

Australian & New Zealand

GUIDELINES FOR FRESH & MARINE WATER QUALITY

Deriving water quality guideline values and using weight of evidence in water quality assessments

Rick van Dam

International Symposium on Environmental and Health Risk Assessment in Support of Environmental Management Quy Nhon, Vietnam, 19-21 Dec 2017

Acknowledgments

GV derivation method

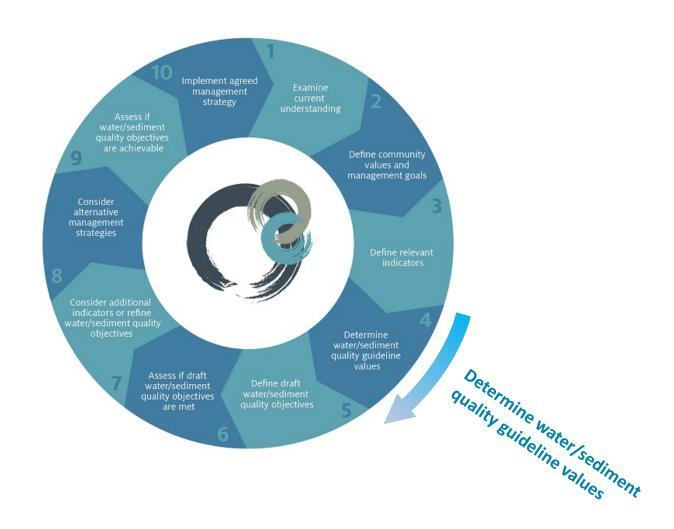
Michael Warne, Graeme Batley, Jenny Stauber, David Fox, John Chapman, Chris Hickey

Weight of evidence guidance

> Chris Humphrey, Graeme Batley, Ross Smith, John Bennett

Coordination

- Angela Slade
- > Department of Agriculture and Water Resources


Australian & New Zealand

GUIDELINES FOR FRESH & MARINE WATER QUALITY

Outline

- 1. Guideline values
- 2. Revised method for deriving toxicant default guideline values
- 3. Other approaches for deriving guideline values
- 4. Using weight of evidence in water quality assessment
- 5. Concluding message

2. Guideline values

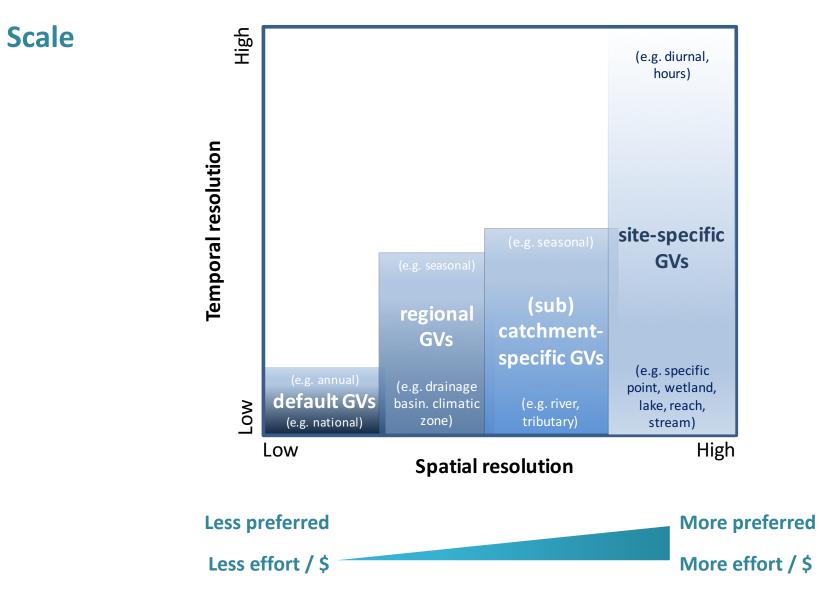
Guideline values

Definitions

Guideline Value (GV) (~ Predicted no-effect concentration; PNEC)

A measurable quantity of a water quality indicator below which there is considered to be a low risk of unacceptable effects occurring to the aquatic ecosystem (or human health)

Site-specific GV


A guideline value that is relevant to the specific location or conditions that are the focus of a given assessment or issue

Default GV (DGV – or 'generic' GV)

A generic guideline value recommended for application in the absence of a more specific guideline value (e.g. site-specific)

Guideline values

Guideline values

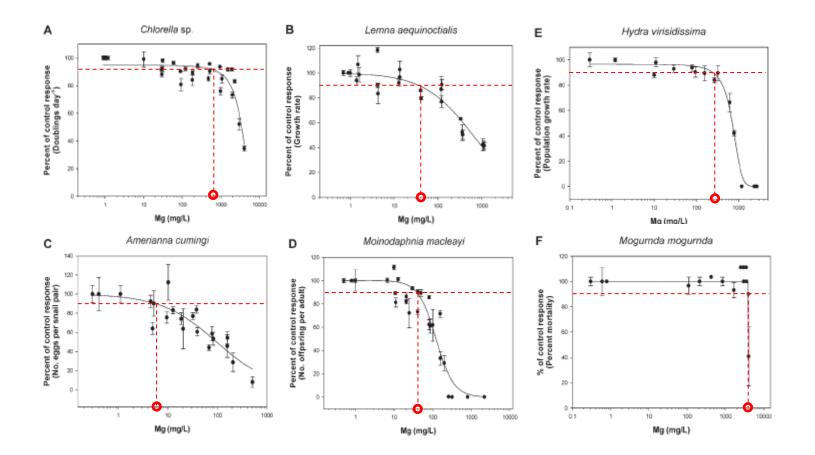
DGVs for toxicants in 2000 (in Australia and New Zealand)

- Toxicant DGVs a key component of the 2000 Water Quality Guidelines (notwithstanding emphasis on preference for site-specific GVs over national DGVs)
- Adopted species sensitivity distribution (SSD) approach to deriving DGVs
 Burrlioz 1.0
- Enormous effort to attempt to derive GVs for >250 toxicants (f'water & marine)

able 3.4.1 Trigge alues applying to f									
applying these leve				systems,	500 10510	0.4.2 010	Occupii o	.4.2.4 101	guidantoo o
Chemical	Trigger values for freshwater (µgL ⁻¹)			Trigger values for marine water (μgL ⁻¹)			ne water		
		Level o	f protectio	n (% spec	ies)	Level of protection (% species)			ies)
		99%	95%	90%	80%	99%	95%	90%	80%
METALS & METAL	LOIDS								
Aluminium	pH >6.5	27	55	80	150	ID	ID	ID	ID
Aluminium	pH <6.5	ID	ID	ID	ID	ID	ID	ID	ID
A stime serve		10	10	10	10	10	10	10	10

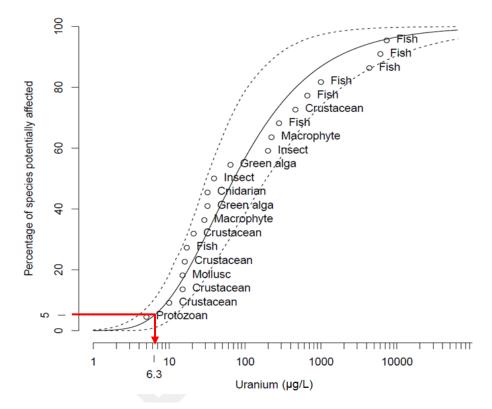
- BUT >70% low reliability (Assessment factor method)
- No GVs updated post-2000 even erroneous ones!

3. Deriving toxicant guideline values (Warne et al. 2018)


Deriving toxicant GVs

- Critical to have a technically robust approach for deriving default and site-specific GVs
- Opportunity to update the ANZECC/ARMCANZ (2000) SSD-based methodology AND use it to derive/revise some DGVs

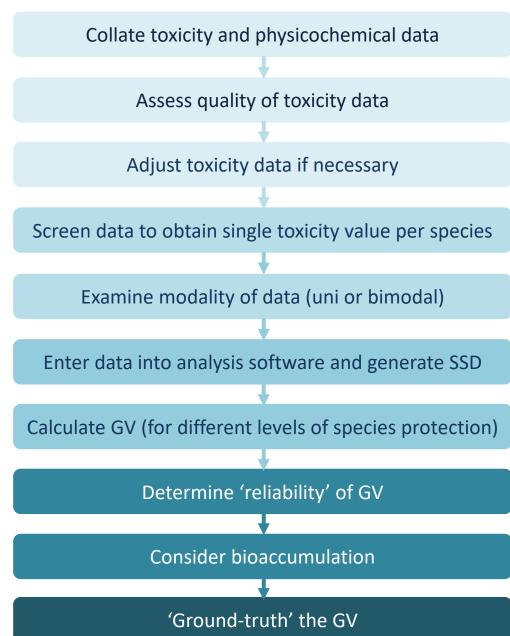
Deriving toxicant GVs – at a glance (using lab data)


1. Generate/acquire appropriate* toxicity estimates (e.g. EC10s) from labbased toxicity (concentration-response) experiments

* Appropriate = acceptable type, quality, etc..

Deriving toxicant GVs – at a glance (using lab data)

- If sufficient toxicity data*, collate data, consolidate to one value per species, plot as a cumulative frequency distribution, and fit a statistical model (species sensitivity distribution – SSD)
- Interpolate/extrapolate concentration predicted to protect x% of species (e.g. 5th centile = concentration to protect at least 95% of species)



* Sufficient (in Aust/NZ) = Data for \geq 5 species for \geq 4 taxonomic groups for SSD method.

Deriving toxicant GVs – revised method

The process

(in more detail)

Deriving toxicant GVs – revised method **Key aspects**

- 1. Updated classifications for acute and chronic toxicity tests
- 2. Broadened acceptable sources of data
- 3. Non-traditional endpoints admissible if ecological relevance can be demonstrated
- 4. Updated hierarchy of acceptable toxicity estimates
- 5. Ability to combine chronic and acute (converted to chronic) data
- 6. More flexibility in decisions best professional judgment
- 7. Species sensitivity distribution-fitting revised approach and software
- 8. Revised GV Reliability classification

Deriving toxicant GVs - revised method

Acute and chronic toxicity classifications

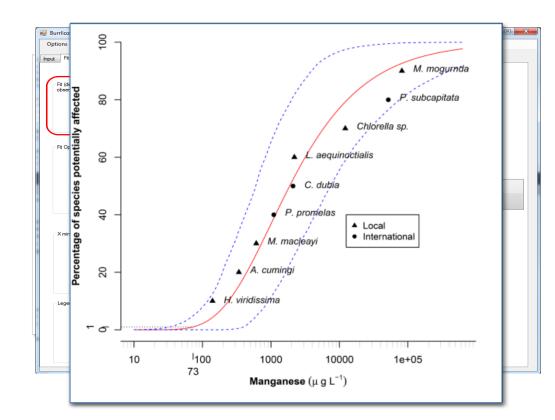
^a The life stage at the start of the toxicity test. ^b Endpoints need to be ecologically relevant – see the section - Acceptable test endpoints. ^cFor acute tests, "All" refers to all ecologically relevant endpoints for a particular life stage of a particular species. ^d Macroinvertebrates include invertebrates where adults are ≥ 2 mm long (e.g. decapods, echinoderms, molluscs, annelids, corals, amphipods, larger cladocerans (such as Daphnia magna, Daphnia carinata and Daphnia pulex) and insect larvae of similar sizes with life cycles markedly longer than most microinvertebrates. ^e Microinvertebrates are operationally defined here as invertebrate species where full grown adults are typically <2 mm in length with relatively short life cycles. Examples of invertebrates that meet this criterion are some cladocerans (e.g. Ceriodaphnia dubia and Moina australiensis), copepods, conchostracans, rotifer, acari, bryozoa, and hydra. Large cladocerans such as Daphnia magna or Daphnia pulex are macroinvertebrates. ^f For chronic tests, "All" encompasses all ecologically relevant endpoints measured in both single and multigeneration tests.

TOXICITY TEST	LIFE STAGE ^a	RELEVANT ENDPOINTS ^b	TEST DURATION
Acute		'	
Fish and amphibians	Adults/juveniles	Allc	<21 d
	Embryos/larvae	All	<7 d
Macroinvertebrates ^d	Adults/juveniles	All	<14 d
	Embryos/larvae	All (except fertilisation, larval	<7 d
		development/ metamorphosis)	
	Embryos/larvae	Larval development/	<48 h
		metamorphosis	
Microinvertebrates ^e	Adults/juveniles/larvae	All (except fertilisation and	<7 d
		larval development – see	
		microinvertebrate chronic)	
Macrophytes	Mature	All	<7 d
Macroalgae	Mature	Lethality and growth	<7 d
Microalgae	Not applicable	All	≤24 h
Microorganisms	Not applicable	All	≤24 h
Chronic			
Fish and amphibians	Adults/ juveniles	Allf	≥21 d
	Embryos/larvae/eggs	All	≥7 d
Macroinvertebrates	Adults/juveniles/larvae	All (except reproduction, larval	≥14 d
		development/metamorphosis)	
	Adults/juveniles/larvae	Reproduction	≥14 d (or at least 3 broods
			for large cladocerans)
	Larvae	Larval development/	≥48 h
		metamorphosis	
	Embryos	Fertilisation	≥1 h
Microinvertebrates	Adults/juveniles/larvae	Reproduction	≥7 d (or at least 3 broods for
			small cladocerans)
	Adults/juveniles/larvae	Lethality/immobilisation	≥7 d
	Larvae	Development	≥48 h
	Embryo	Fertilisation	≥1 h
Macrophytes	Mature	All	≥7d
Macroalgae	Mature	All	≥7 d
	Early life stages	Lethality	≥7 d
	Early life stages	Development	≥48 h
	Early life stages	Fertilisation	≥1 h
Microalgae	Not applicable	All	>24 h
Microorganisms	Not applicable	All	>24 h

Deriving toxicant GVs - revised method

Updated hierarchy of acceptable toxicity estimates

Chronic no/low effect data – NEC, EC/IC/LCx where x≤10, BEC10, EC/IC/LC15-20, NOEC If too few or none of these:


- Chronic effect data (e.g. EC50) converted to chronic no/low effect data
- Acute data converted to chronic no/low effect data
- > Can combine chronic and (converted) acute data if necessary

Greater flexibility in decision making

- Sensible decision making to suit the situation and prevent nonsensical outcomes
- > Within the existing 'rules', recognise need for best professional judgement, including:
 - Acute and chronic toxicity test classifications
 - Age of toxicity data
 - inclusion of "<" and ">" values
 - o Data quality
 - Data selection when multiple data for a single species
 - Data modality
- > Justification for all decisions needs to be documented

Deriving toxicant GVs – revised method Species sensitivity distribution fitting & Burrlioz 2.0

- Fits log-logistic distribution when n < 8 and Burr Type III when n ≥ 8.
- Calculation of 95%
 confidence limits (CLs)
- GV and '% species protected' calculators
- Improved graphics functionality
 - Labels and legends
 - Graphics export function
 - Plot 95% CLs
- Produces a Burrlioz analysis report

https://research.csiro.au/software/burrlioz/

Deriving toxicant GVs – revised method Revised GV reliability classification scheme

> Based on i. type of data, ii. sample size and iii. 'fit' of SSD to data

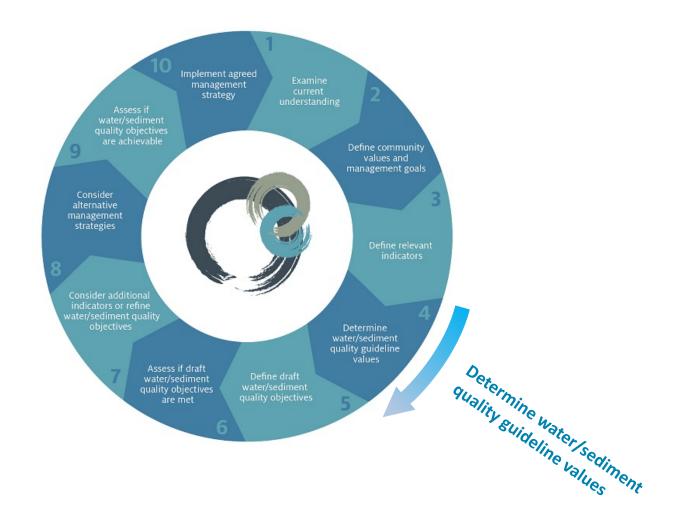
DATA TYPE	SAMPLE SIZE	ADEQUACY OF FIT IN SSD	RELIABILITY
	>15 (Droformed)	Good	Very high
	≥15 (Preferred)	Poor	Moderate
Chronic	9 14 (Cood)	Good	High
Chronic	8 – 14 (Good)	Poor	Moderate
	E 7 (Adaguata)	Good	Moderate
	5 – 7 (Adequate)	Poor	Low
Combined abranic and converted south	≥15	Good	Moderate
Combined chronic and converted acute	215	Poor	Low
or	8 - 14	Good	Moderate
Compliand share is from how dishare is	8 - 14	Poor	Low
Combined chronic fresh and chronic		Good	Moderate
marine	5 – 7	Poor	Low
	245	Good	Moderate
	≥15	Poor	Low
Converted acute	0 14	Good	Moderate
(chronic equivalent)	8 - 14	Poor	Low
	F 7	Good	Low
	5 – 7	Poor	Very low

Assessment factor-based GVs – 'unknown' reliability

Deriving toxicant GVs - revised DGVs

- Selection based on jurisdictional priorities
- > Screened, ranked and prioritised \rightarrow "Top 50" toxicants

Toxicant	Туре	Fresh/Marine	Toxicant	Туре	Fresh/Marine
Manganese	Metal	Marine	Glyphosate	Pesticide	Fresh
Boron	Metal	Fresh	MCPA	Pesticide	Fresh
Chromium (Cr III)	Metal	Fresh		Destiside	
Iron	Metal	Fresh	Metsulfuron-methyl	Pesticide	Fresh
Iron	Metal	Marine	Paraquat	Pesticide	Fresh
Nitrate	Non-met inorg	Fresh	Picloram	Pesticide	Fresh
Chlorine	Non-met inorg	Marine	Metalochlor	Pesticide	Fresh
Ammonia	Non-met inorg	Fresh	Simazine	Pesticide	Fresh
Fluoride	Non-met inorg	Fresh	Simazina	Docticido	
Bisphenol-A	Indust Chem	Marine	Simazine	Pesticide	Marine
Bisphenol-A	Indust Chem	Fresh	2,4-D	Pesticide	Fresh
Triclosan	Indust Chem	Fresh	Fipronil	Pesticide	Fresh
PFOS	Indust Chem	Fresh	Mancozeb	Pesticide	Fresh
PFOA	Indust Chem	Fresh	Permethrin	Pesticide	Fresh
Dioxins	Indust Chem	Fresh	Sulfometuron	Pesticide	Fresh

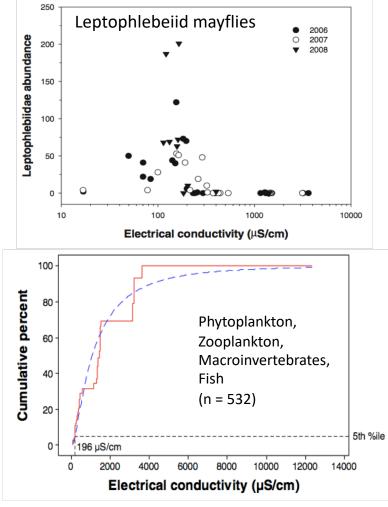

 α -cypermethrin

+ copper and zinc (fresh)

Fresh

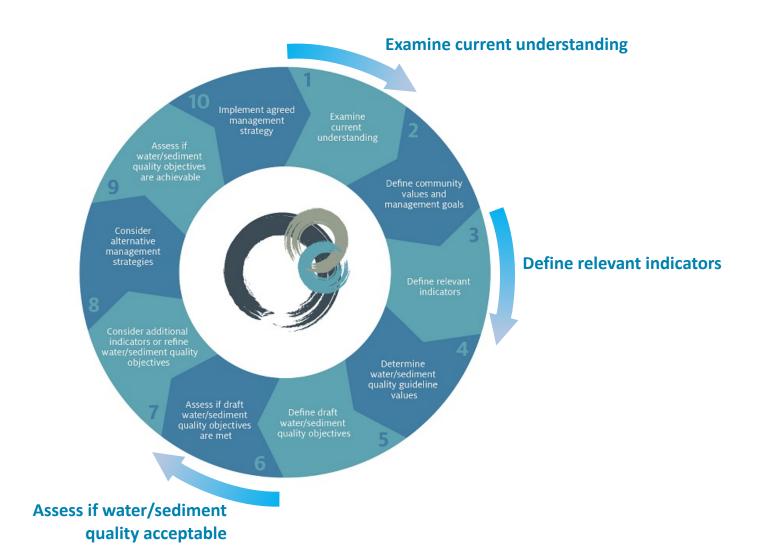
Pesticide

3. Other approaches for deriving guideline values



Other approaches for deriving toxicant GVs

- Bioavailability models
 - Biotic ligand models
 - Multiple linear regression models
- Referential approach
- Field or semi-field (mesocosm) data
- Multiple lines of evidence

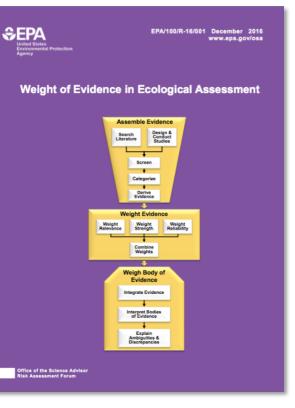

Line of evidence and response	Conditions	Candidate GVs (mg/L)
Laboratory Sub-lethal toxicity, 6 local species	Short-term: chronic 72-144 h exposures; Mg:Ca <9:1	2.5
Mesocosms Zooplankton: 4 weeks: Similarity Zooplankton: 4 weeks: Taxa number Chlorophyll a concentration: 4 weeks Chlorophyll a concentration: 8 weeks	Mid-term and sustained: chronic 4-8 week exposures; Mg:Ca <20:1	2.4 2.3 1.5 2.7
Billabong macroinvertebrates GTB similarity GTB taxa number SSD: All sites SSD: GTB TITAN: All minesites, filtered TITAN: All minesites, unfiltered	Long-term and sustained: average of antecedent wet and dry seasons median contaminant values; Mg:Ca ~3.5:1	5.6 3.9 4.7 5.0 1.3 2.4

Field-based GV for EC

van Dam et al. (2014)

4. Using weight of evidence in water quality assessment

Weight of evidence in WQ assessment Introduction – what, why, etc.?


- Assessing water quality against a GV is often insufficient on its own to enable sufficient confidence in conclusions
 - Examining multiple lines of evidence is often more appropriate
- Weight of evidence
 - A process to collect, analyse and evaluate a combination of different (qualitative, semi-quantitative or quantitative) lines of evidence to make an overall assessment of water/sediment quality, to inform management decisions
 - Incorporates judgements about the quality, quantity, relevance and congruence of the data contained in the different lines of evidence
- WoE is a key platform for water/sediment quality assessments in the Aust/NZ Water Quality Guidelines
- Our guidance attempts to make WoE accessible and useful to water quality assessors, so is deliberately simple (and non-quantitative), but allows users to make it as complex as they need it to be

Introduction – what, why, etc.?

Key information sources

Aust & NZ governments (2018)

Australian Government Initiative	e Australian & New GUIDELINE Res & MAN WATER QU	Zestand S FOR REINE ALITY		Search	Q Search			
About	Management framework	Guideline values	Your location	Monitoring	Resources			
Home » <u>Resources</u> » <u>Key concepts</u>	» Weight of evidence							
Skey concepts	Weight of e	vidence						
Adaptive management Community values	-			erent qualitative, semi-quantitative or the central platform for water/sedime				
Conceptual models	Applying a weight-of-evide of evidence.	Applying a weight-of-evidence process incorporates judgements about the quality, quantity, relevance and congruence of the data contained in the different lines						
Indicators	>	or evuence. The Water Quality Guidelines recommends measuring indicators from multiple lines of evidence across the pressure-stressor-ecosystem receptor (PSER) causal pathway. This will give greater weight (or certainty) to your assessment conclusions — and subsequent management decisions to meet the water/sediment quality objective — than basing your evaluation on a single line of evidence.						
Level of protection								
Management goals	Our approach for weight of	Our approach for weight of evidence:						
Mixing zones Predictive models	 encompasses a broad 	 harmonises with existing pressure-state-response (PSR) management models that include indicator sets selected across the cause-and-effect pathway encompasses a broad set of line of evidence indicators, including those with interpretative and diagnostic value (e.g. toxicity, biomarkers), as well as non -water outailly related streams 						
Quadruple bottom line		iter Quality Management Framewo I uses of the Water Quality Manage						
Stakeholder involvement	Strengthening	conclusions from wa	ater/sediment quai	litv assessments				
Water quality objectives	Methods and technical gui	dance for reaching the correct or va	alid conclusion in water/sediment	quality assessments, together with m				
Weight of evidence				nt' concept in the ANZECC & ARMCAN				
EDIT LINKS	Our methodology to incorp	orate weight of evidence in water/	sediment quality assessments is c	consistent with recent moves internati	ionally (e.g. USEPA 2016).			
	0	nmental assessment mo						
	Government jurisdictions in contaminant pathway that		veloping environmental indicator	sets according to issues and the key e	elements of the conceptual			
	· · · · ·	conceptual model used by the Quee r refinement is replacement of 'resp		 and applied it to water/sediment qu or' (ER). 	ality assessments in the Water			
		el, with information from lines of ev ision regarding the cause-and-effec		ed across each of the pressures, stress	ors and receptors, reduces the			

USEPA (2016)

https://www.youtube.com/watch?v=ikReHM_tVS4

Introduction – what, why, etc.?

Key information sources

Aust & NZ governments (2018)

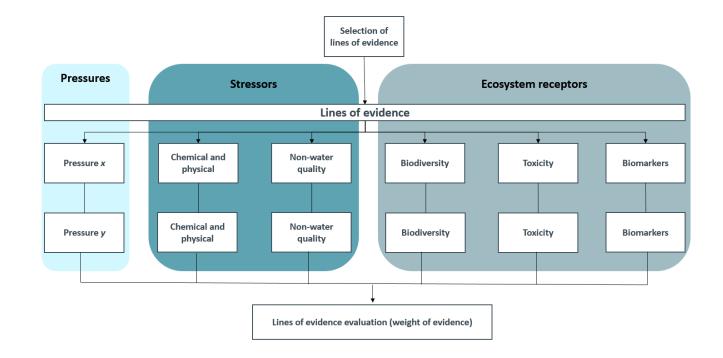
Australian Government Initiative	Search Q Search	Integrated Environmental Assessment and Management — Volume 13, Number 6—pp. 1038–1044 1038 Received: 29 March 2017 Returned for Revision: 28 April 2017 Accepted: 23 May 2017
About <u>Home</u> » <u>Resources</u> » <u>Key concepts</u> »	Management framework Guideline values Your location Monitoring Resources	Health & Ecological Risk Assessment
Key concepts Adaptive management Community values Conceptual models Indicators Level of protection Management goals	Weight of evidence describes the process to collect, analyse and evaluate a combination of different qualitative, semi-quantitative or quantitative lines of evidence to make an overall assessment of water/sediment quality and its associated management. It is the central platform for water/sediment quality assessments in the Water Quality Guidelines. Applying a weight-of-evidence process incorporates judgements about the quality, quantity, relevance and congruence of the data contained in the different lines of evidence. The Water Quality Guidelines, recommends measuring indicators from multiple lines of evidence across the pressure-stressor-ecosystem receptor (PSER) causal pathwar, This will give greater weight (or certainty) to your assessment conclusions – and subsequent management decisions to meet the water/sediment quality objective – than basing your evaluation on a single line of evidence.	A Weight of Evidence Framework for Environmental Assessments: Inferring Qualities Glenn Suter, *† Susan Cormier, † and Mace Barron ‡ US Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Cincinnait, Ohio US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf Breeze, Florida
Mixing zones Predictive models Quadruple bottom line Stakeholder involvement	Our approach for weight of evidence: • harmonises with existing pressure-state-response (PSR) management models that include indicator sets selected across the cause-and-effect pathway • encompasses a broad set of line of evidence indicators, including those with interpretative and diagnostic value (e.g. toxicity, biomarkers), as well as non -water quality related stressors • integrates into the <u>Water Quality Management Framework</u> at 3 key steps • adapts to many typical uses of the Water Quality Management Framework.	Integrated Environmental Assessment and Management — Volume 13, Number 6—pp. 1045–1051 Received: 29 March 2017 Returned for Revision: 1 May 2017 Accepted: 23 May 2017 1045 Health & Ecological Risk Assessment
Water quality objectives Weight of evidence EDIT LINKS	Strengthening conclusions from water/sediment quality assessments Methods and technical guidance for reaching the correct or valid conclusion in water/sediment quality assessment; sogether with management frameworks that support such evaluations, have steadily improved since the 'integrated water quality assessment' concept in the ANZECC & ARMCANZ (2000) guidelines. Dur methodology to incorporate weight of evidence in water/sediment quality assessments is consistent with recent moves internationally (e.g. USEPA 2016). Integrated environmental assessment models reduce risk of making poor decisions Government juridictions in Australia and New Zealand are developing environmental indicator sets according to issues and the key elements of the conceptual contaminant pathway that depict causal links.	A Weight of Evidence Framework for Environmental Assessments: Inferring Quantities Glenn Suter, *i Susan Cormier, † and Mace Barron ‡ IVS Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, Ohio IVS Environmental Protection Agency, Office of Research and Development, National Health and Environmental, Effects Research Laboratory, Guif Ecology Division, Guif Breeze, Florida
	We have adapted the <u>PSR conceptual model</u> used by the Queensland Government (DNRM 2013) and applied it to water/sediment quality assessments in the Water Quality Guidelines; a minor refinement is replacement of 'response' (R) with 'ecosystem receptor' (ER). Adoption of the PSER model, with information from lines of evidence drawn from and integrated across each of the pressures, stressors and receptors, reduces the risk of making a wrong decision regarding the cause-and-effect linkages for a particular issue.	

CHECK OUT THE LATEST PODCAST! **IEAM Podcast 31** Tipping the scales: weight of evidence approach for qualities and quantities, with Susan Cormier WWW.SETACJOURNALS.ORG

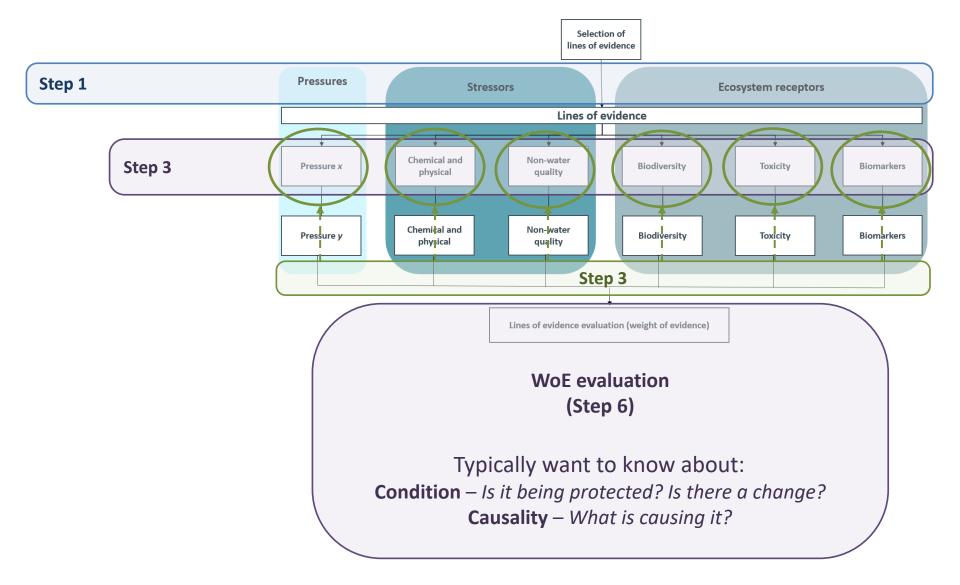
https://www.youtube.com/watch?v=ikReHM_tVS4_

Suter et al. (2017a, b)

Weight of evidence in WQ assessment The basics


- Links to a pressure stressor ecosystem receptor (PSER) causal pathway conceptualisation of water quality issues
- Encourages selecting, measuring, evaluating and integrating a broad set indicators across the PSER causal pathway elements
- Introduces users to (amongst other things):
 - Properties of evidence (relevance, reliability, strength)
 - Characteristics of causation (time order, co-occurrence, etc..)
 - "Weighting" and "weighing"
- Emphasises benefits of considering the WoE process at the *outset* of the WQ assessment

Weight of evidence in WQ assessment The basics


> Explicitly integrated into the WQMF at:

Step 1 – Formulating the problem in a PSER conceptual model, and starting to think about the issues and what might need to be measured Step 3 – Selecting lines of evidence (LoEs) and associated indicators across the PSER elements **Step 6** – Combining LoEs in a WoE-based evaluation to draw conclusions about ambient water/sediment quality

WoE and the PSER model

Weight of evidence in WQ assessment WoE and the PSER model

Type and quality of evidence as an up-front consideration

 \succ

Step 3 – Selecting lines of evidence (LoEs) and associated indicators

Example matrix for quality of the body of evidence for investigating an unexpected event

	Str	essor		osystem rece	ptor		
		Line of evi	dence			Quality of	Comment
Pressure 1	Chemical & physical	Other non- WQ-related	Biodiversity	Toxicity	Biomarkers	evidence	
	✓					Generally low	Contaminant might not be detected due to transient nature. No cause-effect data to link contaminant to observed response.
				~		Low to moderate	Source of toxicity not measured. No toxicity may indicate a (missed pulse but if persistent in the system greater likelihood of inferring a water-quality related stressor.
			~			Low to moderate	No response indicates no long-term effect. Response correlating with a putative (spatial) disturbance gradient increases inference. Lack of pressure and stressor information limits conclusions. Effect could be due to unmeasured toxicant pulse.
~		~				Moderate to high when combined with evidence from other lines of evidence	Measures of the pressure (or surrogates) responsible may correlate with such 'events'. Other evidence of stress could be important (e.g. weather, overfishing, freshwater inputs to marine systems, engineering works, heavy rainfall, unusual temperatures).
	~			~		Moderate	Identification of potential toxicant but no indication of long-term ecosystem effects.
	~			*		Moderate	Potential cause-and-effect information but limited if contaminant not bioavailable or transient (pulse). Other effects may be contributing to biodiversity response. Need to check all pressures and stressors.
	✓		~	~		High	Contaminant has potential to cause ecosystem harm. May not be conclusive if contaminant transient.
	✓		✓	✓	✓	High	Bioaccumulation adds evidence of potential toxicant(s).
	~	~	~	~	~	High	For fish kills, pathological assessments are also usual and assist with identification of the cause from among various candidates.

Weight of evidence in WQ assessment WoE-based evaluation

Step 6 – Evaluating LoEs in a WoE evaluation to draw conclusions about ambient water/ sediment quality

- Provision of generic interpretive guidance for different combinations of responses amongst LoEs (the body of evidence)
- > For each 'typical use', user presented with:
 - (i) Possible interpretations of findings based on the responses recorded for the various LoEs
 - Greater number of aligned responses (e.g. effect v no effect) provides greater strength of evidence
 - (ii) Options to be more (semi)quantitative/complex
- Option (via Step 7) to add other LoEs if necessary

Weight of evidence in WQ assessment WoE-based evaluation – high level interpretive guidance

Step 6 – Evaluating LoEs in a WoE evaluation to draw conclusions about ambient water/ sediment quality Interpretations for likely combinations of line of evidence responses assessed in relation to guideline values and reference-site data

	Line	of evidence		
Stressor		Ecosystem receptor		- Interpretation
Chemistry	Toxicity	Bioaccumulation	Biodiversity	
×	×	×	×	No exceeded guideline values and no effects on the ecosystem
\checkmark	×	×	×	Measured contaminants are not bioavailable, or are present at non- toxic levels
×	\checkmark	×	×	Toxic effects due to unmeasured contaminants or an unidentified stressor
✓	×	\checkmark	×	Contaminants exceeding guideline values and bioaccumulating but not toxic
\checkmark	×	×	\checkmark	Toxicity not seen using the test organisms but effects are still seen on biodiversity (toxicity testing may not have been representative of sensitive taxa or did not reflect higher-level ecosystem responses)
×	×	×	\checkmark	Unmeasured contaminants or other factors (e.g. another stressor) contributing to ecological effects.
✓	✓	×	×	Some resistance to effects on biodiversity (ecosystem resilience overwhelming toxicity to some species), or test species not representative of receiving ecosystem sensitivity
×	✓	×	~	Unmeasured or cumulative effects of contaminants or stressors are toxic and affecting ecosystem health.
✓	✓	\checkmark	×	Measured contaminants are toxic and accumulating but no significant ecological effects are observed (mitigating processes occurring, or ecosystem may have acquired tolerance)
✓	\checkmark	\checkmark	\checkmark	Strong evidence of water-quality-related impact

WoE-based evaluation – semi-quantitative approaches

Step 6 – Evaluating LoEs in a WoE evaluation to draw conclusions about ambient water/ sediment quality Table 19 Proposed scoring system for lines of evidence in a sediment quality weight-of-evidence assessment

Line of evidence	Indicator type	Score 3	Score 2	Score 1
Chemical and physical	Sediment chemistry	Concentration > SQGV-high	Concentration > GV, < SQGV-high	Concentration < GV
	Pore water chemistry	Concentration > WQGV-HC10 ^a	Concentration > WQGV-HC5 ^a , < WQGV-HC10	Concentration < WQGV-HC5
	Toxicity	≥ 50% effect vs control	20–50% effect vs control	< 20% effect vs control
Biomarkers	Bioaccumulation	Significantly different (p < 0.05) and > 3 × control ^b	Significantly different ($p < 0.05$) and $\leq 3 \times$ control	Not significantly different from control
Biodiversity	Biodiversity	Significant and high effects on abundance or diversity	Significant but moderate effects on abundance or diversity	No significant effects on abundance or diversity

GV = guideline value, SQGV = sediment quality guideline value, WQGV = water quality guideline

a. HC5 and HC10 are the guideline values for 90% and 95% species protection, respectively.

b. For essential substances that are well regulated, significant difference from control/reference will be the most important characteristic to consider.

WoE-based evaluation – semi-quantitative approaches

Step 6 – Evaluating LoEs in a WoE evaluation to draw conclusions about ambient water/ sediment quality Table 21 Weight-of-evidence scores and assessments for 14 examples of contaminated sediments using a semi-quantitative approach to assess different lines of evidence (LOEs) for a single pressure within an ecosystem

Example	Chemical and Physical LOE	Toxicity LOE	Biodiversity LOE	Biomarkers LOE	Score	Overall assessment
A	3	3	3	2 or 3	3	Significant adverse effects from sediment contamination
В	3	3	2	2 or 3	3	Significant adverse effects from sediment contamination
С	2 or 3	3	2	2	3	Significant adverse effects from sediment contamination
D	2 or 3	2	2	1 or 2	2	Possible adverse effects from sediment contamination
E	2	2 or 3	2	1or 2	2	Possible adverse effects from sediment contamination
F	2	2	2 or 3	1 or 2	2	Possible adverse effects from sediment contamination
G	2 or 3	2 or 3	1	2 or 3	2	Toxic chemical stressing system but resistance may have developed at community level
Н	1	2 or 3	2 or 3	1	2	Unmeasured toxic chemicals causing effects on communities is possible
I	1	2 or 3	1	1	2	Unmeasured physical or chemical causes of toxicity
J	2 or 3	1	2 or 3	1	2	Chemicals are not bioavailable or community change may not be due to chemicals
К	1	1	2 or 3	1	1	Changes probably not due to measured contaminants
L	1 or 2	1	1	1 or 2	1	No adverse effects
М	1	1	1	1	1	No adverse effects
N	2 or 3	1	1	1	1	Contaminants unavailable

Links back to management decisions

Depending on WoE-based WQ assessment outcomes:

Step 7 – Option to consider selection of additional or alternative indicators or LoEs, or further refinement of the GVs

Step 8 – Option to consider alternative management strategies to improve water/sediment quality

Step 10 – Communicate and implement decisions based on assessment, and monitor, using multiple lines of evidence if needed

5. Concluding message

- Risk-based assessment and management of water quality in Australia and New Zealand has been strengthened by:
 - Improved DGV derivation method
 - New guidance on other approaches for deriving (sitespecific) GVs
 - Formalisation of the use of a weight of evidence process for assessing water quality
 - Integration of these, and other features, in an effective management framework that helps guide sound water quality assessment and associated decision making to protect or improve water quality

Thank you!

Search...

Q Search

www.waterquality.gov.au/anz-guidelines

(live by March 2018)

Australian & New Zealand GUIDELINES FOR FRESH & MARINE WATER QUALITY


Helping planners, regulators and researchers to manage the quality of our waterways.

Use the management framework >

How to use the guidelines Step through the Water Quality Management Framework & find out about guideline values

Weight of evidence Learn how to select & assess indicators across multiple lines of evidence

Draft toxicant DGVs Find draft toxicant default guideline values

