

## SanjSCOPE™ EZ-THERM LOCK-IN THERMAL IMAGING SYSTEM

The **SanjSCOPE™ EZ-THERM LOCK-IN THERMAL IMAGING CAMERA SYSTEM** provides an affordable platform to support both **LOCK-IN INFRARED EMISSION THERMOGROPHY and LOCK-IN THERMOREFLECTANCE IMAGING.** The EZ-THERM

system comprises the EZ500A Controller with a selection of high performance INFRARED (IR) or THERMOREFLECTANCE (TR) sensors to address a wide range of thermal imaging applications and requirements. The sensors are easily integrated to existing semiconductor test systems and the EZ500A Controller can simultaneously support up to three sensors.







The lock-in technique enables repeated measurements to be made over time to significantly improve the signal to noise ratio and subsequently enhance the thermal

sensitivity. With this approach

LOCK-IN THERMAL IMAGING

thermal sensitivities in the 1 mK

range can be achieved enabling detection of hot spots with power levels less than 10 microwatts with san IR sensor. With TR sensors, diffraction-limited spatial resolution addresses the resolution required for today's advanced devices.



## **TEMPERATURE CALIBRATION**

SPOP A LAAAAAAAAAAAAAAA

The EZ500A supports multiple techniques for temperature calibration. Included with the EZ500A is a high resolution thermocouple for monitoring the temperature of the device under test (DUT). The



EZ500A can also be connected to an embedded thermal sensor. An optional Thermal Chuck is also available from Microsanj for added calibration



flexiblity. A proprietary TransientCAL<sup>™</sup> technique is used to obtain an emissivity map for the DUT to achieve a temperature accuracy of ±2 degrees C.



The EZ500A EZ-THERM LOCK-IN THERMAL IMAGING CAMERA SYSTEM includes:

- Controller with lock-in electronics for high resolution thermal imaging
- Embedded User-Friendly SanjVIEW<sup>™</sup> and SanjANALYZER<sup>™</sup> SW with advanced algorithms for system management, data acquisition, and data analysis
- TransientCAL<sup>™</sup> technique for temperature calibration and emission mapping
- High resolution thermocouple for temperature sensing
- High performance monitor, keyboard, & mouse
- All necessary cables for installation and connection to customer-provided optical system and probe station
- User installation guide and operating manual

## SanjSCOPE™ EZ-THERM LOCK-IN THERMAL IMAGING SYSTEM

| PARAMETER                        | EZ500A SanjSCOPE™ EZ-THERM™ CONTROLLER                                                                         |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Thermal Imaging Method           | Lock-in Imaging for VIS(TR), NIR(TR), MWIR & LWIR Emission                                                     |  |  |
| Software                         | SanjVIEW™ for system management and data acquisition<br>SanjANALYZER™ for thermal data processing and analysis |  |  |
| Synchronization Modes            | Input or Output TTL compatible Trigger                                                                         |  |  |
| Absolute Temperature Calibration | ±2.0 °C with TransientCAL™ Method for IR Imaging<br>With embedded sensor or provided thermocouple              |  |  |
| LED Illumination Wavelengths     | 405 nm, 470 nm, 530 nm, 780 nm, White                                                                          |  |  |
| Temperature Measurement Range    | +10 °C to +300 °C (High Gain) to +500 °C (Low Gain)                                                            |  |  |
| Height x Width x Depth           | 4.25" x 14" x 12" (108 mm x 356 mm x 305 mm)                                                                   |  |  |
| Ambient Operating Temperature    | 10 °C to 35 °C                                                                                                 |  |  |
| Display, Keyboard & Mouse        | Included                                                                                                       |  |  |

| PARAMETER                      | THERMOREFLECTANCE & INFRARD-BASED SENSORS |                            |                            |                                             |                          |
|--------------------------------|-------------------------------------------|----------------------------|----------------------------|---------------------------------------------|--------------------------|
| Model Number                   | EZTR-VIS2                                 | EZTR-VIS4                  | EZTR-NIR                   | EZIR-LW12<br>EZIRS-LW12                     | EZIR-MW15                |
| Detector Type                  | CMOS                                      | CMOS                       | InGaAs                     | VO Micro-<br>bolometer                      | Cooled InSb              |
| Spectral Range                 | 400 to 800 nm                             | 365 to 800 nm              | 900 to 1700 nm             | 7.5 to 13 µm                                | 3.4 to 5.1 μm            |
| Active Thermal Pixels          | 1920 x 1200                               | 2048 x 2048                | 640 x 512                  | 640 x 512                                   | 640 x 512                |
| Detector Pitch                 | 5.86 µm                                   | 5.5 μm                     | 15 µm                      | 12 µm                                       | 15 µm                    |
| Movie Mode                     | 30 Hz                                     | 30 Hz                      | 30 Hz                      | EZIR: 30 Hz<br>EZIRS: 8.6 Hz                | 30 Hz                    |
| Spatial Resolution             | 59 nm/pixel<br>@100x                      | 55 nm/pixel<br>@100x       | 150 nm/pixel<br>@100x      | 24 μm/pixel<br>w/0.5x Lens                  | 15 μm/pixel<br>w/1x Lens |
| Field of View (FOV)            | 2.5 mm x 1.4<br>mm at 5x                  | 2.25 mm x 2.25<br>mm at 5x | 1.92 mm x 1.54<br>mm at 5x | 15.4 mm x 12.3<br>mm at 0.5x                | 9.6 mm x 7.7<br>mm at 1x |
| NETD (with Lock-In, 5 min Avg) | 100 mK                                    | 250 mK                     | 1250 mK                    | 10 mK                                       | 5 mK                     |
| High Speed Transient           | 50 µs                                     | 50 µs                      | 50 µs                      | 33 ms                                       | 17 ms                    |
| Mechanical Mount               | C-Mount                                   | C-Mount                    | C-Mount                    | SM1 thread (M25/M26/RMS adapters available) |                          |

| ACCESSORIES                      | DESCRIPTION                                                                                                    |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|
| Thermal Chuck for IR Calibration | Provides 20 °C to 120 °C temperature controlled stage for thermal calibration and enhanced thermal sensitivity |
|                                  | <ul> <li>Eliminates the need for thermocouple or embedded sensor</li> </ul>                                    |
|                                  | Enables higher operating temperature for enhanced emissivity                                                   |
| AF-100 Piezo Calibration Tool    | Thermal calibration with auto-positioning & auto-focusing with 50 watt cooling capacity                        |
|                                  | Enables CTR calibration for sub-micron features                                                                |
| SA-200 SanjANALYZER-PLUS™        | For advanced post-processing of SanjVIEW <sup>™</sup> data files with simple interface to                      |
|                                  | MATLAB                                                                                                         |