Circle Theorems - RAGG Worksheet (RED) 2. 3. 1. 4. Name or description of theorem: 6. 5. **7**. 143° Name or description of theorem: Name or description of theorem: Name or description of theorem:

Circle Theorems - RAGG Worksheet (GREEN)

1. B	Calculate angle DEB= Give a reason for each step in your workings	
A C 34°	D	
E <i>C</i>		5 marks
2.	Calculate angle DBC= Give a reason for each step in your workings	
A 106° A6°	D D	
	E	4 marks
a B		
3. B	Calculate angle BDA= Give a reason for each step in your workings	
A 40° C	E 120°	
·	L	4 marks
4. B	Calculate angle ADE= Give a reason for each step in your workings	
A B5° C F E		
		4 marks
5.	Calculate angle FBH=	
72° C B B	H Give a reason for each step in your workings	
E		5 marks

Circle Theorems - RAGG Worksheet (GOLD)

1.

ABC and ADE are straight lines; CE is a diameter. Angle DCE = x° , BCD = $2x^{\circ}$ and FEG is a tangent. Find in terms of x:

- a) Angle ABD b) Angle DBE c) Angle BAD

WITIONS Name or description of theorem:

Angles are the centre are half angles at the circumference.

Name or description of theorem:

Angles subtended by the diameter equal 90° (angles in a semi-circle).

Circle Theorems - RAGG Worksheet (RED)

Name or description of theorem:

Opposite angles in a quadrilateral add to 180° (cyclic quadrilateral).

4.

Name or description of theorem:

A tangent meets are radius at 90°

5. 48°

Name or description of theorem:

Same segment theorem

Name or description of theorem:

Where a tangent meets a radius it meets at 90°

Name or description of theorem:

Alternate segment theorem

Circle Theorems - RAGG Worksheet (AMBER)

1. 36°

Angle ACD = $_{-}72^{\circ}$

Give a reason for your answer:

Angles are the centre are half angles at the circumference.

Angle AED = 144°

Give a reason for your answer:

Opposite angles in a quadrilateral add to 180° (cyclic quadrilateral).

Angle ACD = $_{34}^{\circ}$

Give a reason for your answer:

Same segment theorem

Angle BEA = 125°

Give a reason for your answer:

Using the same segment theorem, angle $BAC = 21^{\circ}$ and angles in a triangle add to 180°

18° Angle BCE = _

Give a reason for your answer:

A tangent meets are radius at 90°

Angle BDE = <u>72°</u>

Give a reason for your answer:

Alternate segment theorem

Angle CBD = _

Give a reason for your answer:

Angles subtended by the diameter equal 90° (angles in a semi-circle).

Angle AED = 111°

Give a reason for your answer:

Angles in the same segment are equal and angles in a triangle add to

C

Angle ABE = <u>42°</u>

Give a reason for your answer:

Alternate segment theorem

Angle BCD = 22°

Give a reason for your answer:

Angle DBC = 20° because of the alternate segment theorem Angle BDC = 138° because of angles on a straight line. Angle BCD = 22° because of the angles in a triangle.

Circle Theorems - RAGG Worksheet (GREEN)

Calculate angle DEB= <u>56°</u>

Give a reason for each step in your workings

Angle ABD = 90° because of angles in a semi-circle.

Angle DAB = 56° because angles in a triangle add to 180° .

Angle DEB = 56° because of the same segment theorem.

5 marks

Calculate angle DBC= 28°

Give a reason for each step in your workings

Angle ABD = 74° because angles on a straight line add to 180° .

Angle ABD = 28° because of the alternate segment theorem, as CBD and DBE must add to make 74° .

Calculate angle BDA= 50°

Give a reason for each step in your workings

Angle DAF = 60° because of the cyclic quadrilateral theorem.

Angle ABD = 90° because of angles in a semi-circle.

Angle BDA = 50° because of angles in a triangle.

4 marks

Calculate angle ADE= 47.5°

Give a reason for each step in your workings

Angle $CBA = 47.5^{\circ}$ because an isosceles triangle has two equal angles and all three angles add to 180° .

Angle ADE = 47.5° because of the same segment theorem.

4 marks

Calculate angle FBH= <u>36°</u>

⊔ Give a reason for each step in your workings

Triangle CFB is an isosceles triangle as it is made up of two radii.

Angle's CBF and CFB = 54° because angles in a triangle add to 180° (180° - 72° = 108° , 108° ÷ 2 = 54).

Where a tangent meets a radius it meets at 90°.

Therefore, $\overrightarrow{FBH} = 36^{\circ}$, as $90^{\circ} - 54^{\circ} = 36^{\circ}$.

5 marks

<u>Circle Theorems - RAGG Worksheet (GOLD)</u>

ABC and ADE are straight lines; CE is a diameter. Angle DCE = x° , BCD = $2x^{\circ}$ and FEG is a tangent. Find in terms of x:

- a) Angle ABD = $90 x^{\circ}$
- b) Angle DBE = x°
- c) Angle BAD = $90 2x^{\circ}$

EGC = x, as CEG is an isosceles triangle. $ECG = 180^{\circ} - 2x$, as angles in a triangle equal 180° $GBC = 90^{\circ} - 2x$, because a tangent meet a radius at 90. CGB = GBC, as triangle BCG is also isosceles. BCG = 4x, as angles in a triangle add to 180°: 180° - $(90^{\circ} - 2x)$ - $(90^{\circ} - 2x)$ = 4x. Angles around a point add to 360°, therefore BCE = 180° - 2x: 360° - $(180^{\circ}$ - 2x) - $4x = 180^{\circ}$ - 2x. $ABC = CEA = 90^{\circ}$, as where a tangent meets a radius it 90°. Angles in a quadrilateral add to 360° therefore y = 2x: $360^{\circ} - 90^{\circ} - 90^{\circ} - (180^{\circ} - 2x) = 2x$.

G