the program while editing.
- Line numbers are not saved to disk.
- Numeric constants must use a leading 0 if the whole number portion is 0.
- Arrays must be explicitly dimensioned.
- When printing numbers, no leading or trailing spaces are printed.
- When printing numbers, the leading 0 is printed if the number is between -1 and 1.
- When printing a comma, the cursor will advance to the next “zone”, which is 16 characters wide.

By default, Liquid BASIC starts in Legacy mode. The LIST command will print the current mode. Use the MODERN
command to switch to Modern mode. Use the LEGACY command to switch back to Legacy mode.

When a program is loaded, Liquid BASIC will automatically detect if the program has line numbers or not. If it does, then
it will load in Legacy mode. Otherwise, it will load in Modern mode.

Liquid BASIC in Legacy mode has a high degree of compatibility with Microsoft BASIC Version 3.0. It can run many of the
programs unchanged from David H. Ahl’s classic 1973 book “BASIC Computer Games”, for example. These games are
included in the “BasicComputerGames” folder. Be sure to leave CAPS LOCK on when playing, as many older computers
operated with only uppercase letters and expect input to be capitalized.

The Line Editor

The Liquid BASIC line editor is similar to the Commodore 64 editor. Lines are “physical” (a literal line of characters) and
“logical” (multiple physical lines grouped together to read as one). Typing to the end of a physical line will insert a new
physical line to create one long logical line.

The arrow keys can be used to move the cursor around.

Use the Home key to go to the beginning of a logical line. Use the End key to go to the end of a logical line.

Use the SHIFT + Home keys together to move the cursor to the “home” position (upper left corner of the screen).

Use the Backspace key to delete the character to the left of the cursor on the current logical line. Use the Delete key to
delete the character under the cursor on the current logical line. Use the Insert key to toggle between insert (half cursor)
and overwrite (full cursor) mode.

The Text Editor

Liquid BASIC also includes a modern way to edit BASIC programs using a full screen text editor. Enter EDIT to open the
text editor. The EDIT command can only be used in Modern mode.

Text can be selected using the mouse or the SHIFT key. Use CTRL + C to copy the selected text, CTRL + X to cut, and CTRL
+ V to paste. Use CTRL + Z to undo an operation and CTRL + Y to redo it.

Press F5 to run the program. Press F6 to debug the program. Press F8 to toggle between the text editor and the Liquid
BASIC screen. Press Esc to exit the full screen editor and place the editor contents back into program memory
(renumbered starting at line number 10 with an increment of 10).

Direct Mode

HELP

Print a quick reference to common commands.

NEW

Clear (erase) program and variable storage. Switch Liquid BASIC to Legacy mode.

LEGACY

 Switch Liquid BASIC to Legacy mode.

MODERN

Switch Liquid BASIC to Modern mode. Note that if a program is in memory, the line numbers will be lost when
switching from Legacy to Modern mode. It is recommended to save your program before switching to Modern
mode.

RUN [<filename$>]

Execute the BASIC program in memory. Press the CTRL + C keys together to break execution. If the optional
<filename$> is specified, then load a program from disk into memory (the .BAS file extension is optional) and
execute it.

DEBUG

 Open the debugger and execute the BASIC program in memory.

LIST [<first>][-<last>]

List the BASIC program currently in memory. The optional <first> value specifies the first line to list, and the
optional <last> value specifies the last line to list.

DIR [-L] [<filter$>]

Display the contents of the current directory, filtering the results to <filter$>. If the “-L” switch is used a “long
listing” is printed with the file date and file size for each file.

LOAD <filename$>

 Load a program from disk into memory (the .BAS file extension is optional).

SAVE <filename$>

 Store the program in memory to disk.

AUTO [<inc>]

Start auto-incrementing when entering lines. Anytime a line that starts with a line number is entered the editor
will automatically print the next line number incremented by <inc>. Entering a line number by itself will end
auto-increment mode.

DELETE [<first>][-<last>]

Delete the range of lines from <first> to <last>. The beginning of the program is assumed if <first> is omitted.
The end of the program is assumed if <last> is omitted.

RENUMBER [<start>][,<incr>]

Renumber the program in memory, starting at line number <start> and incrementing by <incr> each line. In
Legacy mode, the RENUMBER command will automatically update GOTO, GOSUB, IF/THEN, and other branching
statements with the new renumbered line numbers. The program must not have any syntax errors for
RENUMBER to work. Generally, if the program can RUN it can be renumbered. It is recommended to save your
program before renumbering.

EDIT [<filename$>]

Open the full screen text editor. If no <filename$> is specified, then the program currently in memory is loaded
into the editor. If an optional <filename$> is specified, the editor will load <filename$> when opened and
automatically save the program back to disk when it is executed, or the editor is closed. When the editor is
closed, the program is renumbered and placed back into memory. Only Modern programs can be edited using
the full screen text editor.

RESET

 Perform a soft reset. This is the same as pressing the CTRL + Home keys together.

HARD RESET

 Perform a hard reset.

QUIT

 Exit Liquid BASIC.

Variables and Expressions

Variables

Variables in Liquid BASIC are either numbers or strings.

There are four different types of numeric (Real) variables:

 Byte 8-bit whole number between 0 and 255
 Integer 32-bit whole number between -2,147,483,648 and +2,147,483,647
 Single 32-bit single precision floating point number with a range from ±1.5 × 10−45 to ±3.4 × 1038
 Double 64-bit double precision floating point number with a range from ±5.0 × 10−324 to ±1.7 × 10308

String variables are sequences of ASCII characters that can be any length.

Variable names are not case sensitive, can include letters, numbers, and the underscore ‘_’ character, and can be any
length.

A variable’s type is determined by its suffix character at the end of the variable name:

 ? Byte
 % Integer
 ! Single
 # Double (default)
 $ String

If no suffix character is appended, then the variable is assumed to be a Double. The suffix character not only determines
the variable’s type, it’s also part of the variable’s name. For example, B, B%, and B$ are three different variables. This is a
unique feature of the BASIC language.

Literals

A literal is a constant number, like 3 or 5.123. A literal can start with a percent sign ‘%’ to indicate the literal is in base 2
(binary – e.g. %1001001), or a dollar sign ‘$’ to indicate the literal is in base 16 (hexadecimal – e.g. $FFD2). Otherwise,
the literal is assumed to be in base 10 (decimal).

Expressions and Operators

An expression is technically TRUE if it is non-zero, though -1 is the preferred value. An expression is FALSE if it is zero.

Each operator has a precedence level. Operators with a higher operator precedence level are executed before operators
with a lower operator precedence level.

Supported binary operators (an operator with two subexpressions) and their precedence level from lowest to highest
include:

TOKEN OPERATOR PRECEDENCE
OR Binary (unsigned) OR 1

XOR Binary (unsigned) exclusive OR 1
AND Binary (unsigned) AND 2

= Equal to 3
<> Not equal to 3
< Less than 3
> Greater than 3

<= Less than or equal to 3
>= Greater than or equal to 3

SHL Binary (unsigned) shift left 4
SHR Binary (unsigned) shift right 4

+ Addition 5
- Subtraction 5

MOD Modulus 6
DIV Integer division 7

* Multiplication 8
/ Division 8
^ Exponentiation 10

There are also unary operators (an operator with one subexpression):

TOKEN OPERATOR PRECEDENCE
+ Ignored N/A
- Minus 9

NOT Binary (signed) NOT 9
() Parentheses 11

Note that the Exponentiation binary operator takes precedence over the Minus and Binary (signed) NOT unary
operators, so “-2 ^ 4” will result in -16 and not 16, because it is evaluated as “-(2 ^ 4)” and not “(-2) ^ 4”.

Parentheses take precedence over all other operators.

Statements

label:

 An identifier followed by a colon ‘:’ is treated as a label and can be branched to when in Modern mode.

REM

Use to comment your code. Anything on the line after REM is ignored. Comments do not affect the execution
speed of your program. The apostrophe ‘'’ can be substituted for the REM keyword.

ASSERT <expr>

Use to debug your code. ASSERT is ignored if <expr> evaluates to true, otherwise program execution will stop
with an “Assertion Failed” error.

TRACE ON|OFF

Use to debug your code. When tracing is turned on, Liquid BASIC will print the line number of each line as it
runs. This is useful to trace your code’s execution.

TRACK <var> [OFF]

Use to debug your code. When tracking is turned on, Liquid BASIC will print the variable and its value anytime
the variable is assigned while a program is running. Use the optional OFF modifier to turn tracking off. This is
useful to track your variable’s contents and changes over time.

BREAKPOINT

Use to debug your code. The debugger is opened, and program execution goes to Single Step mode, allowing the
program to be stepped through line by line. This is the same as pressing the CTRL + D keys together while a
program is running.

BREAK ON|OFF

When breaking is turned on, Liquid BASIC will force a program to end when the CTRL + C keys are pressed
together, or when the STOP command is executed. Otherwise, CTRL + C and the STOP command are ignored.
Breaking is turned on by default.

CLR

 Clear all user-defined constants, variables, and arrays.

CONST <const>=<value>[,<const>=<value>,…]

Assign a constant to a specific value. Once set the constant cannot be changed. The constant type and value
type must match (e.g., strings can only be assigned to String constants ending in a dollar sign ‘$’). Constants are
global to the entire program. Constants must be defined before they are referenced.

[LET] <var>=<expr>

Assign a variable to a specific value. The LET keyword is optional. The variable type and expression type must
match (e.g., strings can only be assigned to String variables ending in a dollar sign ‘$’). Variables declared in a
FUNCTION are local to the FUNCTION. A variable declared outside a FUNCTION is global to the entire program,
unless the LOCAL command is used within the FUNCTION to explicitly make a variable local.

GOTO <label>

Jump to <label> (or line number if in Legacy mode). It is bad programming practice to jump into or out of control
blocks using the GOTO statement as it may lead to unexpected results. You cannot jump into or out of
FUNCTIONs.

GOSUB <label>

Jump to <label> (or line number if in Legacy mode) and save the return address (the statement after the GOSUB
statement) to be later RETURN’ed to. You cannot jump into or out of FUNCTIONs.

RETURN

 Return to the statement after the last GOSUB statement.

ON <expr> GOTO|GOSUB <label>[,<label>…]

Jump to the <label> (or line number if in Legacy mode) in the list that <expr> indexes. For example, if <expr>
evaluates to 3, then jump to the third label in the list. If no label is specified for an index no jump is performed.
<expr> must be a positive number.

When GOSUB is used the return address (the statement after the ON … GOSUB statement) is saved to be later
RETURN’ed to.

IF <expr> THEN <statements> [ELSE <statements>]

If <expr> evaluates to true, then run the statements after THEN. If <expr> evaluates to false and the optional
ELSE clause is used, then run the statements after ELSE. In Legacy mode, <statements> can be replaced with a
line number to jump to.

IF <expr> THEN … [ELSE IF <expr> …][ELSE …] END IF

If <expr> evaluates to true, then run all the statements (even across multiple lines) after THEN. If <expr>
evaluates to false and the optional ELSE clause is used, then run all the statements (even across multiple lines)
after ELSE. END IF is required to signal the end of the IF/THEN block.

EXIT IF

 Exit the current IF/THEN block.

SELECT CASE <expr> CASE <testlist> … [CASE <testlist> …][CASE ELSE …] END SELECT

Evaluate <expr> and compare to each <testlist> expression. If there is a match, then run all the statements (even
across multiple lines) after CASE. If there is no match, then run all the statements (even across multiple lines)
after the optional CASE ELSE. END SELECT signals the end of the SELECT/CASE block.

A <testlist> can contain one or more simple expressions, separated by commas, to be compared to <expr>. All
test lists must be of the same type as <expr>. A match occurs whenever any of the expressions in the test list
evaluate to True. Tests can include equality, inequality, less than, less than or equal, greater than, greater than
or equal, and range (from – to) testing. An equality test is assumed by default.

Example test lists include:

 CASE 10 true if <expr> is equal to 10

 CASE 2,3,4 true if <expr> is equal to 2, 3, or 4

 CASE <50 true if <expr> is less than 50

 CASE <=10,>100 true if <expr> is less than or equal to 10, or greater than 100

 CASE 20 TO 30 true if <expr> is between 20 and 30

 CASE "delete" true if <expr> is a string and equal to “delete”

 CASE "a" TO "e" true if <expr> is a string and in the range of “a” to “e”

EXIT SELECT

 Exit the current SELECT/CASE block.

WHILE <expr> … WEND

Declare a loop. The loop will run while <expr> evaluates to true.

EXIT WHILE

 Exit the current WHILE/WEND block.

DO [UNTIL|WHILE <expr>] … LOOP [UNTIL|WHILE <expr>]

Declare a loop. If the UNTIL and WHILE clauses are not used the loop will run indefinitely. DO UNTIL will run the
loop until <expr> evaluates to true. DO WHILE will run the loop while <expr> evaluates to true. LOOP UNTIL
repeats the loop until <expr> evaluates to true. LOOP WHILE repeats the loop while <expr> evaluates to true.

EXIT DO

 Exit the current DO/LOOP block.

FOR <var>=<start> TO <end> [STEP <step>] … NEXT [<var>]

Assign <var> to <start>. If <var> is less than <end> then run the statements (even across multiple lines) before
NEXT. If <var> is more than <end> at the beginning of the loop none of the loop is run. Once NEXT is
encountered, increment <var> by <step> (<step> is 1 if not specified) and repeat the loop. <step> can also be
negative to decrement <start> down to <end>. The <var> after NEXT is not required but must match the variable
used in the FOR loop if specified.

NEXT <var>,<var>[,<var>…]

Multiple nested FOR blocks can be ended by specifying multiple variables separated by commas. The <var> must
match the variable used in the FOR loop being ended.

EXIT FOR

 Exit the current FOR/NEXT block.

RESTORE [<label>]

Set the <label> (or line number if in Legacy mode) where the next READ command should start looking for DATA.
If no <label> is specified, then READ will look for DATA starting at the beginning of the program. The <label>
cannot be inside a FUNCTION.

DATA <value>[,<value>…]

Define data to be read. <value> can be either a Real or String value. DATA statements are ignored when a
running program encounters them. Use the READ command to read values from a DATA statement. The data
cannot be inside a FUNCTION.

This command cannot be used in direct mode.

READ <var>[,<var>…]

Read the next item in a DATA statement as a String and assign it to <var>. If <var> is a Real, then automatically
try to convert the String to Real before assigning. The READ statement cannot be inside a FUNCTION.

SWAP <var1>,<var2>

Swap the contents of <var1> and <var2>. The variables must be simple (non-array) variables. Real and String
variables can be used; however, both variables must be of the same type.

SORT [UCASE$] <var>[,<var>…]

Sort the variables. The variables must be simple (non-array) variables. Real and String variables can be used;
however, all variables must be of the same type. Real variables are sorted from smallest to largest. String
variables are sorted alphabetically. When sorting string variables, the strings are case sensitive, unless the
optional UCASE$ modifier is used.

BEEP

 Play the default Beep sound.

PAUSE [<n>]

Pause program execution for <n> milliseconds. If <n> is omitted (or PAUSE 0 is used) immediately yield the
program to the host OS until the next clock tick (the clock in Liquid BASIC ticks at 60 times a second; each clock
tick is known as a “jiffy”). Otherwise <n> must be between 50 and 86,400,000 milliseconds (24 hours).

SLEEP [<n>]

Put the program to sleep for <n> seconds. If <n> is omitted (or SLEEP 0 is used) the program will sleep
indefinitely. Otherwise <n> must be between 1 and 86,400 seconds (24 hours). To wake up the program, either
<n> seconds must elapse, or a key must be pressed. SLEEP responds only to keystrokes that occur after it
executes. SLEEP ignores characters in the keyboard buffer that were typed before it executed.

WAITKEY <var$>

Pause program execution until a key is pressed and store it in <var$>. WAITKEY ignores characters in the
keyboard buffer that were typed before it executed.

RANDOMIZE <seed>

Set the seed of the random number generator to <seed>. The seed generates reproducible sequences. The same
random numbers will always be generated by the RND function from the same seed. It is common to set the
seed to TIMER as it will “randomize” (depending on the time of day) the seed and ensure decent random
number generation.

CHAIN [PRESERVE] <filename$>

Load a new program into memory and run it. If the optional PRESERVE modifier is used, all variables and arrays
are preserved, allowing the current program to pass information to the chained program. File and database

handles are also left open. If PRESERVE is omitted, all variables and arrays are cleared before chaining, and file
and database handles are closed.

NEST <filename$>

Load a new program into memory and run it. All variables and arrays are cleared before nesting, and file and
database handles are closed. The current program reloads and restarts (with all variables and arrays cleared,
and files and database handles closed) when the nested program ends. This is useful for menu-type programs
(see Menu.bas).

STOP

Immediately stop program execution. This is the same as pressing the CTRL + C keys together while a program is
running. This command is ignored if breaking is turned off using the BREAK OFF command.

END

 Close all files and databases and end program execution.

Text

The Text Screen in Liquid BASIC is always at the top of the graphics stack (see “Graphics” below). It is a simple 128x32
grid of cells, with each “cell” able to hold a single character of text from the high-resolution font (ASCII characters 32 to
127) below:

Individual cells contain a character, an independent foreground (ink) color, and an independent background (highlight)
color. Each cell also has a set of text attributes: blink, bold, and underline. These attributes can be turned on and off and
used in any combination.

About Colors

Colors in Liquid BASIC are represented by a 32-bit unsigned integer, comprised of four 8-bit bytes. Each color has a byte
for the red, green, blue, and alpha (transparency) levels of the color. Together this creates 16,777,216 color
combinations with 256 levels of transparency.

The alpha level is used to determine transparency; it determines how to blend a color with the pixel beneath it when it is
being written (0 is completely transparent, 255 is completely opaque, and any value in-between is a level of
transparency).

The easiest way to get a proper 32-bit color value is to use the built-in HSV, RGB, and CLUT functions.

Text Screen Commands

CLS

 Clear the Text Screen.

LOCATE [<y>][,<x>]

Move the cursor to the <x>,<y> position. Both <x> and <y> start at 1, and each one is optional. Note that the row
comes before the column.

INPUT [“prompt$”;|,]<var>[,<var>…]

Input a line and assign it to <var>. If <var> is a Real then automatically try to convert the input to Real before
assigning. If this fails a “Redo From Start” warning is printed, and the user must re-enter their input. Multiple
values may be input by separating the input with commas. Each piece of input can be wrapped in quotes to
preserve any commas in it. If more items are input than expected an “Extra Ignored” warning is printed and the
extra items are discarded.

If <prompt$> is omitted print a question mark ‘?’ and a space by default. Otherwise, print the <prompt$> before
input (<prompt$> must be a string literal and not a string expression). If the semicolon ‘;’ separator is used after
<prompt$>, print a question mark ‘?’ and a space following the prompt. Otherwise, if the comma ‘,’ separator is
used, do not print ‘?’ and a space after the <prompt$>.

This command cannot be used in direct mode.

LINE INPUT [“prompt$”[,<default$>];]<var$>

Input a line and assign it to <var$>. <var$> must be a String variable. No parsing is done on the input; the entire
line is assigned to <var$>. <prompt$> is the optional prompt to print before input and must be a string literal
and not a string expression. <default$> is the optional default input for the input field.

This command cannot be used in direct mode.

PRINT <value>[;|,]…

Print <value> followed by a carriage return (if the optional semicolon ‘;’ is omitted) or a tab (if the optional
comma ‘,’ is used). Printing a tab advances the cursor to the next tab zone (by default, tab zones are 15
characters wide in Legacy mode, or 16 characters wide in Modern mode). <value> can be a Real or a String. In
Modern mode, if <value> is a Real it is printed as is, with no leading or trailing spaces. In Legacy mode, if <value>
is a Real a preceding space (if >= 0) or minus sign (if < 0) is printed before the number, and a space is printed
after the number. Also, the leading 0 is not printed if the number is between -1 and 1. Multiple values can be
printed. A question mark ‘?’ can be substituted for the PRINT keyword.

PRINT SPC(<x>)

 Print <x> number of spaces before printing.

PRINT TAB(<column>)

Move the cursor forward to <column> on the Text Screen, starting with the leftmost position of the current line.
Columns start at 0. If <column> is greater than the Text Screen’s width, TAB advances to the next line and the
print position becomes (<column> MOD width). If the current print position is already beyond position
<column>, the cursor is not moved.

PRINT CENTER <value>[,<highlight>][;]

Centers <value> on the current line followed by a carriage return (if the optional semicolon ‘;’ is omitted).
<value> can be a Real or a String. If the optional <highlight> color is specified, then the entire line will have its
highlight set (this will not affect the current HIGHLIGHT color however). This command can be useful for printing
headers and footers.

ZONE <n>

Set the width of the tab zone. <n> can be between 1 and 100. By default, tab zones are 15 characters wide in
Legacy mode, or 16 characters wide in Modern mode.

Color Commands

BORDER <color>

Set the border color, where <color> is a 32-bit unsigned integer. The border is a 16-pixel border around the
window. The border is not drawn if the <color> is 0 (default).

BACKGROUND <color>

Set the background color, where <color> is a 32-bit unsigned integer.

INK <color>

Set the ink color, where <color> is a 32-bit unsigned integer.

HIGHLIGHT <color>

Set the highlight color, where <color> is a 32-bit unsigned integer.

Attribute Commands

BLINK <state>

 Turn blinking on (<state> 1) or off (<state> 0).

BOLD <state>

 Turn bold on (<state> 1) or off (<state> 0).

UNDERLINE <state>

 Turn underline on (<state> 1) or off (<state> 0).

Cursor Commands

CURSOR MOVE <x>,<y>

 Move the cursor to the <x>, <y> position. Both <x> and <y> start at 0.

CURSOR RESET

 Reset the cursor (put the cursor in “auto” mode, enable blinking, and tint yellow).

CURSOR SHOW

 Turn on the cursor so it is always visible.

CURSOR HIDE

 Turn off the cursor so it is never visible.

CURSOR AUTO

Put the cursor in “auto” mode, where the cursor is hidden while a program is running unless it is waiting on
input. This is the default mode.

CURSOR BLINK <state>

If <state> is non-zero, the cursor will “blink” every 500 milliseconds (default). Otherwise, if <state> is zero, the
cursor will appear solid and not blink.

CURSOR TINT <color>

 Tint the cursor to <color>, where <color> is a 32-bit unsigned integer.

User-Defined Types

A user-defined type is a data type that is defined by the programmer rather than being built into the programming
language. This allows the programmer to create custom data structures that are tailored to the specific needs of their
program.

Liquid BASIC lets you define new data types using the TYPE statement. A user-defined type is an aggregate type made up
of elementary BASIC types. For example, the following TYPE statement defines a type, Employee:

 TYPE Employee

 FIELD Name$,Age

 FIELD Salary

 END TYPE

Each FIELD statement declares one or more variables within the type. Encapsulated variables use the suffix character to
designate the variable’s type. Any of the BASIC data types can be used in a user-defined type: bytes, integers, single
precision floats, double precision floats, and strings. However, user-defined types cannot include arrays.

The DIM…AS statement is used to declare a new variable as a user-defined type:

 DIM Worker as Employee

Variables declared as a user-defined type cannot have a suffix character. Individual fields within the variable can be
accessed using the period ‘.’ operator. Fields can be read from and written to, just like any other variable:

 Worker.Name$= "John Smith"

 PRINT Worker.Age

A user-defined type can also be encapsulated within another user-defined type, using the FIELD…AS statement:

 TYPE Organization

 FIELD Name$

 FIELD Manager AS Employee

 FIELD Worker AS Employee

 END TYPE

Once declared, any field can be accessed:

 DIM Business AS Organization

 Business.Name$="Software Company"

 Business.Worker.Name$="John Smith"

Arrays

An array is a data structure that stores a collection of elements of the same data type, in a contiguous block of memory.
Each element in the array is accessed by its index, which is an integer value that represents its position in the array.
Arrays are commonly used in programming to store and manipulate lists of data efficiently.

Array Commands

DIM <array>(<dimension>)

Declare a single dimensional array. An array is a collection of variables where each variable can be referenced by
its index. Indexes start at 0. <dimension> is the number of elements the array should have. Arrays must have at
least one element and no more than one million elements. All elements are set to zero/null when initialized.

DIM <array>(<dimension1>,<dimension2>[…,<dimension8>])

Declare a multidimensional array. When two dimensions are provided, a matrix or grid array is allocated. When
three dimensions are provided, a cube array is allocated. Arrays can have up to eight dimensions. Indexes start
at 0. Arrays must have at least one element and no more than one million elements total. All elements are set to
zero/null when initialized.

DIM <array>(<dimension1>[…,<dimension8>]) AS <type>

Declare an array of user-defined types. Indexes start at 0. Arrays must have at least one element and no more
than one million elements total. All elements are set to zero/null when initialized.

REDIM <array>(<dimension1>,<dimension2>[…,<dimension8>])

 Redeclare an array. All elements are set to zero/null when initialized.

REDIM PRESERVE <array>(<dimension>)

Redeclare an array but save the contents of the existing array. New elements are set to zero/null when
initialized. REDIM PRESERVE can only be used on single dimensional arrays (vectors).

ARRAY FILL <array>()[,<expr>] [SLICE <first>,<last>]

Fill the array with <expr>. If <expr> is omitted a 0 (for Real arrays) or “” (for String arrays) is used to fill the array.
If the optional SLICE modifier is used, then fill only the elements between <first> and <last>. The SLICE modifier
can only be used on single dimension arrays.

ARRAY FILL cannot be used on arrays of user-defined types.

ARRAY FIND [UCASE$] <array>()[.<fields>…],<test> [SLICE <first>,<last>] TO <var>

Search an array to find the item that satisfies the <test> expression. If there is a match, then the index of the
item that passed the test is assigned to <var>, otherwise -1 is assigned. If the optional SLICE modifier is used,
then scan only the elements between <first> and <last>. When searching a string array, the strings are case
sensitive, unless the optional UCASE$ modifier is used. ARRAY FIND can only be used on single dimensional
arrays.

When searching an array of user-defined types, the specific field to search must be specified after the array and
its parentheses.

A <test> is a simple expression. The test must match the array’s type. A match occurs if the test evaluates to
true. Tests can include equality, inequality, less than, less than or equal, greater than, and greater than or equal.
An equality test is assumed by default.

Example tests include:

 10 true if array item is equal to 10

 <50 true if array item is less than 50

 >=100 true if array item is greater than or equal to 100

 "insert" true if array item is a string and equal to “insert”

ARRAY DELETE <array>(<index>)[,<expr>] [FOR <count>]

Delete the item at <index> from the array. All elements above <index> are shifted down. A 0 (for Real arrays) or
“” (for String arrays) will fill the top element, unless the optional <expr> is specified in which case it will fill the
top element. If the optional FOR modifier is used, then <count> items are deleted. ARRAY DELETE can only be
used on single dimensional arrays.

ARRAY INSERT <array>(<index>)[,<expr>] [FOR <count>]

Insert the item <expr> into the array at <index>. All elements at <index> and above are shifted up and the top
element is discarded. If <expr> is omitted a 0 (for Real arrays) or “” (for String arrays) is inserted. If the optional
FOR modifier is used, then <count> items are inserted. ARRAY INSERT can only be used on single dimensional
arrays.

ARRAY REVERSE <array>() [SLICE <first>,<last>]

Reverse the elements in the array. If the optional SLICE modifier is used, then reverse only the elements
between <first> and <last>. ARRAY REVERSE can only be used on single dimensional arrays.

ARRAY SHUFFLE <array>() [SLICE <first>,<last>]

Shuffle the elements in the array. If the optional SLICE modifier is used, then shuffle only the elements between
<first> and <last>. ARRAY SHUFFLE can only be used on single dimensional arrays.

ARRAY SORT [UCASE$] <array>()[.<fields>…] [SLICE <first>,<last>]

Sort the elements in the array. If the optional SLICE modifier is used, then sort only the elements between
<first> and <last>. When sorting a string array, the strings are case sensitive, unless the optional UCASE$
modifier is used. ARRAY SORT can only be used on single dimensional arrays.

When sorting an array of user-defined types, the specific field to sort by must be specified after the array and its
parentheses.

ARRAY LOAD <path$>,<array>()

Read the file at <path$> into an array. The array will be declared (or redeclared if it already exists). The file must
be in the same format as generated by ARRAY SAVE.

ARRAY LOAD cannot be used on arrays of user-defined types.

ARRAY SAVE <path>,<array>()

 Write the data in an array to the file at <path$>. If the file does not exist it will be created.

ARRAY SAVE cannot be used on arrays of user-defined types.

Matrices

A matrix is a two-dimensional array (declared using the DIM statement) arranged in rows and columns. Each element in
a matrix is identified by its row and column position, and matrices can be added, subtracted, multiplied, and
transformed. Matrices are commonly used to represent data in various applications such as image processing, machine
learning, and computer graphics.

Matrix Commands

MAT <matrixA>()=ZER

 Set all elements of <matrixA> to zero.

MAT <matrixA>()=CON

 Set all elements of <matrixA> to one.

MAT <matrixA>()=IDN

Establish <matrixA> as an identity matrix. An identity matrix is a square matrix in which all the elements of the
main diagonal are one, and all other elements are zero. The identity matrix is a special type of matrix that acts
like the number 1 in scalar multiplication, meaning that when it is multiplied by another matrix, the result is the
original matrix.

MAT <matrixA>()=INV(<matrixB>())

Invert <matrixB> and assign to <matrixA>. Only a square matrix may be inverted. If a matrix is multiplied by its
inverse matrix, the result is an identity matrix. <matrixB> must be either a single precision or double precision
floating point array.

MAT <matrixA>()=TRN(<matrixB>())

Transpose <matrixB> and assign to <matrixA>. A transposed matrix is a matrix in which the rows and columns of
the original matrix are swapped. In other words, the rows of the original matrix become the columns of the
transposed matrix, and the columns of the original matrix become the rows of the transposed matrix.

MAT <matrixA>()=<matrixB>()

Assign <matrixB> to <matrixA>.

MAT <matrixA>()=<matrixB>()+<matrixC>()

 Add <matrixB> to <matrixC> and assign to <matrixA>. <matrixB> and <matrixC> must be the same size.

MAT <matrixA>()=<matrixB>()-<matrixC>()

 Subtract <matrixC> from <matrixB> and assign to <matrixA>. <matrixB> and <matrixC> must be the same size.

MAT <matrixA>()=<matrixB>()*<matrixC>()

Multiply <matrixB> by <matrixC> and assign to <matrixA>. <matrixB> and <matrixC> must be the same size.
<matrixB> and <matrixC> must be either single precision or double precision floating point arrays.

MAT <matrixA>()=(<expr>)*<matrixB>()

Multiply <matrixB> by the scalar value <expr>. The <expr> must be wrapped in parentheses to be parsed
correctly. <matrixB> must be either a single precision or double precision floating point array.

MAT PRINT <matrixA>()[,<format$>]

Print the matrix <matrixA>. If the cursor is not at the beginning of the current line, a carriage return is printed
before printing the matrix. Each row is printed, with a tab between each column. The optional <format$> can be
used to format the individual elements as they are printed (see the USING$ function).

Functions

A function is a block of code that performs a specific task or calculation. It can take input parameters, perform
operations on them, and return a single result. Functions are used to organize code, make it more modular and
reusable, and improve readability.

Function Commands

DEF FN<name>(<var>)=<expr>

Define a single line function that returns a Real value. The <name> must start with FN, cannot be longer than
three characters (including the FN), and cannot have a type suffix character (such as ‘%’ or ‘$’). A single <var>
can be passed to the function, and the value passed to that variable when the function is called is substituted
inside <expr>.

For example:

DEF FNA(Z)=30*EXP(-Z*Z/100)

? FNA(5)

23.3640234921421

? 30*EXP(-5*5/100)

23.3640234921421

This declares a single line function named “FNA”. When called, a single value is passed to the temporary variable
Z, which is then substituted wherever Z is used in the expression. The results are then returned to the caller.

FUNCTION <name>([[REF]<arg>[,[REF]<arg>…]]) … END FUNCTION

Define a function. Functions are named subroutines (blocks of code) that can be CALL’ed from anywhere.
Functions cannot be nested within one another. The FUNCTION block is skipped when encountered.

Functions can be “invoked” using the CALL command. When a function has ended it returns to the statement
after the CALL command.

Arguments can be passed to the function. If the optional REF modifier is used, then the argument must be a
variable and is passed by reference, and any changes made to the variable in the function will pass back to the
caller when the function ends. Otherwise, each argument is evaluated and treated as a local variable within the
function and freed when the function ends. Any new variables declared for the first time in the function are also
treated as local variables. This allows for recursion, where a function calls itself until a certain condition is met.

User-defined types must be passed using the REF modifier. Arrays must be passed using the REF modifier and an
empty set of parentheses. Arrays of user-defined types can also be passed using the REF modifier.

Functions can optionally return a value by either assigning the value to return to the function’s <name>, as if it
were a variable, or using the RETURN command. This allows functions to be used in expressions. The function’s
suffix character determines its return type (Byte, Int, Single, Double, or String).

Generally, the use of FUNCTION is preferred over DEF FN.

LOCAL <var>[,<var>…][,<array>()…]

Declare one or more variables as local to the FUNCTION. Variables declared outside the function are global in
scope and can be used within the function. Sometimes this behavior can be unintended and the variable should
always be local to the function. The LOCAL command declares that a variable or array is local to the function,
even if it is used outside the function. It is recommended that all local variables used within a function should be
explicitly declared as local to avoid a “name clash” with global variables and unexpected behavior.

The LOCAL command must be used immediately after the FUNCTION declaration and before any other
commands are used.

[CALL] <name>([[REF]<arg>[,[REF]<arg>…]]) [TO <var>]

Pass the arguments <arg> to the function named <name> and call it, saving the return address (the statement
after the CALL statement) to be later returned to when the function has finished executing. Arguments must be
passed using the REF modifier if the function is expecting the argument to be passed by reference. If the
optional TO modifier is used, the function’s return value is assigned to the variable <var>. Otherwise, the
function’s return value is discarded. The CALL keyword is optional.

RETURN <expr>

 Return <expr> back to the caller and exit the current FUNCTION block.

EXIT FUNCTION

 Exit the current FUNCTION block.

Fibers

A fiber (also known as a coroutine) is a type of function that can suspend (yield) its execution and return control to the
caller while maintaining its state. The fiber can later be resumed and will restore its state and continue its execution
until it either yields again or has completed. This allows for more efficient cooperative multitasking and asynchronous
programming, as fibers can be used to perform tasks such as waiting for input/output concurrently without the need for
multiple threads and all the headaches that come along with threads.

Fibers can be in one of three states: Suspended, Running, or Finished. When a fiber is first setup, its state is initialized,
and the fiber is suspended. When the fiber is resumed, its state changes to Running and execution resumes. If the fiber
yields, its state changes back to Suspended until it is resumed again. Once the fiber completes, its state changes to
Finished. Attempting to resume a fiber that has finished will result in an error, although it can be setup to run again. The
FIBER.ISDONE function can be used to determine if a fiber has finished or not.

Fiber Commands

FIBER <name>([[REF]<arg>[,[REF]<arg>…]]) … END FIBER

Define a fiber. Fibers are functions that can suspend themselves while maintaining their state, and resume at a
later point with the state restored. Fibers cannot be nested within one another. The FIBER block is skipped when
encountered.

Arguments can be passed to the fiber. If the optional REF modifier is used, then the argument must be a variable
and is passed by reference, and any changes made to the variable in the fiber will pass back to the caller when
the fiber yields or ends. Otherwise, each argument is evaluated and treated as a local variable within the fiber
and freed when the fiber ends. Any new variables declared for the first time in the fiber are also treated as local
variables. Fibers do not support recursion, however.

User-defined types must be passed using the REF modifier. Arrays must be passed using the REF modifier and an
empty set of parentheses. Arrays of user-defined types can also be passed using the REF modifier.

Fibers can optionally return a value by assigning the value to return to the fiber’s <name>, as if it were a
variable, or using the RETURN or YIELD RETURN commands. This allows fibers to be used in expressions. The
fiber’s suffix character determines its return type (Byte, Int, Single, Double, or String).

LOCAL <var>[,<var>…][,<array>()…]

Declare one or more variables as local to the FIBER. Variables declared outside the fiber are global in scope and
can be used within the fiber. Sometimes this behavior can be unintended and the variable should always be local
to the fiber. The LOCAL command declares that a variable or array is local to the fiber, even if it is used outside
the fiber. It is recommended that all local variables used within a fiber should be explicitly declared as local to
avoid a “name clash” with global variables and unexpected behavior.

The LOCAL command must be used immediately after the FIBER declaration and before any other commands
are used.

SETUP <name>([[REF]<arg>[,[REF]<arg>…]]) [RESUME]

Pass the arguments <arg> to the fiber named <name>, initialize the fiber’s state, and suspend the fiber.
Arguments must be passed using the REF modifier if the fiber is expecting the argument to be passed by
reference. If the optional RESUME modifier is used the fiber immediately resumes (begins execution).

YIELD

Suspend the current fiber, save its state, and return back to the caller. Any arguments passed using the REF
modifier during SETUP are also updated.

YIELD RETURN <expr>

Suspend the current fiber, save its state, and return <expr> back to the caller. This is equivalent to assigning
<expr> to the fiber’s <name> and yielding. Any arguments passed using the REF modifier during SETUP are also
updated.

RESUME <name>()

Restore the fiber’s state and resume program execution where the fiber last yielded.

EXIT FIBER

 Exit the current FIBER block.

Error Handling

Error handling is the process of anticipating, detecting, and resolving errors that may occur during the execution of a
program. This involves implementing mechanisms to “trap” (handle) errors to prevent the program from crashing and to
provide feedback to the user about the error. Error handling helps improve the reliability and robustness of a program
by gracefully handling unexpected situations.

Error handlers are local to the function they reside in or are global if not inside a function. When a function is called, the
current error handler is pushed on the call stack and the error handler is reset (same as calling TRAP OFF). When the
function ends, the previous error handler is popped off the call stack and restored.

TRAP blocks are similar in concept to the ON ERROR GOTO statement in other BASIC dialects but allow for cleaner code.
The TRAP block can be condensed to TRAP <label> to simulate ON ERROR GOTO if desired.

Error Handling Commands

TRAP RESUME NEXT

Enable the error handler. When a non-fatal error occurs record the error code and line number where the error
occurred, and resume program execution at the statement following the one that caused the error. Use the
reserved variables ERR and ERL to read the error code and line number where the error occurred, respectively.

TRAP <label>

Enable the error handler at <label> (or line number if in Legacy mode). When a non-fatal error occurs record the
error code and line number where the error occurred, disable further error handling, and jump to <label>. Use
the reserved variables ERR and ERL to read the error code and line number where the error occurred,
respectively. If TRAP is used inside a FUNCTION, the <label> must be inside the same FUNCTION.

TRAP … END TRAP

Define an event handler. When a non-fatal error occurs record the error code and line number where the error
occurred, disable further error handling, and jump to the TRAP block. Use the reserved variables ERR and ERL to
read the error code and line number where the error occurred, respectively. If a TRAP block does not handle the
error by the end of the block the error is printed and program execution stops. Use RESUME NEXT or EXIT TRAP
before the block ends if that is not the desired effect. TRAP blocks cannot be nested.

TRAP OFF

Disable the error handler. When a non-fatal error occurs halt program execution and print the error message
and line number where the error occurred. This is the default behavior when a program is first run.

EXIT TRAP

 Exit the current TRAP block. This is the same as using the RESUME NEXT command.

RESUME <label>

When a non-fatal error occurs and is handled using the TRAP statement, re-enable error handling and resume
program execution at <label> (or line number if in Legacy mode). If RESUME is used inside a FUNCTION, the
<label> must be inside the same FUNCTION.

RESUME NEXT

When a non-fatal error occurs and is handled using the TRAP statement, re-enable error handling and resume
program execution at the statement following the one that caused the error.

Interrupts

An interrupt is an event that causes an interruption to your program’s execution. Interrupts can be enabled for various
events, such as keypresses, mouse actions, gamepad actions, and timers. Whenever an enabled event occurs, the
program is suspended while execution branches to a designated interrupt handler. Once the interrupt handler has
finished, the program resumes execution. Events that are not enabled are simply ignored. Events are not enabled by
default.

A WHEN block is used to define and enable an interrupt. Whenever a WHEN block is encountered, it changes the current
interrupt handler to the enclosed block. Interrupts can be disabled using the IGNORE command.

Interrupts are global and cannot be defined inside a function. An enabled event will still execute the WHEN block when
inside a function, however.

Interrupts for the event are disabled when inside the WHEN block to prevent recursive calls for the same event.

WHEN blocks are similar in concept to ON <event> GOSUB statements in other BASIC dialects but allow for cleaner code.

Be careful with interrupts. They can introduce a lot of headaches that a non-interrupted tightly controlled main
execution loop can avoid. It is generally best to have a clear execution path when running a program on a single CPU
core, and interrupts can happen at any time, disrupting this execution path. This can cause issues if a program is not
written properly to account for that.

Interrupt Commands

WHEN KEY [<n>] … END WHEN

Execute the WHEN block when a keypress is detected. <n> specifies the keypress to detect, or any keypress if
<n> is omitted.

WHEN MOUSE … END WHEN

 Execute the WHEN block when a mouse event is detected.

WHEN GAMEPAD <n> … END WHEN

 Execute the WHEN block when a gamepad event is detected. <n> must be between 0 and 3.

WHEN TIMER <n>,<delay>[,<count>] … END WHEN

Set timer <n> (must be between 1 and 8) to execute the WHEN block when <delay> milliseconds have passed.
The <delay> must be between 50 milliseconds and 86,400,000 milliseconds (24 hours). The timer will run
indefinitely if <count> is omitted or 0. If the optional <count> is specified, the timer will run <count> number of
times every <delay> milliseconds.

IGNORE KEY [<n>]

Ignore any WHEN block assigned to detect a keypress. <n> specifies the keypress to ignore, or all keypresses if
<n> is omitted.

IGNORE MOUSE

 Ignore any WHEN block assigned to detect a mouse event.

IGNORE GAMEPAD <n>

 Ignore any WHEN block assigned to detect a gamepad event. <n> must be between 0 and 3.

IGNORE TIMER <n>

 Ignore any WHEN block assigned to timer <n>. <n> must be between 1 and 8.

IGNORE ALL

 Ignore all WHEN blocks assigned to all key, mouse, gamepad, and timer events.

EXIT WHEN

 Exit the current WHEN block.

Files

A file is a collection of data or information that is stored on a computer. It can be a document, image, video, audio,
program, or any other type of digital content. Files are typically organized and stored in a hierarchical structure within
folders or directories on a computer’s storage system. Each file is identified by a unique name and extension, which
indicates the type of file it is.

File Commands

OPEN <path$> FOR <access> AS [#]<handle>

Open a file using the specified file <access>:

 INPUT Used for input

 STREAM Used for input/output

Up to 80 (numbered 1 to 80) files can be opened at once. <handle> is the handle to assign when opening a file.
<path$> is a valid path and filename. For INPUT file access, if the file does not exist an error is raised. For
STREAM file access, if the file does not exist it will be created.

SEEK [#]<handle>,<offset>[,<origin>]

Seek within the file assigned to <handle>. <offset> is the number of bytes to jump and can be negative if
jumping backwards in the file. The optional <origin> specifies where the jump should occur from:

 < 0 Beginning of file (default)

 0 Current position in file

 > 0 End of file

GET #<handle>,<var>[,<var>…]

Read a single byte from the file assigned to <handle> and assign it to <var>. Multiple bytes can be read.

PUT #<handle>,<byte>[,<byte>…]

Write a single byte to the file assigned to <handle>. Multiple bytes can be written. The file must have been
opened with STREAM access.

READ #<handle>,<var>[,<var>…]

Read a Real (as 8 bytes) or String (as a length-prefixed ASCII string, also known as a P-string) value from the file
assigned to <handle> and assign it to <var>. Multiple values can be read.

WRITE #<handle>,<value>[,<value>…]

Write <value> to the file assigned to <handle>. Real values are written as 8 bytes, and String values are written
as a length-prefixed ASCII string. Multiple values can be written. The file must have been opened with STREAM
access.

INPUT #<handle>,<var>[,<var>…]

Input an ASCII string (up to and including the next carriage return in the file) from the file assigned to <handle>
and assign it to <var>. If <var> is a Real, then automatically try to convert the string to Real before assigning.
Multiple values can be inputted.

PRINT #<handle>,<value>[,|;<value>…]

Print the <value> as an ASCII string to the file assigned to <handle>. <value> can be a Real or String. Multiple
values can be printed. If a comma ‘,’ is used between values, a carriage return is also printed. The file must have
been opened with STREAM access.

ARRAY LOAD #<n>,<array>()[,<array>()]

 Read an array from the file assigned to <handle> and assign it to <array>. Multiple arrays can be loaded.

ARRAY LOAD cannot be used on arrays of user-defined types.

ARRAY SAVE #<n>,<array>()[,<array>()]

Write <array> to the file assigned to <handle>. Multiple arrays can be saved. The file must have been opened
with STREAM access.

ARRAY SAVE cannot be used on arrays of user-defined types.

CLOSE [#]<handle>

 Close the file assigned to <handle>.

FILE RENAME <sourcePath$>,<destPath$>

Rename the file at <sourcePath$> to <destPath$>. An absolute or relative path can be used in both
<sourcePath$> and <destPath$>. The paths must point to the same directory, and the filenames must not
match.

FILE MOVE <sourcePath$>,<destPath$>

Move the file at <sourcePath$> to <destPath$>. An absolute or relative path can be used in both <sourcePath$>
and <destPath$>. The paths must not point to the same directory, and the filenames must match. If no filename
is specified in <destPath$>, the filename from <sourcePath$> is used.

FILE COPY <sourcePath$>,<destPath$>

Copy the file at <sourcePath$> to <destPath$>. If a file of the same name already exists in the destination
directory, then it is replaced. An absolute or relative path can be used in both <sourcePath$> and <destPath$>.

FILE DELETE <path$>

 Delete the file at <path$>. An absolute or relative path can be used in <path$>.

CHDIR <path$>

 Change the current directory to <path$>.

MKDIR <path$>

 Create a new directory <path$>.

RMDIR <path$>

 Remove the directory <path$>. The directory must be empty before it can be removed.

Databases

Liquid BASIC uses the SQLite library to access databases. SQLite is public domain software and is the most used database
engine in the world. It is included in all mobile phones and most modern operating systems. SQLite provides a proven,
robust database engine used every day by billions of computers worldwide.

Database Commands

DB <handle> NEW

Create a new SQLite database in memory. <handle> is the handle to assign the database. Up to 20 (numbered 1
to 20) databases can be opened at once.

DB <handle> OPEN <path$>

Open a SQLite database. <handle> is the handle to assign the database. <path$> is a valid path and filename to a
SQLite database. If the file does not exist, it will be created. Up to 20 (numbered 1 to 20) databases can be
opened at once.

DB <handle> LOG <path$>

Enable logging in the database assigned to <handle> so every transaction is recorded to a text file. <path$> is a
valid path and filename. If the file exists it will be appended to, otherwise the file is created.

DB <handle> LOG OFF

 Disable logging in the database assigned to <handle>.

DB <handle> GET <sql$> TO <var$>

Query the database assigned to <handle> and return the value in the first column in the first row from the result
set. <sql$> is a valid SQL statement. The results are assigned to the variable <var$>.

DB <handle> QUERY <sql$>

Query the database assigned to <handle>. <sql$> is a valid SQL statement (e.g. SELECT). The results are stored in
a result set and can be read with the DB READ command.

DB <handle> READ NEXT

Read the next row in a result set from the last executed query on the database assigned to <handle>. Use the DB
functions to read the table names, column values, and data types of the row. Use the EOQ function to
determine if at the end of a result set.

DB <handle> WRITE <sql$> [TO <var>]

Send a SQL command to the database assigned to <handle>. <sql$> is a valid SQL statement (e.g. UPDATE,
INSERT, or DELETE). If the optional TO modifier is used, the number of rows affected by the command is
assigned to the variable <var>. Otherwise, the results are discarded.

DB <handle> CLOSE

 Close the database assigned to <handle>.

Artificial Intelligence

Liquid BASIC can also interface with OpenAI’s APIs to support artificial intelligence. An OpenAI API key is required to
make successful API calls. Sign up with OpenAI at openai.com to create your API key. Once you have your API key, paste
it into a text file named “OpenAI API Key.txt” in the same directory as the Liquid BASIC executable. The next time Liquid
BASIC starts up it will automatically load the OpenAI API key and validate it (it will print the word “COPILOT” next to the
memory and BASIC lines available if successful). Use the COPILOT reserved variable to programmatically test whether
the API key was successfully loaded.

See https://help.openai.com/en/collections/3675940-getting-started-with-openai-api for more information.

About Models

Liquid BASIC can use multiple OpenAI models. A model refers to a machine learning model. Models are designed to
perform various natural language processing tasks, such as text generation, language translation, question answering,
and more. These models are trained on large datasets using deep learning techniques, allowing them to understand and
generate human-like text. OpenAI models, such as GPT-3.5 (Generative Pre-trained Transformer 3.5), can generate
coherent and contextually relevant text across a wide range of applications. In fact, most of this paragraph was
generated by GPT-3.5. ͱͲͳʹ

For text data, such as chat, chatbots, and code generation, Liquid BASIC can use either the GPT-3.5 or GPT-4 models. The
GPT-3.5 model is cheaper and faster than GPT-4. However, GPT-4 is more capable than GPT-3.5 and can do more
complex tasks. These models also use “tokens” when dealing with text. You can think of tokens as pieces of words,
where 1,000 tokens is about 750 words.

For bitmap data, such as image generation, Liquid BASIC can use either the DALL-E 2 or DALL-E 3 models. DALL-E 2
generates low-resolution square images and is cheaper and faster than DALL-E 3. DALL-E 3, on the other hand, generates
much better and larger high-resolution images.

About Chat and Chatbots

Chat allows users to ask questions on a wide range of topics, whether general knowledge or specific subjects like history,
math, science, and more. A chatbot is a computer program designed to simulate conversation with human users through
text interactions. It uses artificial intelligence to understand and respond to user queries or commands in a
conversational manner.

Chat Commands

CHAT <prompt$> [TO <var$>]

Submit a one-off <prompt$> to ChatGPT. This instructs ChatGPT to answer without any instructions, use a
sampling temperature of 0.1, generate a maximum of 4000 tokens, and use the GPT-4 model for best results.

If the optional TO modifier is used, the results are assigned to the variable <var$>. Otherwise, the results are
printed to the Text Screen.

CHAT <prompt$>,<instructions$>,<temperature>,<tokens> [MODEL <model$>] [TO <var$>]

Submit <prompt$> to ChatGPT. <instructions$> are any instructions to give ChatGPT when formulating an
answer (for example, “Answer as a haiku.”). <temperature> is the sampling temperature to use. Higher values
mean the model will take more risks. Try 0.9 for more creative applications, and 0 for ones with a well-defined
answer. <tokens> is the maximum number of tokens to return and must be between 16 and 4000. If the optional
MODEL modifier is used, the default model is overridden by <model$>.

If the optional TO modifier is used, the results are assigned to the variable <var$>. Otherwise, the results are
printed to the Text Screen.

CHAT MODEL <model$>

Set the default model to use for chat and chatbots. <model$> must be one of the following:

 gpt35 (default) Set the model to use for chat and chatbots to GPT-3.5
 gpt4 Set the model to use for chat and chatbots to GPT-4

Chatbot Commands

CHATBOT NEW

 Start a new conversation with an interactive chatbot.

CHATBOT INSTRUCT <instructions$>

 Submit <instruction$> to the chatbot using the System role. Instructions help set the behavior of the chatbot.

CHATBOT INPUT <prompt$>

Submit <prompt$> to the chatbot using the User role. Input is used to request a response from the chatbot. It
can be provided by the end user or programmatically generated by the programmer.

CHATBOT EXAMPLE OUTPUT <output$>

Submit <prompt$> to the chatbot using the Assistant role. Example output is used to give examples of desired
behavior.

CHATBOT RESPONSE TO <var$>

Call the ChatGPT API to get a response and wait until the response is delivered. The response is assigned to
<var$>.

About Code Generation

Code generation uses artificial intelligence to automatically generate computer code. Code generation can be used to
automate repetitive or time-consuming coding tasks, such as generating boilerplate code, writing code snippets, or even
creating entire programs:

When generating code, a default set of rules is used to instruct the model how to write proper Liquid BASIC programs.
Although the model is instructed to follow these rules pertaining to Liquid BASIC, some editing or revisions may be
required for the generated code to run properly.

Upon startup, Liquid BASIC loads the default rule set:

 Write a modern structured BASIC program.
 Only present the completed program, no explanation is needed.
 Programs should have line numbers.
 Blocks of code should be indented. Use four spaces to indent blocks.
 All string variables, string arrays, and string functions should end with a dollar sign.
 Individual string variables do not need to be dimensioned.
 Arrays always use parentheses for indexes, never brackets.

 Do not use "POS" as a variable name.
 The "RND" function takes one argument: 1 to generate a random number, 0 to repeat the last generated

random number.
 Use the "DIV" keyword instead of the "\" operator for integer division.
 Use the "MOD" keyword instead of the "%" operator for modulus operations.
 Use the "ELSE IF" keywords instead of the "ELSEIF" keyword.
 Use the "END IF" keywords instead of the "ENDIF" keyword.
 Use the "WEND" keyword instead of the "ENDWHILE" keyword.
 Use the "PAUSE" keyword to pause for milliseconds.
 Use the "SLEEP" keyword to pause for seconds or until a key is pressed.
 Use "S$" as a variable name instead of "STR$" for string variables.
 Functions and subroutines should be in a "FUNCTION" block.
 A "FUNCTION" block returns a result by assigning a value to the name of the function.
 A function that returns a string should end with a dollar sign.

The CODE.RULES$ reserved variable returns the default rule set.

Code Generation Commands

CODE <prompt$>

Submit <prompt$> to ChatGPT to generate a BASIC program. This instructs ChatGPT to use the default rule set,
use a sampling temperature of 0, generate a maximum of 4000 tokens, and use the GPT-4 model for best
results.

This command can only be used in direct mode. It will raise an error if there is already a program currently in
memory. Use NEW to clear that program first.

CODE <prompt$>,<instructions$>,<tokens> [MODEL <model$>]

Submit <prompt$> to ChatGPT to generate a BASIC program. <instructions$> are any instructions to give
ChatGPT when generating the program. <tokens> is the maximum number of tokens to return. <tokens> must
be between 16 and 4000. If the optional MODEL modifier is used, the default model is overridden by <model$>.

This command can only be used in direct mode. It will raise an error if there is already a program currently in
memory. Use NEW to clear that program first.

CODE MODEL <model$>

Set the default model to use for code generation. <model$> must be one of the following:

 gpt35 (default) Set the model to use for code generation to GPT-3.5
 gpt4 Set the model to use for code generation to GPT-4

Resources

A resource is a block of memory used for a specific task. Each resource has a unique integer ID to identify it. Each
resource is allocated 64 instances by default, numbered 1 to 64. If more resources are needed, use the ALLOC command

to allocate more. There can be up to 4096 instances for each resource. Use the FREE reserved variables (e.g.
FREE.BITMAP) to return the next unused ID for a given resource.

Available resources and supported file formats they can be loaded from and saved to include:

RESOURCE LOAD FILE FORMATS SAVE FILE FORMATS
Bitmap BMP, GIF, ICO, IFF, JPG, LBM, PNG,

TGA, WEBP,
XML (Sprite sheets)

BMP, GIF (in Black & White), JPG,
PNG, TGA

Font OTF, TTF -
Tileset LTS, some TSX LTS

Tilemap LTM, some TMX LTM
Shader FS (Fragment Shader) -
Sound WAV, MP3, CDA, AAC, ADT, ADTS,

FLAC
-

Resources allow memory to be abstracted, allowing almost unlimited approaches to graphics and sound. Tiles can be
quickly updated, changing all the tiles within a Tilemap with the new tile data and providing “cheap” (performant)
animation. Tilemaps allow for full screen smooth scrolling. Bitmaps can be targeted and rendered off-screen, allowing
for procedurally generated artwork. The possibilities are endless.

Alloc Command

ALLOC BITMAP <n>

 Free all Bitmaps in use and allocate <n> instances of Bitmaps. <n> must be between 64 and 4096.

ALLOC FONT <n>

 Free all Fonts in use and allocate <n> instances of Fonts. <n> must be between 64 and 4096.

ALLOC TILESET <n>

 Free all Tilesets in use and allocate <n> instances of Tilesets. <n> must be between 64 and 4096.

ALLOC TILEMAP <n>

 Free all Tilemaps in use and allocate <n> instances of Tilemaps. <n> must be between 64 and 4096.

ALLOC SHADER <n>

Free all Shaders in use and allocate <n> instances of Shaders. <n> must be between 64 and 4096.

ALLOC SOUND <n>

 Free all Sounds in use and allocate <n> instances of Sounds. <n> must be between 64 and 4096.

Chaining Modifiers

Commands that use modifiers can have the modifiers “chained” together on a single line for convenience. For example:

 SPRITE n SHOW MOVE 320,200 SCALE 2,2

is the same as:

 SPRITE n SHOW
 SPRITE n MOVE 320,200
 SPRITE n SCALE 2,2

Bitmap Resources

Bitmaps are 2D rectangular grids of pixels. They can be any size from 1x1 pixel up to the graphics card limit (typically at
least 4096x4096 pixels on modern PCs). Each pixel is a color value and can be directly read from and written to. Anytime
a pixel is written to it is first clipped to the current clipping region (pixels outside of the clipping region are not written)
and the current pixel operator and pixel mask are applied (unless otherwise noted).

The pixel operator takes the “source” pixel (the pixel being written) and the “destination” pixel (the pixel presently in
the Bitmap) and applies an operator to it. The simplest (and default) operator is the write operator: the source pixel
simply overwrites the destination pixel. The blend operator is also useful: the source pixel is blended with the
destination pixel to allow transparency effects. Other operators are used to fade pixels in or out, or average two pixels
together.

The pixel mask is a 32-bit mask to apply to each pixel written. It defines which bits in a 32-bit color can pass through and
be written. By default, all 32-bits are enabled, so all bits are written. With pixel masks it is possible to restrict pixel writes
to the red, green, blue, or alpha bytes that comprise a color, or some combination of bits thereof.

Bitmap Modifiers

BITMAP <id> NEW <width>,<height>

Create a new Bitmap that is <width> pixels across and <height> pixels down and assign it to <id>. <width> and
<height> must be between 1 and 4096.

BITMAP <id> TEXTURE <command$>[,<arguments$>]

Create a new 256x256 Bitmap using the <command$> texture generator (see below) and assign it to Bitmap
<id>. The <command$> is automatically converted to lowercase letters and all leading and trailing spaces
removed. Optional <arguments$> can be passed in a comma-separated list. Use the EXPORT$ function to help
with building a comma-separated list from one or more expressions.

BITMAP <id> COPY BITMAP <bitmapId>

 Copy the Bitmap <bitmapId> and assign it to the unique identifier <id>.

BITMAP <id> LOAD <path$>

Load a Bitmap resource and assign it to the unique identifier <id>. <path$> is the valid path and filename of a file
in a supported Bitmap file format.

BITMAP <id> LOAD SHEET <path$> [STRIP <extension$>]

Load a Sprite Sheet and assign it to the unique identifier <id>. <path$> is the valid path and filename of a file in a
supported Sprite Sheet file format. Sprite Sheets must be in XML format and define the full Bitmap to load in, as
well as the names and coordinates for each subtexture in the Bitmap. The optional STRIP modifier will remove
<extension$> from the end of each name if it is present.

BITMAP <id> SAVE <path$>

Save the Bitmap <id> to disk in a supported Bitmap file format.

BITMAP <id> RESCALE <size>

Rescale the Bitmap assigned to <id> to the size <size> while preserving the aspect ratio. Cannot be used on
Sprite Sheets.

BITMAP <id> RESCALE <width>,<height>

Rescale the Bitmap assigned to <id> to the width <width> and <height> specified. Cannot be used on Sprite
Sheets.

BITMAP <id> FREE

 Free a Bitmap from memory.

Textures and Arguments

fill <color>

 Create a new 256x256 Bitmap and fill it with <color>.

blobs <seed>,<amount>,<rgbFlag>

 Create a new 256x256 Bitmap using Blobs. <rgb> is 1 for color, or 0 for greyscale.

cellmachine <seed>,<rule>

 Create a new 256x256 Bitmap using a Cell Machine.

checkerboard <dx>,<dy>,<color1>,<color2>

Create a new 256x256 Bitmap using a Checkerboard pattern. <dx>,<dy> is the size (in pixels) of each block in the
checkerboard. <color1> and <color2> are the colors to swap between.

mandelbrot <p1>,<p2>,<p3>,<p4>

Create a new 256x256 Bitmap using a Mandelbrot.

particle <size>

 Create a new 256x256 Bitmap using a Particle. <size> is the size (in pixels) of the particle.

perlinnoise <dist>,<seed>,<amplitude>,<octaves>,<persistence>,<rgb>

 Create a new 256x256 Bitmap using Perlin Noise. <rgb> is 1 for color, or 0 for greyscale.

sine <dx>,<dy>,<amplitude>

 Create a new 256x256 Bitmap using Sine.

subplasma <dist>,<seed>,<amplitude>,<rgb>

 Create a new 256x256 Bitmap using Sub Plasma.

Font Resources

Fonts are used when rendering text in a Bitmap. Liquid BASIC supports both TTF (TrueType Font) and OTF (OpenType
Font) formats.

Font Modifiers

FONT <id> LOAD <path$>,<size>

Load a Font from disk and assign it to the unique identifier <id>. <path$> is the valid path and filename of a file
in a supported Font file format. <size> is the point size of the Font. Point size refers to the height of the font. In
digital publishing, 1 point = 1/72 of an inch.

FONT <id> FREE

 Free a Font from memory.

Tileset Resources

Tiles are small (usually 8x8 pixels or 16x16 pixels) pieces of a larger Bitmap that are collected into a Tileset. A Tileset can
contain any number of tiles, limited only by the size of the Bitmap that it is built on. Individual tiles can be cleared,
customized, and scrolled.

Liquid BASIC has a default (Commodore 64-based) Tileset. This Tileset has 512 8x8 pixel tiles, with a combination of
uppercase, lowercase, and graphics characters (known as PETSCII):

For the default Tileset, tiles 256 to 351 are mapped to their respective ASCII characters:

Tileset Modifiers

TILESET <id> NEW <width>,<height>

Create a new, blank Tileset with 256 tiles. Each tile is <width> by <height> pixels large. No characters are
mapped.

TILESET <id> NEW <width>,<height>,<bitmapId>[,<spacing>]

Create a new Tileset using the Bitmap <bitmapId> for pixel data. Each tile is <width> by <height> pixels large.
The optional <spacing> specifies the spacing in pixels between tiles and is 0 by default. The number of tiles
created depends on how many tiles can fit in the size of the Bitmap. For example, a 512x256 Bitmap with 8x8
tiles and 0 spacing will have 2048 tiles:

@abcdefghijklmno

pqrstuvwxyz[]^

 !”#$%&’()*+,-./

0123456789:;<=>?

 ABCDEFGHIJKLMNO

PQRSTUVWXYZ

 512/8 = 16, 256/8 = 8  16x8 = 2048 tiles

No characters are mapped.

TILESET <id> COPY TILESET <tilesetId>

 Copy the Tileset <tileSetId> and assign it to the unique identifier <id>.

TILESET <id> LOAD <path$>

Load a Tileset resource and assign it to the unique identifier <id>. <path$> is the valid path and filename of a file
in a supported Tileset file format. Liquid BASIC does support limited loading of .TSX files, an XML file format used
by the popular Tiled app. When using .TSX files the image data should be stored as a file and not embedded. Any
embedded data should be embedded as CSV and not Base64 data.

TILESET <id> SAVE <path$>

Save the Tileset <id> to disk in a supported Tileset file format.

TILESET <id> MAP <ch>[,count] TO <tile>

Map the ASCII character <ch> (and the number of <count> characters after) to <tile>. Whenever a string is put
on-screen (using the PUT TILES command) or printed (using the TPRINT command) the ASCII characters in the
string are looked up and mapped to their corresponding tiles. For example, ASCII character 65 “A” does not
necessarily need to map to tile 65; it can map to any tile in the Tileset.

TILESET <id> MAP <text$> TO <tile>

 Map the ASCII characters in <text$> to the tiles starting at <tile>.

TILESET <id> MAP ALL

 Map all available ASCII characters starting at tile 0.

TILESET <id> FREE

 Free a Tileset from memory.

Tilemap Resources

A Tilemap is a 2D rectangular grid of “cells”. They can be any size from 1x1 cell up to 256x256 cells. Individual cells
contain a tile, an independent foreground (ink) color, and an independent background (highlight) color. Each cell also
has a set of tile attributes: mirror, flip, and rotate. These attributes can be turned on and off and used in any
combination. Tiles can be directly read from and written to memory.

Because Tilemaps use indexes to tiles, which in turn represent patterns of pixels in a larger Bitmap, entire sections of the
screen can be quickly filled, manipulated, and scrolled by simply changing the indexes. Individual tiles can also be
customized, and changes to a tile are reflected anywhere that tile is used in a Tilemap. This allows large portions of the
screen to be animated or modified while changing a minimal amount of data. The smaller datasets that Tilemaps work
with generally perform faster than the same operations in Bitmaps. However, Bitmaps allow more flexibility in that
every single pixel can be independently manipulated.

Tilemap Modifiers

TILEMAP <id> NEW <columns>,<rows>

Create a new Tilemap using the default Commodore 64-based PETSCII tileset (featuring 512 8x8 tiles).
<columns> is the number of cells horizontally, <rows> is the number of cells vertically. Both must be between 1
and 256.

TILEMAP <id> NEW <columns>,<rows>,<tilesetId>

Create a new TileMap using the Tileset <tilesetId>. <columns> is the number of cells horizontally, <rows> is the
number of cells vertically. Both must be between 1 and 256.

TILEMAP <id> SET TILESET <tilesetId>

 Change the Tilemap’s Tileset to the Tileset <tilesetId>.

TILEMAP <id> COPY TILEMAP <tilemapId>

 Copy the Tilemap <tilemapId> and assign it to the unique identifier <id>.

TILEMAP <id> LOAD <path$>[,<layer>]

Load a Tilemap resource and assign it to the unique identifier <id>. <path$> is the valid path and filename of a
file in a supported Tilemap file format. Liquid BASIC does support limited loading of .TMX files, an XML file
format used by the popular Tiled app. When using .TMX files the image data should be stored as a file and not
embedded. Any embedded data should be embedded as CSV and not Base64 data. The optional <layer>

specifies which “layer” of the Tilemap to load and is only used with .TMX files (a .TMX file can include more than
one layer).

TILEMAP <id> SAVE <path$>

Save the Tilemap <id> to disk in a supported Tilemap file format.

TILEMAP <id> FREE

 Free a Tilemap from memory.

Shader Resources

A fragment shader is a program that is executed on the GPU (Graphics Processing Unit) for each fragment (or pixel) of a
Sprite. It is responsible for determining the final color of each fragment based on various factors such as lighting,
textures, and other effects. Fragment shaders are written in the OpenGL Shading Language (GLSL) and are used to
customize the appearance of Sprites.

Shader Modifiers

SHADER <id> LOAD <path$>

Load a Fragment Shader from disk and assign it to the unique identifier <id>. <path$> is the valid path and
filename of a file in a supported Shader file format.

SHADER <id> FREE

 Free a Shader from memory.

Sound Resources

Sound Modifiers

SOUND <id> LOAD <path$>

Load a Sound resource and assign it to the unique identifier <id>. <path$> is the valid path and filename of a file
in a supported Sound file format.

SOUND <id> PLAY

 Play a Sound starting at the beginning.

SOUND <id> PAUSE

 Pause a Sound that is playing.

SOUND <id> RESUME

 Resume a Sound that was paused.

SOUND <id> STOP

 Stop a Sound that is playing.

SOUND <id> VOLUME <volume>

 Set the volume of the Sound. Valid <volume> ranges are between 0 (mute) and 100.

SOUND <id> FREE

 Free a Sound from memory.

Graphics

Graphics in Liquid BASIC are comprised of a single Screen that can be Bitmap-based or Tilemap-based, and up to 1000
independent Sprites.

Sprites are 2D moveable objects. They can be Bitmap-based or Tilemap-based and can be any size. Sprites have a
definable priority to determine the order they are rendered and can be placed above or under the Screen. They can be
shown, hidden, moved (translated), scaled, rotated, and tinted. They can also be “fit” to the window (center, stretch, fit,
fill, or tile), and they can be mirrored horizontally or flipped vertically. Sprites also have simple collision detection to
determine when two or more Sprites hit each other.

With the Screen and Sprites, it is possible to create impressive demos, games, visualizations, and other graphical effects.
Sprites can fill the entire Liquid BASIC window. Multiple Sprites can be stacked for parallax scrolling, transparency, and
other special effects. Sprites can also be used for individual characters, NPC’s (Non-Playable Characters), and other
moving objects.

Targeting

Both Bitmaps and Tilemaps can be “targeted”. Because the Screen can be a Bitmap or Tilemap itself, it can be targeted
as well. When a Bitmap is targeted, all subsequent Bitmap commands are directed at the Bitmap. When a Tilemap is
targeted, all subsequent Tilemap commands are directed at the Tilemap and all subsequent Tileset commands are
directed at the Tilemap’s Tileset. Targeting allows Bitmaps and Tilemaps to be rendered off-screen. Only one resource
can be targeted at a time. A resource must be targeted before it can be read from/written to.

Clear Command

CLEAR ALL

Perform the following actions:

 Set the background color to black
 Reset the ink and highlight colors
 Reset the attributes (blink, bold, and underline)
 Reset the pixel operator, pixel mask, and line stipple
 Reset the tile palette (used with CUSTOM TILE)

 Reset all resources
 Reset the speech synthesizer
 Clear the Screen, Sprites, and Text Screen

It is good practice to start your program with this command to ensure a clean slate at startup.

Screen Commands

SCREEN <mode>

 Change the Screen to a predefined <mode>:

0 No Screen (same as calling SCREEN FREE)
1 40x25 Tilemap
2 80x50 Tilemap
3 160x100 Tilemap
4 320x200 Bitmap
5 640x400 Bitmap
6 1280x800 Bitmap

The Screen is stretched to fill the entire window.

SCREEN also redirects the “target” of Bitmap or Tilemap commands so all subsequent commands will render to
the Screen, depending on whether the mode is a Bitmap or Tilemap.

SCREEN BITMAP <width>,<height> [CENTER|STRETCH|FILL|FIT|TILE|XYSIZE <xs>,<ys>]

Create a custom-sized Bitmap screen that is <width> pixels across and <height> pxels down. <width> and
<height> must be between 1 and 4096. The optional modifiers at the determine how the Bitmap should be
displayed:

 CENTER Center the screen
 STRETCH Stretch the screen to fill the window while ignoring the aspect ratio (default)
 FILL Scale the screen to fill the window while preserving the aspect ratio
 FIT Scale the screen to fit within the window while preserving the aspect ratio
 TILE Tile the screen to fill the entire window
 XYSIZE xs,ys Scale the screen by <xs> across and <ys> down

SCREEN BITMAP also redirects the “target” of Bitmap commands, so all subsequent Bitmap commands are
directed to the Bitmap.

SCREEN TILEMAP <columns>,<rows>[,<tilesetId>] [CENTER|STRETCH|FILL|FIT|TILE|XYSIZE <xs>,<ys>]

Create a custom-sized Tilemap screen. <columns> is the number of cells horizontally, <rows> is the number of
cells vertically. Both must be between 1 and 256. The default Commodore 64-based PETSCII tileset is used unless
the optional <tilesetId> is specified. The optional modifiers at the end determine how the Tilemap should be
displayed.

SCREEN TILEMAP also redirects the “target” of Tilemap commands, so all subsequent Tilemap and all
subsequent Tileset commands are directed to the Tilemap and Tileset.

SCREEN LOAD <path$> [CENTER|STRETCH|FILL|FIT|TILE|XYSIZE <xs>,<ys>]

Load a Tilemap or Bitmap and create a custom-sized screen for it. <path$> is the valid path and filename of a file
in a supported Tilemap or Bitmap file format. The optional modifiers at the end determine how the Tilemap or
Bitmap should be displayed.

SCREEN SAVE <path$>

 Save the current screen to disk in a supported Tilemap or Bitmap file format.

SCREEN FREE

 Free the Screen from memory.

Target Commands

TARGET SCREEN

Redirects the target of Bitmap or Tilemap commands so all subsequent commands will render to the Screen,
depending on whether the Screen is a Bitmap or Tilemap.

TARGET BITMAP <n>

Target the Bitmap <id>. All subsequent Bitmap commands are directed at the Bitmap.

TARGET TILEMAP <n>

Target the Tilemap <id>. All subsequent Tilemap commands are directed at the Tilemap and all subsequent
Tileset commands are directed at the Tilemap’s Tileset.

Buffering Commands

SINGLE BUFFER

Make the targeted Tilemap or Bitmap single buffered. Subsequent commands draw to the front buffer, so
changes are immediately visible.

DOUBLE BUFFER

Make the targeted Tilemap or Bitmap double buffered. Subsequent commands draw to the back buffer in
memory, so changes are not visible. When the buffers are swapped with the SWAP BUFFERS command the back
buffer becomes visible (front buffer) and the front buffer then becomes the back buffer. This is useful during
animation to prevent “screen tearing” and flickering, when the Tilemap or Bitmap is shown before updating has
completed.

SWAP BUFFERS [CLS]

Swap the back and front buffer in a double buffered Tilemap or Bitmap. If the optional CLS modifier is used the
back buffer is cleared after the swap.

Bitmap Commands

CLEAR BITMAP

 Clear the current targeted Bitmap.

CLIP <x1>,<y1>,<x2>,<y2>

 Set the clipping region. Pixels outside of the region are not written.

PIXEL OPERATOR <op>

Set the current pixel operator. The pixel operator is applied anytime a pixel is written to a Bitmap. <op> must be
between 1 and 16. Several constants are included to simplify pixel operators:

 CONSTANT ACTION

1 PXO_WRITE (default) overwrite the destination (d) pixel with the source (s) pixel
2 PXO_BLEND blend source and destination pixels using the alpha channel
3 PXO_MIN d = min(s, d)
4 PXO_MAX d = max(s, d)
5 PXO_AND d = s & d
6 PXO_OR d = s | d
7 PXO_XOR d = s ^ d
8 PXO_ADD d = s + d
9 PXO_SUB d = s - d
10 PXO_AVG d = (s + d) >> 1
11 PXO_MULT d = (s * d) / 255
12 PXO_ZERO only write if destination pixel has no RGB data
13 PXO_REPLACE only write if destination pixel has RGB data
14 PXO_ALPHATEST only write if source pixel has alpha data
15 PXO_MASK d = ink if source pixel has alpha data
16 PXO_COLLISION d = ink if source pixel has alpha data, record “collisions”

Pixel operators act on a pixel’s individual bytes, not the entire 32-bit pixel. For example, the add pixel operator
will add the red byte, the green byte, the blue byte, and the alpha byte independently. Each will be clamped to
255 so it doesn’t exceed what can be stored in a single byte. Conversely, the subtract pixel operator will clamp
each byte to 0 when subtracting.

When a pixel is written with the PXO_COLLISION pixel operator the destination pixel being replaced is saved in a
“collision list”. This collision list can then be queried using the PIXEL.COLLISION function to see if a particular
pixel was overwritten. This is useful for pixel perfect collision between software sprites, such as Bitmaps and
BOB’s. Create a hidden Bitmap the same size as the current targeted Bitmap, assign a solid color to each object
you want to test for collisions, and render each object using PXO_COLLISION on the hidden Bitmap and use the
PIXEL.COLLISION function to see if any colors overlap. The collision list is cleared whenever the Bitmap is
cleared.

PIXEL MASK <mask>

Set the current pixel mask. The pixel mask is applied anytime a pixel is written to a Bitmap. The pixel mask is
referenced in ABGR format, where A is the alpha byte, B is the blue byte, G is the green byte, and R is the red
byte. Each byte is 8 bits and can hold a value between 0 and 255.

Some useful <mask> values:

 $FFFFFFFF write the entire pixel (default)
 $FF0000FF only write the red-alpha bytes
 $FF00FF00 only write the green-alpha bytes

 $FFFF0000 only write the blue-alpha bytes
 $00FFFFFF write the red-green-blue bytes (but not the alpha byte)

LINE STIPPLE <stipple>

Define the 32-bit line stipple pattern (each bit represents which pixels to draw when drawing lines). This is useful
for drawing dotted and dashed lines.

Some useful <stipple> values:

 $FFFFFFFF solid line (default)
 $55555555 dotted line (small dots)
 $33333333 dotted line (big dots)
 $0F0F0F0F dashed line

SET FONT <id>

 Set the font to use when printing text with the TEXT command to Font <id>.

SET TILESET <id>

 Set the tileset to use when blitting tiles with the BLIT TILE and BLIT TILES commands to tileset <id>.

POKE <index>,<color>

Poke (write directly to memory) the pixel <color> at <index>. Clipping, the pixel operator, and the pixel mask are
ignored when poking a pixel. Use the PEEK function to read the pixel back.

SWAP PIXELS <oldColor>,<newColor> [WINDOW <x1>,<y1>,<x2>,<y2>]

Swap <oldColor> with <newColor>. Use the optional WINDOW modifier to swap a section of the Bitmap and not
the entire Bitmap. Clipping, the pixel operator, and the pixel mask are ignored when swapping pixels.

PLOT <x>,<y>[,<x>,<y>…]

Plot a pixel at <x>,<y> using the current ink color. Multiple pixels can be plotted. Use the POINT and SAMPLE
functions to read the pixel back.

HLINE <x1>,<x2>,<y>

 Draw a horizontal line from <x1>,<y> to <x2>,<y>.

VLINE <x>,<y1>,<y2>

 Draw a vertical line from <x>,<y1> to <x>,<y2>.

LINE <x1>,<y1>,<x2>,<y2> [TO <x3>,<y3>…]

 Draw a line from <x1>,<y1> to <x2>,<y2>. Multiple lines can be drawn with the TO modifier.

SMOOTH LINE <x1>,<y1>,<x2>,<y2> [TO <x3>,<y3>…]

 Draw a smooth, anti-aliased line from <x1>,<y1> to <x2>,<y2>. Multiple lines can be drawn with the TO modifier.

BRUSH <brushId>

A brush is a Bitmap that is used when filling graphics primitives. Several Bitmap commands – like FILL, STRIP,
RECT, AREA, CIRCLE, ELLIPSE, SLICE, and FLOOD FILL – allow the shape to be filled with a solid color or a
repeating pattern.

The default brush is brush 1 (solid color). There are 32 reserved brushes. They provide a variety of different
32x32 bit patterns to use:

BRUSH BITMAP <id>

 Select Bitmap <id> to use as a brush when filling graphics primitives.

FILL [<color>]

Fill the entire Bitmap with the specified <color> using the active brush. If <color> is omitted the current ink is
used.

STRIP [FILL] <x1>,<y1>,<x2>,<y2>,<x3>,<y3>

Draw a triangle from <x1>,<y1> to <x2>,<y2> to <x3>,<y3>. Use FILL to fill the triangle using the active brush.

RECT [FILL] <x1>,<y1>,<x2>,<y2>

Draw a rectangle from <x1>,<y1> to <x2>,<y2>. Use FILL to fill the rectangle using the active brush.

AREA [STEP] <x>,<y>

Specify a single vertex in a convex polygon. A convex polygon is a polygon in which all its interior angles are less
than 180 degrees, and all its vertices point outwards. In other words, no line segment connecting two points on
the interior of the polygon will intersect with the exterior of the polygon. Up to twenty vertices can be
submitted for a single polygon.

If STEP is included, <x> and <y> are offsets from the last vertex specified. Otherwise, <x> and <y> are absolute
coordinates.

Once the vertices have been submitted, use the AREA FILL command to draw the polygon.

AREA CLR

 Discard the vertices submitted by the AREA command.

AREA FILL

Fill in a convex polygon using the vertices submitted by the AREA command, using the active brush. The vertices
are then discarded.

CIRCLE [FILL] <x>,<y>,<radius>

Draw a circle at <x>,<y> with the radius <radius>. Use FILL to fill the circle using the active brush.

ELLIPSE [FILL] <x>,<y>,<xRadius>,<yRadius>

Draw an ellipse at <x>,<y> with the radius <xRadius> and <yRadius>. Use FILL to fill the ellipse using the active
brush.

ARC <x>,<y>,<xRadius>,<yRadius>,<startAngle>,<endAngle>[,<interval>]

Draw an arc at <x>,<y> with the radius <xRadius> and <yRadius>, starting at <startAngle> and ending at
<endAngle>. Angles are specified as degrees (0 to 360). The <interval> specifies the plotting increment (in
degrees) between each point on the arc. The higher the value the less calculations need to be performed, but at

the expense of reduced accuracy. A default value of 1 (calculate every degree between <startAngle> and
<endAngle>) is used if <interval> is omitted.

RADIAL LINE <x>,<y>,<xRadius>,<yRadius>,<angle>

Draw a radial line starting at <x>,<y> to the point on an ellipse with the radius <xRadius> and <yRadius> at
<angle>. Angles are specified in degrees (0 to 360).

SLICE [FILL] <x>,<y>,<xRadius>,<yRadius>,<startAngle>,<endAngle>

Draw a slice of an ellipse at <x>,<y> with the radius <xRadius> and <yRadius>, starting at <startAngle> and
ending at <endAngle>. Angles are specified in degrees (0 to 360). Use FILL to fill the slice using the active brush.

BEZIER CURVE <x1>,<y1>,<x2>,<y2>,<x3>,<y3>,<x4>,<y4>

 Draw a Bezier curve within (x1,y1) and (x2,y2) and (x3,y3) and (x4, y4).

FLOOD FILL <x>,<y>

 Flood fill the enclosed area at <x>,<y> using the active brush.

TEXT <x>,<y>,<value> [ALIGN <alignX>,<alignY>]

Print the text <value> at <x>,<y> using the current Font. The optional ALIGN modifier is used to align the text
around <x>,<y>:

 <alignX>: -1 (left) 0 (center) 1 (right)
 <alignY>: -1 (top) 0 (center) 1 (bottom)

The default alignment is to the upper left corner of the text (-1, -1).

PASTE <x>,<y>,<data$> [ALIGN <alignX>,<alignY>]

Paste the copied <data$> (see the COPY$ function) to <x>,<y>. The optional ALIGN modifier is used to align the
pasted data around <x>,<y>.

BLIT BITMAP <id> TO <x>,<y> [ALIGN <alignX>,<alignY>]

Blit (copy) the Bitmap <id> to <x>,<y>. The optional ALIGN modifier is used to align the Bitmap around <x>,<y>.

BLIT BITMAP <id>,<x1>,<y1>,<x2>,<y2> TO <x>,<y> [ALIGN <alignX>,<alignY>]

Blit the rectangular Bitmap data from <x1>,<y1> to <x2>,<y2> in Bitmap <id> to <x>, <y>. The optional ALIGN
modifier is used to align the Bitmap around <x>,<y>.

BLIT BITMAP <id>,<name$> TO <x>,<y> [ALIGN <alignX>,<alignY>]

Blit a Bitmap’s subtexture named <name$> in the Sprite Sheet Bitmap <id> to <x>,<y>. The optional ALIGN
modifier is used to align the Bitmap around <x>,<y>.

BLIT TILE <tile> TO <x>,<y> [ALIGN <alignX>,<alignY>]

 Blit the tile <tile> to <x>,<y>. The optional ALIGN modifier is used to align the tile around <x>,<y>.

BLIT TILES <text$> TO <x>,<y> [ALIGN <alignX>,<alignY>]

Blit the tiles mapped to the ASCII characters in <text$> to <x>,<y>. The optional ALIGN modifier is used to align
the tile around <x>,<y>.

BLIT TILEMAP <id> TO <x>,<y> [ALIGN <alignX>,<alignY>]

 Blit the Tilemap <id> to <x>, <y>. The optional ALIGN modifier is used to align the tile around <x>,<y>.

SHIFT BITMAP UP|DOWN|LEFT|RIGHT [<count>]

Smooth scroll the Bitmap at the pixel level in the specified direction <count> pixels, or one pixel if <count> is
omitted. Subtextures cannot be shifted. Use the BITMAP.SCX and BITMAP.SCY functions to read the shift X and
shift Y registers back.

SHIFT BITMAP <dx>,<dy>

Smooth scroll the Bitmap at the pixel level to the specified offset <dx>,<dy>. Subtextures cannot be shifted.

ROLL BITMAP UP|DOWN|LEFT|RIGHT [<count>] [WINDOW <x1>,<y1>,<x2>,<y2>]

Roll the Bitmap in the direction specified by <count> pixels, or one pixel if <count> is omitted. When rolling, the
pixels that leave one side of the Bitmap appear on the other side. Use the optional WINDOW modifier to roll a
section of the Bitmap and not the entire Bitmap.

SCROLL BITMAP UP|DOWN|LEFT|RIGHT [<count>] [WINDOW <x1>,<y1>,<x2>,<y2>]

Scroll the screen in the direction specified by <count> pixels, or one pixel if <count> is omitted. When scrolling,
the pixels that leave one side of the Bitmap disappear and blank space appears on the other side. Use the
optional WINDOW modifier to scroll a section of the Bitmap and not the entire Bitmap.

SMOOTH BITMAP <state>

Enable linear filtering if <state> is non-zero, otherwise disable linear filtering. Linear filtering is a method to
interpolate texels (texture elements) when rendering Bitmaps. It helps smooth out the appearance of a Bitmap,
especially when displayed at a different size or angle than its original resolution.

Tile Commands

CLEAR PALETTE

 Clear the color palette used when defining custom characters.

PALETTE <ch>,<color>

Assign a color to a character. This character then acts as a substitute for the color value when defining custom
characters using the CUSTOM TILE command. <ch> is the ASCII code of the character (if a Real value) or a one-
character string (if a String value) to assign <color> to.

CLEAR TILE <tile>[,<color>]

Clear the tile <tile> to <color>. If <color> is omitted, the tile is cleared to 0 (transparent).

COPY TILE <tile>,<source>

Copy the tile <source> to the tile <tile>.

CUSTOM TILE <tile>,<scanline>,<data$>

Set the <scanline> in tile <tile> to <data$>. <data$> should be the same length as the width of the tile, and use
characters defined in PALETTE to substitute color pixels.

ROLL TILE <tile> UP|DOWN|LEFT|RIGHT [<count>]

Roll the tile <tile> in the direction specified by <count> pixels, or one pixel if <count> is omitted. When rolling,
the pixels that leave one side of the tile appear on the other side.

SCROLL TILE <tile> UP|DOWN|LEFT|RIGHT [<count>]

Scroll the tile <tile> in the direction specified by <count> pixels, or one pixel if <count> is omitted. When
scrolling, the pixels that leave one side of the tile disappear and blank space appears on the other side.

Tilemap Commands

CLEAR TILEMAP

 Clear the current targeted Tilemap.

SWAP TILES <oldTile>,<newTile> [WINDOW <x1>,<y1>,<x2>,<y2>]

Swap <oldTile> with <newTile>. Use the optional WINDOW modifier to swap a section of the Tilemap and not
the entire Tilemap.

PUT TILE <x>,<y>,<tile>

Draw the tile <tile> at <x>,<y> using the current ink and highlight color and attributes.

PUT TILES <x>,<y>,<text$>

Map the ASCII characters in <text$> to their corresponding tiles and draw at <x>,<y> using the current ink and
highlight color and attributes.

PUT HLINE <x1>,<x2>,<y>,<tile>

Draw a horizontal line from <x1>,<y> to <x2>,<y> with <tile> using the current ink and highlight color and
attributes.

PUT VLINE <x>,<y1>,<y2>,<tile>

Draw a vertical line from <x>,<y1> to <x>,<y2> with <tile> using the current ink and highlight color and
attributes.

PUT RECT [FILL] <x1>,<y1>,<x2>,<y2>,<tile>

Draw a rectangle from <x1>,<y1> to <x2>,<y2> with <tile> using the current ink and highlight color and
attributes. Use FILL to fill the rectangle.

SHIFT TILEMAP UP|DOWN|LEFT|RIGHT <count>

Smooth scroll the Tilemap at the pixel level in the specified direction <count> pixels. Use the TILEMAP.SCX and
TILEMAP.SCY functions to read the shift X and shift Y registers back.

SHIFT TILEMAP <dx>,<dy>

Smooth scroll the Tilemap at the pixel level to the specified offset <dx>,<dy>.

ROLL TILEMAP UP|DOWN|LEFT|RIGHT [<count>] [WINDOW <x1>,<y1>,<x2>,<y2>]

Roll the Tilemap in the direction specified by <count> tiles, or one tile if <count> is omitted. When rolling, the
tiles that leave one side of the Tilemap appear on the other side. Use the optional WINDOW modifier to roll a
section of the Tilemap and not the entire Tilemap.

SCROLL TILEMAP UP|DOWN|LEFT|RIGHT [<count>] [WINDOW <x1>,<y1>,<x2>,<y2>]

Scroll the Tilemap in the direction specified by <count> tiles, or one tile if <count> is omitted. When scrolling,
the tiles that leave one side of the Tilemap disappear and blank space appears on the other side. Use the
optional WINDOW modifier to scroll a section of the Tilemap and not the entire Tilemap.

More Tilemap Commands

TBACKGROUND <color>

Set the background color of the targeted Tilemap, where <color> is a 32-bit unsigned integer.

TMIRROR <state>

 Mirror tiles horizontally (<state> 1) or not (<state> 0) when writing new tiles to memory.

TFLIP <state>

 Flip tiles vertically (<state> 1) or not (<state> 0) when writing new tiles to memory.

TROTATE <state>

Rotate tiles (<state> 1) or not (<state> 0) when writing new tiles to memory. Rotating a tile swaps the X/Y axis,
flipping the bottom left and top right corners of the tile. Only square tiles can be rotated. This attribute is
ignored if the tiles are not square.

TCLS [<tile>]

 Clear the targeted Tilemap.

TLOCATE [<y>][,<x>]

 Move the Tilemap’s cursor to the <x>, <y> position. Both <x> and <y> start at 1 and are optional.

TINPUT [“prompt$”[,<default$>];]<var$>

Input a line and assign it to <var$>. <var$> must be a String variable. No parsing is done on the input; the entire
line is assigned to <var$>. <prompt$> is the optional prompt to print before input. <default$> is the optional
default input for the input field. TINPUT is like LINE INPUT.

TPRINT <value>[;|,]…

Print <value> followed by a carriage return (if the optional semicolon ‘;’ is omitted) or a tab (if the optional ‘,’ is
used). Printing a tab advances the cursor to the next tab zone (tab zones are eight characters wide). <value> can
be a Real or a String. The tiles mapped to the ASCII characters in the Real or String are printed. If <value> is a
Real it is printed as is, with no leading or trailing spaces. Multiple values can be printed.

TPRINT SPC(<x>)

 Print <x> number of spaces before printing.

TPRINT TAB(<x>)

Move the cursor forward to <column> on the Tilemap, starting with the leftmost position of the current line.
Columns start at 0. If column is greater than the Tilemap’s width, TAB advances to the next line and the print
position becomes (<column> MOD width). If the current print position is already beyond position <column>, the
cursor is not moved.

TPOKE <index>,[<tile>][,<ink>][,<highlight>][,attributes]

Poke (write directly to memory) the tile <tile>, the foreground color <ink>, the background color <highlight>,
and the attributes <attributes>. The <tile>, <ink>, <highlight>, and <attributes> parameters are all optional. Use
the TPEEK function to read the data back.

TPASTE <x>,<y>,<data$> [MASK] [ALIGN <alignX>,<alignY>]

Paste the copied <data$> (see the TCOPY$ function) to <x>,<y>. If the optional MASK modifier is used, cells that
have an ink color of 0 (transparent) will be ignored when pasting. If omitted, all cells will be pasted regardless of
their ink color. The optional ALIGN modifier is used to align the Tilemap around <x>,<y>.

The Cel Engine

The Cel engine uses 3x3 matrices and matrix multiplication to apply affine transformations (such as translating, scaling,
rotating, and shearing) to a Bitmap before rendering. This is useful to create “software sprites”, pseudo 3D graphics, and
other bitmapped effects. The Cel engine is software-based but optimized and is much faster than running equivalent
routines written in Liquid BASIC. It is not as fast however as hardware-based solutions, like Sprites.

The current ink color, clipping region, pixel operator, and pixel mask are all applied when the Cel engine writes pixels.

Cel Commands

CEL RESET

 Reset the Cel engine’s 3x3 matrices and clear its cache.

CEL TRANSLATE <x>,<y>

 Translate (move) the current matrix <x>,<y> units.

CEL SCALE <sx>,<sy>

 Scale the current matrix by <sx>,<sy> units.

CEL ROTATE <degrees>

 Rotate the current matrix by <degrees> degrees.

CEL SHEAR <sx>,<sy>

 Shear the current matrix by <sx>,<sy>.

CEL BLIT BITMAP <id>[,<x>,<y>]

Blit the Bitmap <id> using the current matrix for affine transformations. The Bitmap can be offset using the
optional <x> and <y> values.

View Frustum Commands

VIEW FRUSTUM BITMAP <id>,<worldX>,<worldY>,<worldA>,<near>,<far>,<fovHalf> [WINDOW <x1>,<y1>,<x2>,<y2>]

Project a view frustum onto Bitmap <id> and render to the current targeted Bitmap. This is useful for SNES
Mode 7-style effects. <worldX>, <worldY>, and <worldA> are the coordinates of the camera. <near> is how near
the camera the frustrum should start, and <far> is how far from the camera the frustrum should end. <fovHalf>
is the field of view, divided in half (PI ‘π’ divided by 4 is a good value to use). Use the optional WINDOW modifier
to render to a section of the Bitmap and not the entire Bitmap.

A view frustum is a 3D geometric shape that represents the visible area of a scene that is rendered. It is defined
by a near plane, a far plane, and four side planes that form a pyramid-like shape. The view frustum helps
determine which objects in a scene are visible to the viewer and should be rendered.

Filters

Filters are applied to the entire Bitmap and are used to create special effects and otherwise manipulate the Bitmap.
Filters are software-based but optimized and are much faster than running equivalent routines written in Liquid BASIC.

Filter Commands

FILTER BITMAP <command$>[,<arguments$>]

Run the <command$> filter. The <command$> is automatically converted to lowercase letters and all leading
and trailing spaces removed. Optional <arguments$> can be passed in a comma-separated list. Use the EXPORT$
function to help with building a comma-separated list from one or more expressions.

Original Image

Filters and Arguments

adjusthsv <h>,<s>,<v>

 Adjust the Bitmap’s hue <h>, saturation <s>, and brightness <v>.

adjustrgb <r>,<g>,

Adjust the Bitmap’s red <r>, green <g>, and blue .

blur

 Blur the Bitmap (un-sharpen).

dilate

 Dilate the Bitmap (bright areas grow bigger).

edgehorizontal

 Find the edges of the Bitmap horizontally.

edgevertical

 Find the edges of the Bitmap vertically.

emboss

 Emboss the Bitmap (faked 3D look).

equalizefull

 Equalize the Bitmap (adjust histogram fully).

equalizestretch

 Equalize the Bitmap (adjust histogram to expose more details in the image).

erode

 Erode the Bitmap (dark areas grow bigger).

grayscale

 Gray scale the Bitmap.

invert

 Invert the Bitmap.

kaleidoscope <corner>

 Kaleidoscope the Bitmap (mirror and resize the bitmap 2x2).

logpolar

 Perform a log polar effect on the Bitmap (transform the picture like the human brain does).

maketileable <strength>

 Make the Bitmap tileable (prepare borders to make tile distort look better).

mediancut

 Median cut the Bitmap (similar to blur).

motionblur <strength>

 Motion blur the Bitmap.

move <dx>,<dy>

Move distort the Bitmap to <dx>,<dy>.

noise <seed>,<radius>

 Add noise to the Bitmap (noisy and natural look).

pixels <color>,<count>

 Plot a number of random pixels in the Bitmap.

scalehsv <h>,<s>,<v>

 Scale the Bitmap’s hue <h>, saturation <s>, and brightness <v>.

scalergb <r>,<g>,

 Scale the Bitmap’s red <r>, green <g>, and blue .

sculpture

 Sculpture the Bitmap (similar to a 3D chrome effect).

sepia

 Sepia the Bitmap (old-timey 1800’s effect).

sharpen

 Sharpen the Bitmap (expose more details in the image).

sine <dx>,<depthx>,<dy>,<depthy>

 Sine distort the Bitmap.

sinergb <r>,<g>,

 Sine the Bitmap’s red <r>, green <g>, and blue colors.

tile

 Tile the Bitmap (copy and resize the bitmap 2x2).

tunnel <zoom>

 Tunnel the Bitmap.

twirl <rot>,<scale>

 Twirl the Bitmap.

wood

 Create woody/psychedelic colors in the Bitmap.

Image Generation

Liquid BASIC uses DALL-E to handle image generation. Using the Image Generator, complex and fascinating images can
be generated from a single sentence, such as “Van Gogh picture of a cat driving a taxi in New York City”:

Image Generation Commands

DRAW <prompt$>

Submit <prompt$> to DALL-E to generate an image and fit it to the screen. The image is generated using the
DALL-E 3 model and in the “wide” format (1792x1024 pixels) for best results.

DRAW BITMAP <id>,<prompt$>,<size> [MODEL <model$>]

Submit <prompt$> to DALL-E to generate an image that is saved to Bitmap <id>. <size> is the size of the image
and must be one of the constant values below:

 CONSTANT SIZE

1 IG2_SMALL (default) DALL-E 2: 256x256 pixels
2 IG2_MEDIUM DALL-E 2: 512x512 pixels
3 IG2_LARGE DALL-E 2: 1024x1024 pixels
4 IG3_SQUARE DALL-E 3: 1024x1024 pixels
5 IG3_WIDE DALL-E 3: 1792x1024 pixels
6 IG3_TALL DALL-E 3: 1024x1792 pixels

The IG2 constants should be used with the DALL-E 2 model, and the IG3 constants should be used with the DALL-
E 3 model.

If the optional MODEL modifier is used, the default model is overridden by <model$>.

DRAW BITMAP MODEL <model$>

Set the default model to use for image generation. <model$> must be one of the following:

 dalle2 (default) Set the model to use for image generation to DALL-E 2
 dalle3 Set the model to use for image generation to DALL-E 3

Speech Synthesis

Speech Synthesis Commands

VOICE SELECT <voice$>

Select the voice <voice$> to use when speaking. Use the VOICES$ reserved variable to get a list of available
voices.

VOICE SAY [ASYNC] <speech$>

Say (speak) the text in <speech$> using the current selected voice. Use the optional ASYNC modifier to continue
program execution while the computer is talking.

VOICE VOLUME <volume>

 Set the volume of the Voice. Valid <volume> ranges are between 0 (mute) and 100.

Sprites

There are 1000 independent Sprites, numbered from 1 to 1000. Sprites are rendered from either a Tilemap or Bitmap
resource. Each Sprite can be moved, scaled, rotated, and tinted.

In Direct Mode, holding down the CTRL key and clicking on a Sprite allows the Sprite to be dragged and dropped, and
double clicking the Sprite brings it to the front of the render queue. Holding the CTRL key while pointing to a sprite and
using the mouse wheel scales the Sprite up or down.

Sprite Modifiers

SPRITE <id> BIND BITMAP <bitmapId>

 Bind the Bitmap <bitmapId> to use when rendering the Sprite.

SPRITE <id> BIND TILEMAP <tilemapId>

 Bind the Tilemap <tilemapId> to use when rendering the Sprite.

SPRITE <id> SET SHADER <shaderId>|OFF

Use the Shader <shaderId> when rendering the Sprite, or OFF to use the default (texture mapping) shader. Only
one Shader can be attached to a Sprite at a time. A Sprite must have a Bitmap or Tilemap bound first before a
Shader can be set.

SPRITE <id> SELECT <name$>

 Use the Sprite Sheet’s subtexture <name$> to render the Sprite.

SPRITE <id> SELECT ALL

 Use the entire Bitmap to render the Sprite.

SPRITE <id> SHOW

 Turn the Sprite on (make visible).

SPRITE <id> HIDE

 Turn the Sprite off (make invisible). By default, the Sprite is turned off.

SPRITE <id> PRIORITY <priority>

Assign the Sprite’s priority to <priority>. <priority> must be between -10000 and 10000. The Sprite’s priority
determines the order the Sprites are drawn. Sprites with a higher priority appear on top of Sprites with a lower
priority. Sprites with a positive priority appear above the Screen, while Sprites with a negative priority appear
under the Screen. Sprites are always under the Text Screen.

SPRITE <id> TAG <tags$>

Tag the Sprite with the tags listed in the comma-separated list <tags$>. Tags are useful for detecting collisions
among a group of Sprites (e.g. “aliens” or “bullets”) rather than detecting a collision against each individual
Sprite. Use the collision functions (INSIDE, INTERSECT, TOUCH, and OVERLAP) to determine if a Sprite has
collided with any other Sprite that has a matching tag.

SPRITE <id> CENTER

Center the Sprite in the Liquid BASIC window. The aspect ratio is preserved, and the Sprite is not scaled or
stretched.

SPRITE <id> STRETCH

Stretch the Sprite to the Liquid BASIC window. The aspect ratio is ignored.

SPRITE <id> FILL

Fill the Liquid BASIC window with the Sprite while maintaining the aspect ratio. This may cause the Sprite to be
larger than the visible area of the window.

SPRITE <id> FIT

Fit the Sprite to the Liquid BASIC window while maintaining the aspect ratio. This may cause the Sprite to not fill
the entire visible area of the window.

SPRITE <id> TILE

Tile the Sprite. The aspect ratio is preserved, and the Sprite is not scaled or stretched. It simply repeats to fill the
entire Liquid BASIC window.

SPRITE <id> ANCHOR <anchorX>,<anchorY>

Assign the Sprite’s anchor point to <anchorX>,<anchorY>. The anchor points must be between 0 and 1. The
anchor point determines the “center” of the Sprite. By default, a Sprite’s anchor point is the center (0.5, 0.5) of
the Tilemap or Bitmap the Sprite is using. When moving a Sprite to a coordinate this will center the Sprite on
that coordinate. It also allows Sprites to be properly rotated around their center. Anchor points can be set to the
upper left of the Sprite (0, 0) or the lower right (1, 1) or any point in-between.

SPRITE <id> XYSTEP <xstep>,<ystep>

Set the Sprite’s XYSTEP to <xstep>,<ystep>. The XYSTEP is applied whenever a Sprite is moved. Sprites operate in
1280x800 mode. XYSTEP is useful to fit a Sprite to a certain resolution (e.g. XYSTEP 4,4 to fit a 320x200 Screen)
and be automatically moved within that resolution.

SPRITE <id> XYSIZE <xsize>,<ysize>

Set the Sprite’s XYSIZE to <xsize>,<ysize>. The XYSIZE is applied whenever a Sprite is scaled. Sprites operate in
1280x800 mode. XYSIZE is useful to fit a Sprite to a certain resolution (e.g. XYSIZE 4,4 to fit a 320x200 Screen)
and be automatically scaled within that resolution.

SPRITE <id> MOVE [RELATIVE] <x>,<y>

Move a Sprite to <x>,<y>. The optional RELATIVE modifier moves the Sprite relative to its current position. The
coordinates are multiplied by XSTEP and YSTEP.

SPRITE <id> MOVE [RELATIVE] TO <x>,<y>,<ms>

Move a Sprite to <x>,<y> over time. The optional RELATIVE modifier moves the Sprite relative to its current
position. The coordinates are multiplied by XSTEP and YSTEP. <ms> is the number of milliseconds to move the
Sprite. Multiple MOVE TO commands can be queued, so when one finishes the next one begins.

SPRITE <id> SCALE <sx>,<sy>

 Scale the Sprite horizontally/vertically by <sx>,<sy>. The scale is multiplied by XSIZE and YSIZE.

SPRITE <id> SCALE TO <sx>,<sy>,<ms>

Scale the Sprite horizontally/vertically by <sx>,<sy> over time. The scale is multiplied by XSIZE and YSIZE. <ms> is
the number of milliseconds to scale the Sprite. Multiple SCALE commands can be queued, so when one finishes
the next one begins.

SPRITE <id> ROTATE <degrees>

 Rotate the Sprite by <degrees> degrees.

SPRITE <id> ROTATE TO <degrees>,<ms>

Rotate the Sprite by <degrees> degrees over time. <ms> is the number of milliseconds to rotate the Sprite.
Multiple ROTATE commands can be queued, so when one finishes the next one begins.

SPRITE <id> TINT <color>

 Tint the Sprite to <color>.

SPRITE <id> TINT TO <color>,<ms>

Tint the Sprite to <color> over time. <ms> is the number of milliseconds to tint the Sprite. Multiple TINT
commands can be queued, so when one finishes the next one begins.

SPRITE <id> MIRROR <state>

 Mirror the Sprite horizontally (<state> 1) or not (<state> 0).

SPRITE <id> FLIP <state>

 Flip the Sprite vertically (<state> 1) or not (<state> 0).

SPRITE <id> BORDER <color>

Draw a border around the Sprite using <color>. If <color> is 0 (default) then no border is drawn. The <color> is
not affected by the Sprite’s tint. This command can be useful for debugging.

SPRITE <id> CIRCLE [<radius>][,<color>]

Set the Sprite’s collision circle radius to the optional <radius>. The collision circle is the area of the Sprite that
will trigger a collision when it “hits” another Sprite’s collision circle. The default collision circle radius is either
the width of the sprite divided in half, or the height of the sprite divided in half, whichever is greater. The
optional <color> draws the collision circle around the Sprite when it is rendered. If <color> is 0 (default) then no
collision circle is drawn. The <color> is not affected by the Sprite’s tint. This command can be useful for
debugging.

SPRITE <id> FREE

 Free a Sprite from memory.

The Debugger

The built-in Debugger can be used to single step through code as it runs and to examine variables and resources in real-
time. Press CTRL + F1 to toggle the Debugger or use the DEBUG command to run a program and open the debugger. The
debugger can also be started by pressing F6 in the editor.

On the left of the Debugger is a vertical divider. Dragging the vertical divider will resize the Debugger. Double click the
vertical divider to collapse the Debugger off-screen. Double click it again to bring the Debugger back.

There are four different tabs in the Debugger that can be cycled through by clicking the left and right arrows at the top
of the Debugger:

 Code Shows the program being debugged, with the current line highlighted in yellow
 Variables Shows all variables and arrays currently allocated
 Resources Shows all resources currently allocated
 Render Stack Shows the Background, Lo Sprites, Screen, Hi Sprites, and Text Screen

When viewing Code, double click on a line to toggle a breakpoint at that location.

When viewing Resources, double clicking on a Tilemap will toggle between the Tilemap and the Tileset that comprises it.
Double clicking on a Sound will play it; double clicking it again will stop playing it.

The Render Stack shows the order that the Liquid BASIC window is rendered. “Lo” Sprites are Sprites that have a priority
less than zero and appear under the Screen. “Hi” Sprites are Sprites that have a priority greater than or equal to zero
and appear above the Screen.

Near the bottom of the Debugger is the current state of the program (Running, Paused, Single Stepping, or Stopped), the
current line number, the current line position, and the current error code.

There are also four buttons at the bottom of the Debugger:

The buttons run the program, pause the program, single step through the program, and stop the program.

The Monitor

Liquid BASIC uses a two-pass Just-In-Time (JIT) compiler named Blitz! to convert BASIC commands and programs to a
custom pseudo-code (pCode). This pCode in turn is interpreted by a stack-based Virtual Machine. This approach offers
significant speed increases and better multitasking than using a simple BASIC interpreter.

The built-in Virtual Machine monitor can be used to examine how an expression or program is scanned into tokens and
how these tokens are then converted into pCode.

There are 100 different pCode instructions to implement the BASIC language, and over 310 Kernal routines to
implement input/output, graphics, and sound commands. (Kernal is deliberately misspelled as an homage to the
Commodore line of computers, which also misspelled kernel.)

When the monitor is active, the up and down cursor keys are disabled, and the left and right cursor keys are restricted to
the text entered on the current line. The monitor uses one letter commands to list, scan, and disassemble expressions
and programs:

?

 Print a quick reference to common commands in the Monitor.

! <expr>

Disassemble and evaluate an expression. This is useful to see how Liquid BASIC converts an expression into
pCode.

L [<first>][-<last>]

List the BASIC program currently in memory. The optional <first> value specifies the first line to list, and the
optional <last> value specifies the last line to list.

S [<first>][-<last>]

List the BASIC program’s tokens. This is useful to see how Liquid BASIC converts a program into a token stream
that can then be read and compiled.

D [<first>][-<last>]

Compile and disassemble the BASIC program in memory. This is useful to see how Liquid BASIC converts a
program into pCode.

X

Execute the BASIC program in memory. Press the CTRL + C keys together to break execution and return to the
Monitor.

Q

 Quit the monitor.

The Standard Library

The Standard Library is a collection of constants, reserved variables, and built-in functions that provide math, string,
time, keyboard, mouse, and other useful routines.

Constants and reserved variables can be read but not assigned.

Reserved Constants

VERSION$

 Returns the version of Liquid BASIC in use.

FALSE

 Return 0.

TRUE

 Return -1.

EMPTY$

 Return an empty (“”) String.

PI

 Return 3.1415926535897931.

FLICK

 Return 1.417233560090703-9.

Reserved Variables

TIMER

 Return the number of seconds since midnight.

TIME

 Return the number of milliseconds since Liquid BASIC started.

ELAPSED.TIME

 Return the number of milliseconds since ELAPSED.TIME was last read.

TIME$

 Return the current time in HH:MM:SS format.

DATE$

 Return the current date in MM/DD/YYYY format.

GUID$

 Return a unique GUID.

ERR

 Return the last error code that is recorded.

ERL

 Return the line number of the last error that is recorded.

KBD

 Return the last key pressed. The keyboard buffer is not affected.

INKEY$

 Return the next key in the keyboard buffer as a one-character String value, or “” if the keyboard buffer is empty.

FREEFILE

Return the next valid unused file handle, or 0 if there are no free file handles available. This is useful when
writing reusable code to only use free file handles that are not in use.

CURDIR$

 Return the current directory.

ROOTDIR$

 Return Liquid BASIC’s root directory.

FREE.DB

Return the next valid unused database handle, or 0 if there are no free database handles available. This is useful
when writing reusable code to only use free database handles that are not in use.

CSRLIN

Return the current cursor Y position. Rows start at 1. This reserved variable is included for compatibility with
legacy BASIC.

KEY.SHIFT

 Return TRUE if the Shift key is pressed, otherwise return FALSE.

KEY.CTRL

 Return TRUE if the Control key is pressed, otherwise return FALSE.

KEY.ALT

 Return TRUE if the Alt key is pressed, otherwise return FALSE.

MOUSE.X

 Return the current mouse X position.

MOUSE.Y

 Return the current mouse Y position.

MOUSE.WHEEL

 Return the next mouse wheel event in the mouse event buffer, or 0 if the mouse event buffer is empty.

MOUSE.BUTTONS

Return 1 if the left mouse button is down, 2 if the right mouse button is down, 3 if both buttons are down, or 0 if
no mouse button is down.

WINDOW.WIDTH

 Return the width of the Liquid BASIC window in pixels (1280).

WINDOW.HEIGHT

 Return the height of the Liquid BASIC window in pixels (800).

FPS

 Return the number of Frames Per Second being rendered.

TEXT.COLUMNS

 Return the number of columns in the Text Screen.

TEXT.ROWS

 Return the number of rows in the Text Screen.

CURSOR.X

 Return the current cursor X position. Columns start at 0.

CURSOR.Y

 Return the current cursor Y position. Rows start at 0.

BORDER.COLOR

 Return the current border color.

BACKGROUND.COLOR

 Return the current background color.

INK.COLOR

 Return the current ink color.

HIGHLIGHT.COLOR

 Return the current highlight color.

RND.COLOR

 Return a random color.

PLASMA.COLOR

 Return the constantly evolving plasma color.

SCREEN.MODE

 Return 1 if the Screen is in Bitmap mode, or 2 if the Screen is in Tilemap mode. Otherwise, return 0.

SCREEN.WIDTH

 Return the width of the Screen in pixels when the Screen is in Bitmap mode.

SCREEN.HEIGHT

 Return the height of the Screen in pixels when the Screen is in Bitmap mode.

SCREEN.COLUMNS

 Return the number of columns when the Screen is in Tilemap mode.

SCREEN.ROWS

 Return the number of rows when the Screen is in Tilemap mode.

SCREEN.SIZE

Return the size of the Screen in pixels (width × height) when in Bitmap mode, or the number of cells in the
Screen (columns x rows) when in Tilemap mode.

SCREEN.SCX

Return the current X shift of the Screen in pixels.

SCREEN.SCY

Return the current Y shift of the Screen in pixels.

PIXEL.OPERATOR

 Return the current pixel operator.

PIXEL.MASK

 Return the current pixel mask.

LINE.STIPPLE

 Return the current line stipple.

FREE.BITMAP

 Return the next valid unused Bitmap ID, or 0 if none is available.

FREE.FONT

 Return the next valid unused Font ID, or 0 if none is available.

FREE.TILESET

 Return the next valid unused Tileset ID, or 0 if none is available.

FREE.TILEMAP

 Return the next valid unused Tilemap ID, or 0 if none is available.

FREE.SHADER

 Return the next valid unused Shader ID, or 0 if none is available.

FREE.SOUND

 Return the next valid unused Sound ID, or 0 if none is available.

FREE.SPRITE

 Return the next valid unused Sprite ID, or 0 if none is available.

VOICES$

 Return a comma-separated list of the available voices for speech.

COPILOT

 Return TRUE if OpenAI is present. Otherwise return FALSE.

CHAT.ERROR$

Return the last error generated by a CHAT or CHATBOT command. Otherwise return an empty string (“”).

CODE.ERROR$

Return the last error generated by the CODE command. Otherwise return an empty string (“”).

CODE.RULES$

Return the default rule set used for code generation.

Error Handling

ERR$(<code>)

 Convert an error code to a String.

Casting Functions

CBYT(<value>)

 Return <value> cast as an 8-bit byte.

CINT(<value>)

Return <value> cast as a 32-bit integer. The CINT function differs from the INT function in that CINT rounds the
<value> to the nearest integer, whereas INT truncates the fractional portion of <value>.

CLNG(<value>)

 Return <value> cast as a 64-bit long integer.

CSNG(<value>)

 Return <value> cast as a 32-bit single precision floating point number.

CDBL(<value>)

Return <value> cast as a 64-bit double precision floating point number. This function has no effect, as all Real
calculations in Liquid BASIC are handled as 64-bit double precision floating point numbers.

Conversion Functions

VAL(<d$>)

 Convert a String to a Real and return it.

STR$(<d>)

 Convert a Real to a String and return it.

BIN$(<d>)

 Convert a Real to an integer and return it as a String in base 2 (binary) format.

HEX$(<d>)

Convert a Real to an integer and return it as a String in base 16 (hexadecimal) format.

OCT$(<d>)

Convert a Real to an integer and return it as a String in base 8 (octal) format.

Bit Functions

BIT.GET(<bits>,<index>)

Return a one or zero, depending on whether the bit <index> is on or off in the integer <bits>. <index> must be
between 0 and 31.

BIT.SET(<bits>,<index>)

 Return the integer <bits> with the bit <index> set.

BIT.RESET(<bits>,<index>)

 Return the integer <bits> with the bit <index> reset.

BIT.TOGGLE(<bits>,<index>)

 Return the integer <bits> with the bit <index> toggled.

BIT.CALC(<bits>,<index>,<value>)

 Return the integer <bits> with the bit set if <value> is not zero or reset if <value> is zero.

Byte and Word Functions

LOBYTE(<value>)

 Return the low 8-bit byte of unsigned integer <value>.

HIBYTE(<value>)

 Return the high 8-bit byte of unsigned integer <value>.

LOWORD(<value>)

 Return the low 16-bit word of unsigned integer <value>.

HIWORD(<value>)

 Return the high 16-bit word of unsigned integer <value>.

Numeric Functions

ABS(<value>)

 Return the absolute value of <value>.

ATN(<value>)

 Return the arctangent of <value>.

CEIL(<value>)

 Round <value> up and return.

CLAMP(<value>,<min>,<max>)

 Return <value> clamped to <min> and <max>.

COS(<value>)

 Return the cosine of <value>.

DEG(<value>)

 Return the radians <value> converted to degrees.

EXP(<value>)

 Return the exponent of <value>.

FLOOR(<value>)

 Round <value> down and return.

INT(<value>)

Return <value> cast as a 32-bit integer. The fractional portion of <value> is discarded.

LERP(<value1>,<value2>,<amt>)

Return the value between <value1> and <value2>, with <amt> specifying the linear interpolation (lerp) between
the two values. <amt> is clamped to 0 and 1.

LOG(<value>)

 Return the logarithm of <value>.

MIN(<x1>,<x2>[,<x3>…])

 Return the minimum value out of the arguments passed.

MAX(<x1>,<x2>[,<x3>…])

 Return the maximum value out of the arguments passed.

RAD(<value>)

 Return the degrees <value> converted to radians.

RANGE(<start>,<end>)

 Return a random integer number between <start> and <end>.

RND([<limit>])

Return a random number between 0 and 1 if <limit> is omitted. If <limit> is zero, then return the last random
number generated by RND. If <limit> is less than 0, then always return the same number for <limit>. If <limit> is
greater than 0, then return a random number between 0 and <limit>. The random number generated is based
on the random number generator seed set with the RANDOMIZE statement.

ROUND(<value>[,<digits>])

Round <value> to the specified number of <digits> and return. If <digits> is omitted, round to the nearest
integer.

SGN(<value>)

 Return the sign of <value> (-1 if negative, 0 if zero, 1 if positive).

SIN(<value>)

 Return the sine of <value>.

SQR(<value>)

 Return the square root of <value>.

TAN(<value>)

 Return the tangent of <value>.

String Functions

ASC(<string>[,<index>])

Return the ASCII code of the character at the first position in string, or the character at the <index> position if
specified. Character positions in Strings start at 1 in Liquid BASIC.

CHR$(<ch>[,<ch>…])

 Return a string with the ASCII character <ch>. Multiple characters can be included.

CONCAT$([<x1>[,<x2>]…])

Take zero, one, or more arguments (Real or String) and concatenate them into a single String.

EXPORT$([<x1>[,<x2>]…])

Take zero, one, or more arguments and combine them into a comma-separated list. Real values are converted to
a String value, and String values are wrapped in quotes (to preserve commas). Complements the PARSE$ and
PARSECOUNT functions.

HASH(<text$>)

 Return a 32-bit unsigned integer hashed from string <text$>.

INSTR([<startindex>,]<text$>,<value$>)

Return the index where the string <value$> is found in the string <text$>, or 0 if <value$> was not found. The
optional <startIndex> is the index to start searching.

LCASE$(<text$>)

 Return the string <text$> converted to lowercase letters.

LEFT$(<text$>,<length>)

 Return the left side of the string <text$>, up to <length> characters.

LEN(<text$>)

 Return the length of the string <text$>.

LSET$(<text$>,<width>)

Return the string <text$> left justified and padded with trailing spaces so the returned string is <width>
characters long. If <text$> is longer than <width>, it is left justified and truncated to <width> characters.

LTRIM$(<text$>[,<chars$>])

Return the string <text$> with all leading <chars$> removed (if <chars$> is omitted then all leading spaces are
removed).

MID$(<text$>,<position>[,<length>])

Return a substring from <text$> starting at <position>. Up to <length> characters are returned if <length> is
specified. Otherwise, the remainder of the string <text$> is returned.

PARSE$(<text$>,<index>)

Return a single item from the comma-separated list in <text$> at index <index>. Complements the EXPORT$
function.

PARSECOUNT(<text$>)

Return the number of items in the comma-separated list in <text$>. Complements the EXPORT$ function.

REGEXPR([<startindex>,]<text$>,<pattern$>)

Return the index where the regular expression <pattern$> is found in the string <text$>, or 0 if <pattern$> was
not found. The optional <startindex> is the index to start searching.

REGREPL$(<text$>,<pattern$>,<replacement$>)

Return the string <text$> but replace anywhere the regular expression <pattern$> is found with
<replacement$>.

RIGHT$(<text$>,<length>)

 Return the right side of the string <text$>, up to <length> characters.

RSET$(<text$>,<width>)

Return the string <text$> right justified and padded with leading spaces so the returned string is <width>
characters long. If <text$> is longer than <width>, it is right justified and truncated to <width> characters.

RTRIM$(<text$>[,<chars$>])

Return the string <text$> with all trailing <chars$> removed (if <chars$> is omitted then all trailing spaces are
removed).

SPACE$(<count>)

 Return a string of spaces repeated <count> times.

STRDELETE$(<text$>,<index>,<count>)

 Return the string <text$> with <count> characters deleted starting at <index>.

STRINSERT$(<text$>,<index>,<insert$>)

 Return the string <text$> with the string <insert$> inserted at <index>.

STRSUB$(<text$>,<index>,<char$>)

 Return the string <text$> with the character at <index> substituted with the character <char$>.

STRREPEAT$(<text$>,<count)>

 Return a string with <text$> repeated <count> times.

STRREPLACE$(<text$>,<value$>,<replacement$>)

 Return the string <text$> but replace anywhere the string <value$> is found with <replacement$>.

STRREVERSE$(<text$>)

 Return the string <text$> reversed.

TALLY(<text$>,<value$>)

 Return the number of occurrences of the string <value$> in the string <text$>.

TRIM$(<text$>[,<char$>])

Return the string <text$> with all leading and trailing <char$> removed (if <char$> is omitted then all leading
and trailing spaces are removed).

UCASE$(<text$>)

 Return the string <text$> converted to uppercase letters.

USING$(<format$>,<value>)

Return <value> as a String formatted to the format list <format$>. <value> can be a Real or a String.

FORMAT LIST

For Real values, the pound sign ‘#’ reserves room for a single character in the output field. If the formatted string
contains more characters than there are pound signs in <format$>, then the entire output field is filled with
asterisks ‘*’.

 If <format$> starts with a plus sign ‘+’, then a plus sign will be printed at the beginning of the output
field when the value is positive, and a minus sign will be printed at the beginning of the output field
when the value is negative.

 If <format$> starts with a minus sign ‘-‘, then a space will be printed at the beginning of the output field
when the value is positive, and a minus sign will be printed at the beginning of the output field when the
value is negative.

 If <format$> does not start with either a plus sign or a minus sign, then a minus sign is printed before
the first formatted character for negative values, taking up one character in the output field. Remember
that if the number of characters (including the minus sign) exceeds the size of the output field the entire
output field is replaced with asterisks.

 If <format$> starts with a dollar sign ‘$’, then the output field will begin with a dollar sign and positive
and negative values will be printed using the rule above.

 A period ‘.’ in <format$> is used to represent where the decimal point, if any, should appear. There
cannot be more than one decimal point. If no decimal point is specified, the value is rounded to the
nearest integer and printed without a decimal point.

 A comma in <format$> is used to represent where commas, if any, should appear.

For String values, the pound sign ‘#’ reserves room for a single character in the output field. If the formatted
string contains more characters than there are pound signs in <format$>, then the formatted string is left
justified and truncated to fit the output field.

 If <format$> starts with the less than sign ‘<’, then the formatted output is left justified.
 If <format$> starts with the equal sign ‘=’, then the formatted output is centered within the output field.
 If <format$> starts with the greater than sign ‘>’, then the formatted output is right justified.

WORDWRAP$(<text$>[,<columns>])

Return the string <text$> word wrapped, where text is wrapped to the next line when it reaches the end of a
line. <columns> specifies how many characters are on a single line. If the optional <columns> parameter is
omitted, the current width of the Text Screen is used.

Compression Functions

COMPRESS$(<data$>)

 Compress the data in <data$> and return the compressed data as a string.

DECOMPRESS$(<data$>)

 Decompress the data in <data$> and return the decompressed data as a string.

Text Screen Functions

POS(<n>)

Return the current cursor X position. <n> is ignored. Columns start at 1. This function is included for
compatibility with legacy BASIC.

Keyboard Functions

KEY.DOWN(<key>)

Return TRUE if the <key> is currently down. Otherwise return FALSE. Several constants are included to simplify
the key codes:

 CONSTANT KEY

1 (nothing)
2 VK_INSERT Insert
3 VK_DELETE Delete
4 VK_HOME Home
5 VK_END End
6 VK_PAGEUP Page Up
7 VK_PAGEDOWN Page Down
8 VK_BACKSPACE Backspace
9 VK_TAB Tab
10 VK_LINEFEED Line Feed
11 VK_SHIFTTAB SHIFT + Tab
12 (nothing)
13 VK_ENTER Enter
14 VK_LEFT Left
15 VK_RIGHT Right
16 VK_UP Up
17 VK_DOWN Down
18 VK_F1 F1
19 VK_F2 F2
20 VK_F3 F3

21 VK_F4 F4
22 VK_F5 F5
23 VK_F6 F6
24 VK_F7 F7
25 VK_F8 F8
26 VK_F9 F9
27 VK_ESC Esc
28 VK_F10 F10
29 VK_F11 F11
30 VK_F12 F12
31 (nothing)
32 VK_SPACE Space

Values 33 to 126 for <key> map to their respective ASCII character.

KEY.UP(<key>)

 Return TRUE if the key <key> is currently up. Otherwise return FALSE.

KEY.PRESSED(<key>)

 Return TRUE if the key <key> was pressed. Otherwise return FALSE.

GamePad Functions

GAMEPAD.ISCONNECTED(<index>)

Return TRUE if a gamepad is connected. Otherwise return FALSE. <index> is the gamepad to read and must be
between 0 and 3.

GAMEPAD.DPAD(<index>)

 Return a bit mask depending on which buttons on a gamepad’s direction pad are currently pressed:

1 up
2 down
4 left
8 right

 <index> is the gamepad to read and must be between 0 and 3.

GAMEPAD.BUTTONS(<index>)

 Return a bit mask depending on which buttons on a gamepad are currently pressed:

1 up
2 down
4 left
8 right

 <index> is the gamepad to read and must be between 0 and 3.

GAMEPAD.THUMBSTICK(<index>,<n>)

Return a Real value between -1 and 1, depending on the state of one of the thumb sticks. <n> is the thumb stick
and axis to return:

 1 left thumb stick X-axis
 2 left thumb stick Y-axis
 3 right thumb stick X-axis
 4 right thumb stick Y-axis

 <index> is the gamepad to read and must be between 0 and 3.

GAMEPAD.TRIGGER(<index>,<n>)

Return a Real value between 0 and 1, depending on the state of a gamepad’s trigger. <n> is the trigger to return:

 1 left trigger
 2 right trigger

 <index> is the gamepad to read and must be between 0 and 3.

Color Functions

HSV(<h>,<s>,<v>[,<a>])

Return a color using the hue <h>, saturation <v>, brightness <v>, and optional <a> components given. If <a> is
omitted the alpha value is assumed to be 255 (for a solid, opaque color).

RGB(<r>,<g>,[,<a>])

Return a color using the red <r>, green <g>, blue , and optional alpha <a> components given. If <a> is
omitted the alpha value is assumed to be 255 (for a solid, opaque color).

COLOR.RED(<color>)

 Return the red byte of the color <color>.

COLOR.GREEN(<color>)

 Return the green byte of the color <color>.

COLOR.BLUE(<color>)

 Return the blue byte of the color <color>.

COLOR.ALPHA(<color>)

 Return the alpha byte of the color <color>.

COLOR.PICKER(<color>)

Open the host OS’s Color Picker dialog and return the selected color (or <color> if no color was selected).

CLUT(<color$>)

Lookup a color from the default CLUT (Color LookUp Table). Available colors include BLACK, GRAY, SILVER,
WHITE, RED, ORANGE, YELLOW, GREEN, CYAN, BLUE, PURPLE, BROWN, and PINK. <color$> is the name of the
color and is not case sensitive.

CLUT(<palette$>,<index>)

Lookup a color in one of the available CLUTs (Color LookUp Tables): C64 (32 colors), Amiga (32 colors), VGA (256
colors), or ViceCity (16 colors). <palette$> is the CLUT to use and is not case sensitive, and <index> is the index
of the color to get (varies depending on the CLUT chosen).

DARKEN(<color>,<amt>)

Return the color <color> darkened by <amt>. For example, if <amt> is 0.25, then the color returned will be the
color darkened by 25%. <amt> is clampted to 0 and 16.

LIGHTEN(<color>,<amt>)

Return the color <color> lightened by <amt>. For example, if <amt> is 0.25, then the color returned will be the
color lightened by 25%. <amt> is clampted to 0 and 16.

GRADIENT(<color1>,<color2>,<amt>)

Return the gradient color between <color1> and <color2>, with <amt> specifying the linear interpolation
between the two colors. For example, if <amt> is 0.25, then the color returned will be a mix of 25% <color1> and
75% <color2>. <amt> is clamped to 0 and 1.

Array Functions

LBOUND(REF <var>()[,<dimension>])

Return the lower bound of an array. The array must be passed to the function using REF and the name must be
followed by an empty set of parentheses ‘()’ to pass as an array and not a variable. The optional <dimension>
must be between 1 and the number of dimensions in the array. If <dimension> is omitted, then 1 is assumed.

UBOUND(REF <var>()[,<dimension>])

Return the upper bound of an array. The array must be passed to the function using REF and the name must be
followed by an empty set of parentheses ‘()’ to pass as an array and not a variable. The optional <dimension>
must be between 1 and the number of dimensions in the array. If <dimension> is omitted, then 1 is assumed.

ARRAY.MIN(REF <var>()[,<first>,<last>])

Return the minimum value in an array of Real variables. The optional <first> and <last> specify the first and last
index of the elements to enumerate and can only be used on single dimensional arrays. If omitted, the entire
array is enumerated.

ARRAY.MAX(REF <var>()[,<first>,<last>])

Return the maximum value in an array of Real variables. The optional <first> and <last> specify the first and last
index of the elements to enumerate and can only be used on single dimensional arrays. If omitted, the entire
array is enumerated.

ARRAY.SUM(REF <var>()[,<first>,<last>])

Return the sum of the elements in an array of Real variables. The optional <first> and <last> specify the first and
last index of the elements to enumerate and can only be used on single dimensional arrays. If omitted, the
entire array is enumerated.

ARRAY.PRODUCT(REF <var>()[,<first>,<last>])

Return the product of the elements in an array of Real variables. The optional <first> and <last> specify the first
and last index of the elements to enumerate and can only be used on single dimensional arrays. If omitted, the
entire array is enumerated.

ARRAY.AVERAGE(REF <var>()[,<first>,<last>])

Return the statistical mean (average) of the elements in an array of Real variables. The optional <first> and
<last> specify the first and last index of the elements to enumerate and can only be used on single dimensional
arrays. If omitted, the entire array is enumerated.

ARRAY.MEDIAN(REF <var>()[,<first>,<last>])

Return the statistical median of the elements in an array of Real variables. The optional <first> and <last> specify
the first and last index of the elements to enumerate and can only be used on single dimensional arrays. If
omitted, the entire array is enumerated.

ARRAY.VARIANCE(REF <var>()[,<first>,<last>])

Return the statistical variance of the elements in an array of Real variables. The optional <first> and <last>
specify the first and last index of the elements to enumerate and can only be used on single dimensional arrays.
If omitted, the entire array is enumerated.

ARRAY.SOFTMAX(REF <var>()[,<temperature>])

Perform a softmax function on an array. The softmax function is commonly used in machine learning and deep
learning models to convert a vector of raw scores into a probability distribution. The output of the softmax
function is a vector of probabilities representing the likelihood of each class or category. Each probability is in
the range of [0..1], and the output vector sums up to 1, which is returned by the function.

To interpret the results of the softmax function, look at the probabilities assigned to each class or category. The
class with the highest probability is considered the predicted class by the model. The probabilities of other
classes show how confident the model is in its prediction.

The optional <temperature> controls the level of uncertainty in the output probabilities. The default
temperature is 1.0 if omitted. A higher temperature (above 1.0) results in a more uniform distribution of
probabilities, making the model more uncertain about its predictions. A lower temperature (below 1.0) sharpens
the distribution, making the model more confident in its predictions. By adjusting the temperature, the softmax
function can be used to control the trade-off between exploration and exploitation in reinforcement learning
algorithms.

 INPUT TEMPERATURE OUTPUT

 [-1, -2.5, 3, 4.7] 1.0 [0.00282, 0.00063, 0.15393, 0.84262]

 [-1. -2.5, 3, 4.7] 0.8 [0.00072, 0.00011, 0.10660, 0.89257]

 [-1, -2.5, 3, 4.7] 1.2 [0.00690, 0.00198, 0.19345, 0.79767]

Note that you should ensure input values are within reasonable bounds for this function to work properly (due
to potential underflow or overflow issues).

Fiber Functions

FIBER.ISDONE(<fiber>())

Return TRUE if <fiber> has finished. Otherwise return FALSE.

File Functions

DIR$([<filter$>[,<mode>]])

Return a comma-separated list depending on the <mode>:

1 Return a list of files in the current directory
2 Return a list of directories in the current directory
3 Return a list of both files and directories in the current directory (default)

The results are filtered to <filter$>. Wildcard characters like the asterisk ‘*’ and question mark ‘?’ can be used.
The filter defaults to “*.*” if it is omitted.

EXISTS(<path$>)

 Return TRUE if the file or directory <path$> exists. Otherwise return FALSE.

EOF(<handle>)

 Return TRUE if at the end of the file assigned to <handle>. Otherwise return FALSE.

LOC(<handle>)

 Return the position (in bytes) of the file assigned to <handle>.

LOF(<handle>)

 Return the length (in bytes) of the file assigned to <handle>.

FILE.EXTENSION$(<filename$>)

 Return the file extension of <filename$>.

FILE.LINECOUNT(<path$>)

 Return the number of lines in the text file at <path$>.

FILE.READTEXT$(<path$>)

Return the contents of the entire text file at <path$>.

FILE.OPEN$(<directory$>,<extension$>,<filter$>)

Open the host OS’s File Open dialog and return the selected file (or “” if no file was selected). <directory$> is the
initial directory to start in (use “default” to restore to the last used directory). <extension$> is the default file
extension. <filter$> is the filename filter string, which determines the choices that can be selected as a file type.

FILE.SAVEAS$(<directory$>,<extension$>,<filter$>)

Open the host OS’s File Save As dialog and return the selected file (or “” if no file was selected). <directory$> is
the initial directory to start in (use “default” to restore to the last used directory). <extension$> is the default file
extension. <filter$> is the filename filter string, which determines the choices that can be selected as a file type.

Database Functions

DB.ERROR$(<handle>)

Return the last error message on the database assigned to <handle> if there was an error, otherwise return an
empty string (“”).

DB.ALLTABLES$(<handle>)

Return a comma-separated list of all tables in the database.

DB.TABLECOLUMNS$(<handle>,<table$>)

Return a comma-separated list of columns in <table$>.

DB.FIELDCOUNT(<handle>)

 Return the number of fields (columns) in the current row read from the result set.

DB.TABLE$(<handle>,<index>)

Return the table name of the column in the current row read from the result set.

DB.TABLES$(<handle>)

Return a comma-separated list of the table names of the columns in the current row read from the result set.

DB.COLUMN$(<handle>,<index>)

Return the column name in the current row read from the result set.

DB.COLUMNS$(<handle>)

Return a comma-separated list of the column names in the current row read from the result set.

DB.VALUE$(<handle>,<index>)

Return the value in column <index> in the current row read from the result set.

DB.VALUES$(<handle>)

Return a comma-separated list of the values in the current row read from the result set.

DB.DATATYPE$(<handle>,<index>)

Return the datatype of column <index> in the current row read from the result set.

DB.DATATYPES$(<handle>)

Return a comma-separated list of the datatypes in the current row read from the result set.

DB.STEPCOUNT(<handle>)

Return the number of rows read so far in the result set. Use the DB READ command to read the next row; DB
QUERY resets the counter.

EOQ(<handle>)

 Return TRUE if the database assigned to <handle> has READ to the end of its result set. Otherwise return FALSE.

Bitmap Functions

BITMAP.EXISTS(<id>)

 Return TRUE if the Bitmap <id> exists. Otherwise return FALSE.

BITMAP.WIDTH(<id>)

Return the width of Bitmap <id> in pixels.

BITMAP.HEIGHT(<id>)

Return the height of Bitmap <id> in pixels.

BITMAP.SIZE(<id>)

 Return the size of Bitmap <id> in pixels (width × height).

BITMAP.SCX(<id>)

Return the current X shift of Bitmap <id> in pixels.

BITMAP.SCY(<id>)

Return the current Y shift of Bitmap <id> in pixels.

BITMAP.SHEETNAMES$(<id>)

Return a comma-separated list of the subtexture names available in Bitmap <id>.

PEEK(<index>)

 Peek (read directly from memory) the pixel at <index> and return. Complements the POKE command.

POINT(<x>,<y>)

Return the pixel color at <x>,<y>. The POINT function ignores the Bitmap’s clipping region; it can be used to read
pixels outside the clipping region. Complements the PLOT command.

SAMPLE(<x>,<y>)

Return the pixel color at <x>,<y>, where both <x> and <y> are normalized to 0 <= x <= 1. For example, the
coordinates 0.5, 0.5 would refer to the pixel at the center of the Bitmap.

COPY$(<x1>,<y1>,<x2>,<y2>)

Copy the rectangular Bitmap data from <x1>,<y1> to <x2>,<y2> and return it as an encoded string. Complements
the PASTE command.

PIXEL.COLLISION(<src>,<dst>)

Return if a collision occurred between the two colors <src> and <dst> when drawing to a Bitmap using the
PXO_COLLISION pixel operator.

Font Functions

FONT.EXISTS(<id>)

 Return TRUE if the Font <id> exists. Otherwise return FALSE.

Tileset Functions

TILESET.EXISTS(<id>)

 Return TRUE if the Tileset <id> exists. Otherwise return FALSE.

TILESET.COUNT(<id>)

 Return the number of tiles in the Tileset <id>.

TILESET.ISAVAILABLE(<id>,<tile>)

 Return TRUE if the tile <tile> exists in Tileset <id>. Otherwise return FALSE.

Tilemap Functions

TILEMAP.EXISTS(<id>)

 Return TRUE if the Tilemap <id> exists. Otherwise return FALSE.

TILEMAP.COLUMNS(<id>)

Return the number of columns in Tilemap <id>.

TILEMAP.ROWS(<id>)

Return the number of rows in Tilemap <id>.

TILEMAP.SIZE(<id>)

Return the number of cells in Tilemap <id> (columns × rows).

TILEMAP.SCX(<id>)

Return the current X shift of Tilemap <id> in pixels.

TILEMAP.SCY(<id>)

Return the current Y shift of Tilemap <id> in pixels.

GET.TILE(<x>,<y>)

 Return the tile at <x>,<y>. Complements the PUT TILE command.

TCHAR(<ch>)

Return the tile mapped to the ASCII character <ch>. <ch> is the ASCII code of the character (if a Real value) or a
one-character string (if a String value) to map.

TCHAR$(<text$>)

 Return the tiles mapped to the ASCII characters in <text$>.

TPEEK(<index>,<mode>)

 Peek (read directly from memory) the data at <index> and return depending on <mode>:

0 tile
1 ink (foreground color)
2 highlight (background color)
3 attributes

Complements the TPOKE command.

TCOPY$(<x1>,<y1>,<x2>,<y2>)

Copy the rectangular Tilemap data from <x1>,<y1> to <x2>,<y2> and return it as an encoded string.
Complements the TPASTE command.

Shader Functions

SHADER.EXISTS(<id>)

 Return TRUE if the Shader <id> exists. Otherwise return FALSE.

Sound Functions

SOUND.EXISTS(<id>)

 Return TRUE if the Sound <id> exists. Otherwise return FALSE.

SOUND.ISPLAYING(<id>)

 Return TRUE if the Sound <id> is playing. Otherwise return FALSE.

Sprite Functions

SPRITE.EXISTS(<id>)

 Return TRUE if the Sprite <id> exists. Otherwise return FALSE.

SPRITE.ISVISIBLE(<id>)

 Return TRUE if the Sprite <id> is visible. Otherwise return FALSE.

SPRITE.PRIORITY(<id>)

 Return the priority of Sprite <id>.

SPRITE.TAGS$(<id>)

 Return the tags (as a comma-separated list) of Sprite <id>.

SPRITE.X(<id>)

 Return the x-position of Sprite <id>.

SPRITE.Y(<id>)

 Return the y-position of Sprite <id>.

SPRITE.XSTEP(<id>)

 Return the x-step of Sprite <id>.

SPRITE.YSTEP(<id>)

 Return the y-step of Sprite <id>.

SPRITE.XSCALE(<id>)

 Return the x-scale of Sprite <id>.

SPRITE.YSCALE(<id>)

 Return the y-scale of Sprite <id>.

SPRITE.XSIZE(<id>)

 Return the x-size of Sprite <id>.

SPRITE.YSIZE(<id>)

 Return the y-size of Sprite <id>.

SPRITE.ROTATION(<id>)

 Return the rotation of Sprite <id>.

SPRITE.TINT(<id>)

 Return the tint of Sprite <id>.

SPRITE.HOVER(<id>)

 Return TRUE if the mouse is hovering over Sprite <id>. Otherwise return FALSE.

SPRITE.CLICKED(<id>)

 Return TRUE if the mouse is clicked on Sprite <id>. Otherwise return FALSE.

SPRITE.HIT(<id>)

Return an integer that indicates Sprite <id>’s collision status with another visible Sprite. Individual bits are used
to indicate the type of collision. Two types of collision detection are used: Separating Axis Theorem (SAT) for
detecting collisions between convex shapes (this method is well-suited for handling rotated and scaled
rectangles such as Sprites), and collision circles, which use a simple distance formula to tell if a Sprite’s collision
circle is touching, intersecting, or inside another visible Sprite’s collision circle.

 BIT MEANING

0 Sprite <id> overlaps another visible Sprite (SAT)

 1 Sprite <id>’s collision circle is touching another visible Sprite’s collision circle

 2 Sprite <id>’s collision circle is intersecting another visible Sprite’s collision circle

 3 Sprite <id>’s collision circle is inside another visible Sprite’s collision circle

A returned value of 0 indicates the Sprite is not colliding with another visible Sprite.

SPRITE.HIT(<id>,<tag$>)

Return an integer that indicates if there is a collision between Sprite <id> and another visible Sprite that is
tagged <tag$>.

SPRITE.HIT(<id1>,<id2>)

Return an integer that indicates if there is a collision between Sprite <id1> and Sprite <id2>.

Error Codes

Liquid BASIC uses error codes to record an error. Error codes are stored in the ERR reserved variable. The ERR$ function
can be used to convert an error code to text.

 1 Unknown
 2 User
 3 Assertion Failed
 4 Input Statement Not Allowed
 5 Print Statement Not Allowed
 6 End Of Line Expected
 7 Unexpected End Of Program
 8 Closing Quote Expected
 9 Invalid Bin Data
 10 Invalid Hex Data
 11 Invalid Delimiter
 12 Invalid Operator
 13 Syntax
 14 Valid Line Number Expected
 15 Valid Line Range Expected
 16 Valid Line Increment Expected
 17 Duplicate Label
 18 Label Not Found
 19 Cannot Edit
 20 Illegal Direct
 21 Illegal Quantity
 22 Duplicate Identifier
 23 Undeclared Variable
 24 Variable Is Constant
 25 Variable Is Array
 26 Variable Is Not Array
 27 Undeclared Array
 28 Array Dimensioned
 29 Array Not Dimensioned
 30 Array Not Vector
 31 Array Not Matrix
 32 Array Not Square Matrix
 33 Bad Subscript
 34 Bad Type
 35 Type Mismatch
 36 Division By Zero
 37 String Too Long
 38 Key Not Found
 39 Out Of Data
 40 Out Of Memory
 41 Bad EXIT
 42 Bad DATA
 43 Bad READ

 44 Bad TRAP
 45 Stack Overflow
 46 RETURN Without GOSUB
 47 IF Without END IF
 48 EXIT IF Without IF
 49 SELECT Without END SELECT
 50 EXIT SELECT Without SELECT
 51 WHILE Without WEND
 52 EXIT WHILE Without WHILE
 53 DO Without LOOP
 54 EXIT DO Without DO
 55 FOR Without NEXT
 56 EXIT FOR Without FOR
 57 NEXT Without FOR
 58 TRAP Without END TRAP
 59 EXIT TRAP Without TRAP
 60 END TRAP Without TRAP
 61 WHEN Without END WHEN
 62 EXIT WHEN Without WHEN
 63 END WHEN Without WHEN
 64 Undeclared Type
 65 Cannot Nest Types
 66 TYPE Without END TYPE
 67 END TYPE Without TYPE
 68 Undeclared Function
 69 Cannot Nest Functions
 70 FUNCTION Without END FUNCTION
 71 EXIT FUNCTION Without FUNCTION
 72 END FUNCTION Without FUNCTION
 73 Invalid Number Of Arguments
 74 Must Pass REF
 75 Must Not Pass REF
 76 RETURN Without FUNCTION
 77 Undeclared Fiber
 78 No Fiber
 79 Bad Yield
 80 Fiber Suspended
 81 Fiber Running
 82 Fiber Finished
 83 Valid Modifier Expected
 84 Valid Filename Expected
 85 File Corrupted
 86 File Not Found
 87 File Open
 88 File Not Open
 89 Access Denied
 90 Unable To Complete
 91 Directory Not Found
 92 Directory Already Exists

 93 Database Open
 94 Database Not Open
 95 No Task
 96 Bad Task State
 97 No Palette
 98 No Brush
 99 No Bitmap
 100 No Font
 101 No Tileset
 102 No Tilemap
 103 No Shader
 104 No Sound
 105 No Voice
 106 No Screen
 107 No Sprite
 108 Too Small
 109 Too Big
 110 Single Buffer
 111 Duplicate Subtexture
 112 Subtexture Not Found
 113 Modifier Not For Subtextures
 114 No Copilot
 115 Illegal Operation
 116 Valid Prompt Expected
 117 Unable To Generate Image

Inspiration

There they sit, the preschooler class encircling their mentor, the

substitute teacher.

"Now class, today we will talk about what you want to be when you

grow up. Isn't that fun?" The teacher looks around and spots the

child, silent, apart from the others and deep in thought. "Jonny,

why don't you start?" She encourages him.

Jonny looks around, confused, his train of thought disrupted. He

collects himself, and stares at the teacher with a steady eye. "I

want to code demos," he says, his words becoming stronger and more

confident as he speaks. "I want to write something that will change

peoples' perception of reality. I want them to walk away from the

computer dazed, unsure of their footing and eyesight. I want to

write something that will reach out of the screen and grab them,

making heartbeats and breathing slow to almost a halt. I want to

write something that, when it is finished, they are reluctant to

leave, knowing that nothing they experience that day will be quite

as real, as insightful, as good. I want to write demos."

Silence. The class and the teacher stare at Jonny, stunned. It is

the teacher’s turn to be confused. Jonny blushes, feeling that

something more is required. "Either that or I want to be a

fireman."

- Grant Smith (aka Denthor of Asphyxia)

1994

 آءؠ

