ObSERVATIONS \& RECOMMENDATIONS

After reviewing data collected from Deering Lake, Deering, the program coordinators have made the following observations and recommendations.

Thank you for your continued hard work sampling the lake this year! Your monitoring group sampled the deep spot three times this year and has done so for many years! As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the good work!

Volunteers from your lake participated in the Lake Host ${ }^{\mathrm{TM}}$ Program this year. The Lake Host ${ }^{\text {TM }}$ Program was initiated in 2002 by NH LAKES and DES to educate and prevent boaters from spreading exotic aquatic plants to lakes/ponds in New Hampshire. Since then, the number of participating lakes/ponds has doubled, the number of volunteers has doubled, the number of boats inspected has tripled, and the number of "saves" (exotic plants discovered) has increased from four in 2002 to a total of 157 in 2007. The program is invaluable in educating boaters and protecting NH's waterbodies from exotic aquatic plant infestations, thereby preventing recreational hazards, property value decline, aquatic ecosystem decline, aesthetic issues, and saving costly remediation efforts. Lake Host ${ }^{\text {TM }}$ staff discovered the following aquatic vegetation entering or leaving your lake in 2008:

Filamentous Green Algae (native)
Great work! We encourage volunteers to continue participating in the Lake Host ${ }^{\text {TM }}$ Program to protect the future of your lake.

FIGURE INTERPRETATION

CHLOROPHYLL-A

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean
concentration for each sampling year that the lake has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that naturally occur in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is $4.58 \mathrm{mg} / \mathrm{m}^{3}$.

The current year data (the top graph) show that the chlorophyll-a concentration decreased from June through August.

The historical data (the bottom graph) show that the 2008 chlorophyll-a mean is slightly less than the state and similar lake medians. For more information on the similar lake median, refer to Appendix F.

Overall, the statistical analysis of the historical data (the bottom graph) show that the mean annual chlorophyll-a concentration has not significantly changed (neither increased nor decreased) since monitoring began. Specifically, the chlorophyll-a concentration has remained relatively stable, ranging between approximately 1.70 and $8.93 \mathbf{m g} / \boldsymbol{m}^{3}$ since 1987. Please refer to Appendix E for a detailed statistical analysis explanation and data print-out.

While algae are naturally present in all lakes, an excessive or increasing amount of any type is not welcomed. In freshwater lakes, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

TRANSPARENCY

> Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the lake has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. The median summer transparency for New Hampshire's lakes and ponds is $\mathbf{3 . 2}$ meters.

The current year data (the top graph) show that the non-viewscope inlake transparency increased from June through August.

It is important to note that as the chlorophyll concentration decreased at the deep spot as the summer progressed, the transparency increased. We typically expect this inverse relationship in lakes. As the amount of algal cells in the water increases, the depth to which one can see into the water column typically decreases and vice versa.

The historical data (the bottom graph) show that the 2008 mean nonviewscope transparency is much greater than the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency was slightly less than the non-viewscope transparency on the August sampling event. The transparency was not measured with the viewscope on the June or July sampling events. As discussed previously, a comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual non-viewscope transparency has not significantly changed since monitoring began. Specifically, the transparency has fluctuated between approximately 4.93 and 6.90 meters, but has not continually increased or decreased since 1987. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

TOTAL PHOSPHORUS

> Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake/pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is $12 \mathrm{ug} / \mathrm{L}$. The median summer phosphorus concentration in the hypolimnion (lower layer) is $14 \mathrm{ug} / \mathrm{L}$.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration increased slightly from June to July, and then decreased slightly from July to August.

The historical data show that the 2008 mean epilimnetic phosphorus concentration is slightly less than the state median and is approximately equal to the similar lake median. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration decreased from June to July, and then remained stable from July to August.

The historical data show that the 2008 mean hypolimnetic phosphorus concentration is slightly less than the state median and is approximately equal to the similar lake median. Please refer to Appendix F for more information about the similar lake median.

Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the epilimnion (upper layer) has not significantly changed (either increased or decreased) since monitoring began. Specifically, the epilimnetic phosphorus concentration has remained relatively stable, ranging between approximately 3 and 11 ug/L since 1987. Please refer to Appendix E for the statistical analysis explanation and data print-out.

Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the hypolimnion (lower layer) has not significantly changed since monitoring began. Specifically, the hypolimnetic phosphorus concentration has fluctuated between approximately 10 and $26 u g / L$ since 1991. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively affect the ecology and the recreational, economical, and ecological value of lakes and ponds.

TABLE InTERPRETATION

> Table 2: Phytoplankton
Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the lake. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample.

The dominant phytoplankton and/or cyanobacteria observed in the August sample were Tabellaria (Diatom), Anabaena (Cyanobacteria), and Dinobryon/Asterionella (GoldenBrown/Diatom).

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.
> Table 2: Cyanobacteria
A moderate amount of the cyanobacterium Anabaena was observed in the August plankton sample. This cyanobacteria, if present in large amounts, can be toxic to livestock, wildlife, pets, and
humans. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria.

Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather.

The presence of cyanobacteria serves as a reminder of the lake's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the lake by eliminating lawn fertilizer use, keeping the lake shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the lake in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface in high concentrations. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator.

> Table 4: $\mathbf{p H}$

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.
pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is 6.6, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH , please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from 5.98 in the hypolimnion to 6.64 in the epilimnion, which means that the water is slightly acidic.

It is important to point out that the hypolimnetic (lower layer) pH was lower (more acidic) than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the state's abundance of granite bedrock and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase lake pH .

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is $\mathbf{4 . 8} \mathbf{~ m g} / \mathbf{L}$, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was $4.6 \mathbf{~ m g} / \mathrm{L}$, which is approximately equal to the state median. In addition, this indicates that the lake is moderately vulnerable to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is 38.4 uMhos/cm. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was $\mathbf{7 1 . 8 3} \mathbf{u M h o s} / \mathbf{c m}$, which is greater than the state median.

The conductivity has gradually increased in the lake and tributaries since monitoring began. Specifically, the 2008 conductivity increased likely due to the significant storm events and above average wetfall. Typically, increasing conductivity indicates the influence of pollutant sources associated with human activities. These sources include
failed or marginally functioning septic systems, agricultural runoff, stormwater runoff, and road runoff which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and rain event sampling along tributaries with elevated conductivity to help identify the sources.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.

We also recommend that your monitoring group conduct a shoreline conductivity survey of the lake and tributaries with elevated conductivity to help identify the sources.

To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 special topic article, which is posted on the VLAP website at
http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

Therefore, we recommend that the epilimnion (upper layer) be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is
the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The phosphorus concentration in the Morotta and Zowski Inlets was relatively low this year, which is good news. However, we recommend that your monitoring group sample the major tributaries to the lake/pond during snow-melt and periodically during rainstorms to determine if the phosphorus concentration is elevated in the tributaries during these times. Typically, the majority of nutrient loading to a lake occurs in the spring during snow-melt and during intense rainstorms that cause soil erosion and surface runoff and within the watershed.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at
http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.

The total phosphorus concentration was elevated ($41 \mathbf{u g} / \mathbf{L}$) in Fisher Road Inlet this year. This is a relatively new station; therefore we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary so that we can determine what may be causing the elevated concentrations.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at
http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.

The total phosphorus concentration in the Main Inlet was elevated ($45 \mathbf{u g} / \mathbf{L}$) on the July sampling event. The turbidity of the sample was also elevated (9.26 NTUs), which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in the watershed. Field data indicate heavy algal growth in the Inlet which could also elevate turbidity levels. The elevated phosphorus concentration likely caused the abundant algal growth.

If you suspect that erosion is occurring in this area of the watershed, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the elevated levels of turbidity and phosphorus.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special
topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.
> Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) collected during 2008. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of sufficient amounts of dissolved oxygen in the water column is vital to fish and amphibians and bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was much lower in the bottom two meters than in the epilimnion (upper layer) at the deep spot on the August sampling event. As stratified lakes age, and as the summer progresses, oxygen typically becomes depleted in the hypolimnion by the process of decomposition. Specifically, the reduction of hypolimnetic oxygen is primarily a result of biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake where the water meets the sediment. When hypolimnetic oxygen concentration is depleted to less than $1 \mathrm{mg} / \mathrm{L}$, as it was on the annual biologist visit this year and on many previous annual visits, the phosphorus that is normally bound up in the sediment may be rereleased into the water column, a process referred to as internal phosphorus loading.

Low hypolimnetic oxygen levels are a sign of the lake's aging and health. This year the DES biologist collected the dissolved oxygen profile in August. We recommend that the annual biologist visit for the 2009 sampling year be scheduled during June so that we can determine if oxygen is depleted in the hypolimnion earlier in the sampling year.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The tributary and deep spot turbidity was relatively low this year, which is good news.

However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the pond.

For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at
http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.

As discussed previously, the Main Inlet turbidity sample was elevated (9.26 NTUs) on the July sampling event, which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this area of the watershed. When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting tributary samples, please be sure to sample where the stream is flowing and where the stream is deep enough to collect a "clean" sample free from debris and sediment. Field data also indicated heavy algal growth which could cause elevated turbidity levels.

If you suspect that erosion is occurring in this area of the watershed, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the elevated levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at
http://www.des.nh.gov/organization/divisions/water/wmb/vlap/c ategories/publications.htm, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage may be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems,
animal waste, or waterfowl waste, it is best to conduct E. coli testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion $\left(\mathrm{Cl}^{-}\right)$is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted acute and chronic chloride criteria of $\mathbf{8 6 0}$ and $\mathbf{2 3 0} \mathbf{~ m g} / \mathbf{L}$ respectively. The chloride content in New Hampshire lakes is naturally low, generally less than $2 \mathrm{mg} / \mathrm{L}$ in surface waters located in remote areas away from habitation. The median epilimnetic chloride value for New Hampshire lakes and ponds is $\mathbf{5} \mathbf{~ m g} / \mathbf{L}$. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was not conducted during 2008.
> Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

Data Quality Assurance and Control

Annual Assessment Audit:

During the annual visit to your lake, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an excellent job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Useful Resources

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/ard/docum ents/ard-32.pdf.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or
www.des.nh.gov/organization/commissioner/pip/publications/wd/docu ments/wd-03-42.pdf.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or
www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/docu ments/wmb-10.pdf.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/ documents/sp-1.pdf.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or
www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/docu ments/wmb-4.pdf.

Sand Dumping - Beach Construction, DES fact sheet WD-BB-15, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/ documents/bb-15.pdf.

Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/sp/ documents/sp-4.pdf.

Soil Erosion and Sediment Control on Construction Sites, DES fact sheet WQE-6, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/aot/docum ents/wqe-6.pdf.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

