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ABSTRACT

Developmental pressure across Australia’s northern coastal catchments will increase rapidly in the near future. These areas are
important strongholds for marine biodiversity and contain some of the least impacted marine habitats in the world. Consequently,
such development must take place in an environmentally sustainable manner and needs to be underpinned by sound scientific
knowledge. A study was undertaken to 1) review the current state of the science for toxicity testing methods that have been
developed for, or could be adapted to, Australian tropical marine species and environments and 2) use the information to identify
the research and development needs to develop an appropriate suite of Australian tropical marine toxicity test methods. Sixteen
taxonomic groupings (from 11 broad taxa groups) were reviewed and their suitability in routine toxicity testing protocols was
assessed. The review revealed that there is a paucity of fully-developed, regionally-relevant marine toxicity testing methods
for Australian tropical marine species. Currently, just two fully-developed routine sub-lethal/chronic test protocols exist, both
of which are for tropical marine microalgae (Nitzschia closterium and Isochrysis aff. galbana), while sub-lethal tests using
various tropical coral species have also been applied regularly. Numerous other Australian tropical marine species have been
used for acute toxicity testing. In order to meet minimum requirements recommended by ANZECC/ARMCANZ (2000) for
site-specific assessments, additional sub-lethal/chronic toxicity tests need to be developed. This review identified a number of
different tropical marine species that may be suitable candidates in a suite of toxicity test protocols. The development of such
methods will require a large R&D effort, and regulators, industries and community stakeholders should all have an interest
in ensuring that these important knowledge gaps are addressed.

Key words: tropical; marine; ecotoxicology; Australia; review.

INTRODUCTION

In response to current and projected water shortages in
southern Australia, the Australian Government established
a taskforce in 2007 to examine land and water development
in northern Australia and to investigate ‘the new agricultural
frontier’ (Commonwealth of Australia 2007). In January 2008,
the role of the taskforce was elevated to consider a range of
development opportunities, including agriculture, tourism and
mining (Commonwealth of Australia 2008). This initiative,
combined with the current minerals ‘boom’ in Australia, is
certain to increase development pressure across Australia’s
northern coastal catchments in the next 10-20 years and most
likely beyond.

The coastal waters of northern Australia are recognised
internationally as important strongholds for marine
biodiversity and contain some of the least impacted marine
habitats in the world (Hamilton and Gehrke 2005; Halpern et
al. 2008), including the Great Barrier Reef Marine Park and
World Heritage Area. Moreover, tropical marine ecosystems
include numerous unique features, all of which necessitate
careful consideration and management to preserve the
unique aquatic flora and fauna. Increased urban, agricultural
and industrial development will place added pressures on
these important tropical coastal ecosystems through various
means, including contamination by natural and anthropogenic
chemicals. The Australian Government has emphasised that
such development in the northern parts of Australia must
take place in an environmentally sustainable manner and

*Author for correspondence, email: rick.vandam @environment.gov.au

needs to be underpinned by sound scientific knowledge
(Commonwealth of Australia 2007; 2008). Consequently,
regulatory agencies and industries in the region will require
access to assessment and monitoring tools for tropical
ecosystems in order to acquire the necessary knowledge and
ensure the environment is appropriately protected.

The use of toxicity testing for environmental impact and risk
assessment and water quality guideline derivation is well
established and forms a key component of the Australian and
New Zealand Guidelines for Fresh and Marine Water Quality
(ANZECC/ARMCANZ 2000). Consequently, it stands to
reason that as development increases in tropical Australia’s
coastal zones, there will be an increase in demand for toxicity
testing methods using relevant tropical marine species.

Current developments across tropical Australia that represent
existing or potential sources of contamination to marine
environments include: urban development and intensive
agriculture (metals, pesticides and nutrients) in the north-
east (e.g. Haynes 2001); the oil and gas industry (petroleum
hydrocarbons) in the north-west (e.g. Neff et al. 2000); and
mining and minerals processing (metals and metalloids)
across the whole region (e.g. Haynes 2001; Munksgaard
and Parry 2002; ACIL Tasman and WorleyParsons 2005).
To date, environmental regulators have accepted, and in
some cases recommended, the use of temperate species
and acute tests to assess contaminant toxicity in tropical
marine environments (e.g. WA DOIR 2006). This practice
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Figure 1. The region of Australia’s coastline considered in this
review to represent the extent of tropical marine waters (shaded in
grey), as classified by IMCRA 4.0 (Commonwealth of Australia
2006).

is inconsistent with relevant national guidance (ANZECC/
ARMCANZ 2000) and the findings of recent research that
has compared the sensitivity of temperate and tropical biota
(Kwok et al. 2007).

The present review evaluated the current toxicity testing
methods for water column contaminants using tropical
Australian marine species. A review of Australian tropical
(and temperate) toxicity testing methods for contaminants
in whole sediments is provided by Adams and Stauber (this
issue). For the purposes of the review, Australia’s tropical
marine waters were defined according to the Integrated
Marine and Coastal Regionalisation of Australia (IMCRA)
Version 4.0 (Commonwealth of Australia 2006). Of the 41
Provincial Bioregions around the Australian coastline, the
ten “Tropical waters’ Provinces and six ‘Transitions’ zones
amongst them were taken to incorporate the tropical marine
waters of Australia. This area, which corresponds roughly to
the Australian coastal waters north of the Tropic of Capricorn
(Latitude 23.5°S), extends north from Exmouth Gulf in
Western Australia (approx. Latitude 22°S), across northern
Australia and southward along the Queensland coast to
Bustard Bay (approx. Latitude 24°S) (Figure 1).
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AIMS AND APPROACH

The aims of this study were to:

1. review the current state of the science for toxicity testing
methods that have been developed for, or could be adapted
to, Australian tropical marine species and environments;
and

2. use the information to identify the research and
development needs to develop an appropriate suite of
Australian tropical marine toxicity test methods.

The review covered water column testing for marine plants and
animals, at the ‘whole organism’ level, where the endpoints
assessed were, preferably, sub-lethal, and considered to
have some ecological relevance (e.g. growth, development,
reproductive responses). This focus is consistent with the
ANZECC/ARMCANZ (2000) preference for data based
on such endpoints. In total, information is presented for 16
taxonomic groupings from 11 broad taxa groups: microalgae,
macroalgae, vascular plants, microcrustaceans (amphipods,
copepods, cladocerans), macrocrustaceans (crabs, prawns),
bivalve molluscs (oysters, other bivalve molluscs), gastropod
molluscs, echinoderms (sea urchins, holothurians), bryozoans,
corals and fish. In reviewing literature for these groups,
precedence was given to information about tests that have
been developed using Australian tropical marine species,
followed by tests using Australian temperate species that could
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Table 1. The sensitivity of Nitzschia closterium and Isochrysis galbana to copper.

Species Temperate or Tropical Endpoint Test duration  Cu ECS50 (ng/L)  Reference
N. closterium Temperate Growth rate 72 h 20 Stauber et al. (2000)
10 Stauber et al. (1994b)
17 CSIRO (unpublished)
N. closterium Tropical Growth rate 72 h 50 Harford et al. (unpublished)
35 CSIRO (unpublished)
40 Johnson et al. (2007)
1 galbana Temperate Growth rate 72 h 1.6 Edding and Tala (1996)
1. galbana Temperate Growth rate 96 h 35 Ismail et al. (2002)
1. galbana Tropical Growth rate 72h 4.4 Moreno-Garrido et al. (2000)
1 galbana Tropical Growth rate 5d 910 Yap et al. (2004)

be adapted for use with tropical marine species, followed by
less-detailed discussions of tropical marine toxicity tests
developed and applied overseas. In describing and comparing
the various toxicity tests, attention was paid to the following,
where information allowed: the species used, and whether the
species, or a similar species, is known or suspected to occur
in northern Australia; the endpoints/responses measured and
their sensitivity to key contaminants; the species’ relevance
and amenability to laboratory culture; and the extent to which
tests have been developed, documented and, subsequently,
applied.

MICROALGAE

Unicellular algae are essential to marine ecosystems because
they are at the base of most aquatic food chains, they oxygenate
the water and are important in the cycling of organic and
inorganic substances (Walsh 1988). Consequently, impacts on
microalgae have the potential to affect populations of higher
organisms (Joubert 1983; van Coillie et al. 1983; Walsh and
Merrill 1984).

Unicellular algal tests are typically chronic tests that measure
sub-lethal effects rather than mortality. As such, they have
often been shown to be more sensitive than many other test
species (Walsh and Merrill 1984; Joubert 1983; Wong and
Coulture 1986; Lewis 1995; Bailey and Young 1997). Unlike
many larger marine species, unicellular algal cultures can be
easily maintained in the laboratory all year round, over which
time good reproducibility has been attained (Stauber 1995).
Algal tests are simple, rapid and cost effective (Arensberg et
al. 1995; Wong and Coulture 1986; Pun et al. 1995) and can
be scaled down to mini-vial and microplate size so that very
little sample is needed (Arensberg et al. 1995; Eisentraeger
et al. 2003). This also makes them ideal organisms for large-
scale testing with matrices of multiple toxicants or in Toxicity
Identification Evaluations (TIEs) (Hogan et al. 2005). Algal
tests have also been adapted for use in field studies where cells
are contained inside dialysis tubes or alginate beads, which
are deployed into the environment (Walsh 1993; Moreira
dos Santos et al. 2002). These ‘caged culture’ experiments
have not yet been widely used and have several limitations.
However, with further development they have the potential to
be a useful component of coastal marine monitoring programs.

A 72-h growth test using the diatom Nitzschia closterium is
the most extensively-used marine microalgal test in Australia.
N. closterium is both benthic and planktonic and is widely
distributed in Australian coastal waters (Stauber 1995, Table
1). A temperate clone of this alga from Port Hacking, NSW,
has been used in many ecotoxicological assessments and
is sensitive to a wide range of metals, organic compounds
and whole effluents (Florence and Stauber 1986; Stauber et
al. 1994a, b; Stauber 1995; Hogan et al. 2005). A tropical
clone, isolated from the Coral Sea, has been used to a much
lesser extent, but has been shown to be similarly sensitive to
metals (Florence et al. 1994; Johnson et al. 2007; Table 1).
Furthermore, the N. closterium growth test has been adapted
to TIE procedures (Hogan et al. 2005). N. closterium has been
isolated from Darwin Harbour waters (Renaud et al. 1994)
and identified in water samples from the Gulf of Carpentaria
(Burford et al. 1995), although these strains have not been
used for toxicity testing purposes.

Other marine microalgal tests used in Australia include a
72-h growth test using the tropical species Isochrysis aff.
galbana, a planktonic golden-brown alga that has been used
regularly for tropical issues, including the assessment of
pollutants associated with the oil and gas industry in north
west Australia (Evans et al. 1996; Tsvetnenko et al. 1996;
SKM 2002). The comparative sensitivity of N. closterium
and I. galbana to copper is shown in Table 1. Additionally,
rapid (minute to hours) TIE procedures based on inhibition
of photosynthesis [Y(II)] using Pulse Amplitude Moderated
(PAM) fluorometry have been recently developed for this
species (Strom et al. 2009). Although the strain of Isochrysis
used in these studies was originally isolated from Tabhiti,
members of the genus have been isolated from northern
Australian waters, namely Port Smith, near Broome, WA
(Renaud et al. 1995) and Darwin Harbour, NT (Renaud
1994). A 2-h enzymatic inhibition test using a ubiquitous
marine microalga, Dunaliella tertiolecta, was developed by
Peterson and Stauber (1996) but was found to have similar
or lower sensitivity to metals than N. closterium and lower
sensitivity to organics.
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A recent report compared the toxicity of agricultural herbicides
to the tropical Australian strains of benthic diatom Navicula
sp. and the green alga Nephroselmis pyriformis (Magnusson
etal. 2008). This was the first study to compare the inhibition
of photosynthesis [Y(II)] using PAM fluorometry with
the more traditional sub-lethal endpoints such as biomass
increase. This study reported that relationships between
inhibition Y(IT) and biomass increase were consistent and
linear, validating the utility of PAM fluorometry as a rapid and
reliable technique to measure sub-lethal toxicity thresholds
of PSII-inhibiting herbicides in these microalgae. Although
the use of PAM offers a rapid (e.g. minutes) endpoint for
measuring the toxicity of some chemicals, the technique is
not as sensitive for metals. Longer exposure durations (e.g.
hours) are required due to a slower onset of metal absorption
and action, and ultimately, the measurement of growth rate
over 72 h provided a more sensitive indicator of metal toxicity
(Strom et al. 2009).

Though it is reported to be sensitive to a range of toxicants, the
diatom Skeletonema costatum has not been widely used as test
species in Australia because it is a chain forming diatom that
is difficult to enumerate using automated techniques (Stauber
1995). Recent work undertaken internationally to miniaturise
microalgal tests by using chlorophyll a concentration, optical
density, fluorometric and photometric measurements as a
surrogate for cell counts (Ismail et al. 2002; Eisentraeger et al.
2003; Satoh et al. 2005) may be applicable to this species.

While marine microalgal tests using temperate species
are quite common internationally (and are not included
in this review), only two studies using tropical species
could be found. Ismail et al. (2002) developed tests using
Chaetoceros calcitrans, I. aff. galbana, Tetraselmis tetrahele
and Tetraselmis sp., where optical density was used as a
surrogate for cell growth. Each species was exposed to Cd,
Cu, Mn and As for 96 h at 28°C. I. aff. galbana was the most
sensitive species to Cd, Cu and Mn, with IC50s of 60, 40 and
7200 pg/L respectively. The overall sensitivity of all species
to As, however, was quite low (lowest IC50 was 35.8 mg/L).
Of these genera, Isochrysis is known to occur in tropical
Australian marine waters. As unicellular algae are quite
ubiquitous in their distribution, species of the two other genera
also may exist across tropical Australia. Jensen et al. (2000)
assessed the toxicity of Pb and Cd to three tropical marine
microalgal species (i.e. Chaetoceros calcitrans, Chlorella
sp. and Dunaliella tertiolecta) from Phuket, Thailand. They
reported that Chlorella sp. was the most sensitive microalga
and that Pb was more toxic than Cd. Specifically, the EC50s
in natural seawater for Cd were 3.02, 0.32, and 34.6 mg/L,
and for Pb were 0.18, 0.4 and 6.77 mg/L, for C. calcitrans,
Chlorella sp. and D. tertiolecta, respectively.

Summary — Microalgae

Microalgae are highly relevant and suitable organisms to
include as key components of a toxicity testing suite for
northern Australia, for the following reasons:

e Marine algae are easily cultured in the laboratory, provide
reproducible toxicity test results and generally have been
found to be relatively sensitive to exposure to metals;
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e The two marine microalgal species most widely used for
toxicity testing purposes in Australia, N. closterium and
L. aff. galbana are known to be present across tropical
Australia; and

e The existence of suitable toxicity testing protocols for these
algal species (including TIE procedures for N. closterium)
minimises further technical development required to apply
these tests to tropical Australian marine issues.

MACROALGAE

While unicellular marine algae are undoubtedly the dominant
primary producers in the marine environment, marine
macroalgae are responsible for a significant proportion of the
primary production on a local scale in coastal regions (Walsh
1993). Furthermore, the complex structure of macroalgal
communities provides important substrate and habitat for
many other marine organisms (Burridge and Bidwell 2002;
Eklund and Kautsky 2003).

Even considering their ecological significance, marine
macroalgae have only recently, and are still quite rarely,
used in ecotoxicological assessments and monitoring of
discharges to the marine environment. As a result, there
is still no international standardised toxicity test method
using macroalgae and only one national standard (American
Society for Testing and Materials — ASTM) for the red alga
Champia parvula (Melville and Pulkownik 2006). A review
of marine macroalgal testing undertaken by Eklund and
Kautsky (2003) indicated that while tests have been conducted
with 65 different species worldwide, only one chemical
was tested on only one occasion for half of these species.
Even for the most extensively used species, the green alga
Enteromorpha intestinalis, toxicity data only existed for 27
different chemicals.

Several international and Australian field studies, reviewed
by Burridge and Bidwell (2002), demonstrated the decline
of macroalgae near sewage effluent and urban run-off sites,
indicating the sensitivity of field populations to chemical
contaminants. Notwithstanding this, single-celled algae have
typically been used as representatives for all marine plants in
ecotoxicological assessments (Eklund and Kautsky 2003). The
delay in incorporating macroalgal tests in ecotoxicological
assessments may be partly due to the complex life cycles of
most species (Eklund and Kautsky 2003) and the resulting
difficulty in culturing and determining the most sensitive
life-stage of different species. In addition, macroalgae are,
in general, very long-lived and slow growing (Haglund
et al. 1996) so that test endpoints other than growth (the
most common and often the most environmentally relevant
endpoint used in chronic ecotoxicology testing) had to be
developed.

Australian researchers have been using macroalgae as toxicity
testing organisms since the early 1990s, with five species of
brown algae, two species of red algae and one green alga
having been used (Table 2). However, the most commonly-
used macroalgal species for toxicity testing have been the
temperate brown algae, Hormosira banksii (Stauber et al.
1994a; Myers et al. 2007) and Ecklonia radiata (Bidwell et
al. 1998; Burridge et al. 1999). The most common endpoints
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Table 2. Marine macroalgal species used for toxicity testing in Australia.

Division Species Test endpoint Duration Reference
Chlorophyta Ulva lactuca Gametophyte development 72h AWT ES&T (1996)
(Green Algae)
Phaeophyta Durvillaea potatorum Fertilisation, germination and 24h,48hand4d Doblin and Clayton (1995)
(Brown Algae) growth
Ecklonia radiata Zoospore germination 24 0r48h Bidwell et al. (1998)
Germination tube length Burridge (1999)
Hormosira banksii Fertilisation 2.5h Stauber et al. (1994a, b);
Gunthorpe et al. (1995)
Fertilisation, germination and 24h,48hand4d Doblin and Clayton (1995)
growth
Germination and growth 48 and 72 h Myers et al. (2007)
Macrocystis augustifolia  Germination 24h Burridge et al. (1996)
Phyllospora comosa Zygote and embryo mortality 96 h Burridge et al. (1995)
Germination 48 h Burridge and Shir (1995)
Rhodophyta Catenella nipae Net photosynthesis 3h Melville and Pulkownik (2006)
(Red Algae) Respiration rate 24 h
Caloglossa leprieurii Net photosynthesis 3h Melville and Pulkownik (2006)
Respiration rate 24h

used in these and other macroalgal tests have related to the
ability of the algae to sexually reproduce (e.g. fertilisation
and germination success, gametophyte development, spore
motility, egg production and sexual fusion) (Walsh 1993;
Burridge et al. 1995; Eklund and Kautsky 2003; Myers et al.
2007). The only growth test, reported by Walsh (1993), used
an early macroscopic gametophyte stage of the brown alga
Macrocystis pyrifera and, as such, could also be considered
a reproductive endpoint.

Melville and Pulkownik (2006) questioned the relevance
of reproductive endpoints in tests using red algae because
although most species will reproduce sexually in the
laboratory, many typically undergo asexual reproduction
in the field (West et al. 2001). Considering that red algae
(Rhodophytes) dominate tropical coastlines, while the brown
algae (Phaeophytes) are more common in temperate regions
(Eklund and Kautsky 2003), it is worth considering endpoints
other than sexual reproduction for assessing discharges into
tropical marine waters.

Melville and Pulkownik (2006) investigated the use of
physiological endpoints (net photosynthesis and respiration
rate) in routine ecotoxicological testing with two red
algal species. They found that net photosynthesis, over a
3-h exposure to Cu, to be a more sensitive endpoint than
respiration over 24 h. Even with such a short exposure period,
the more sensitive species of the two (Catenella nipae) was
found to be more sensitive (EC50 = 3.1 + 0.2 ug/L Cu) than
many of the species incorporated in the Australian/New
Zealand marine water quality guideline for Cu (ANZECC/
ARMCANZ 2000).

Information on the distribution of macroalgae across northern
Australia is very limited with records from only three
studies being sourced for this review. Womersley (1958)
described the marine macroalgae collected as part of the
American-Australian Scientific Expedition to Arnhem Land
as consisting of species that are widely distributed in most
warm waters of the world and, that of those recorded, only
a small group appeared to be restricted to tropical Australia.
A total of 50 species of macroalgae was collected during the
expedition, 20 of which were red, 18 were brown and 12 were
green (Womersley 1958 with taxonomic review by Lewis
1984, 1985 and 1987). None of the species recorded have been
used in ecotoxicology testing in Australia or overseas.

In a more recent survey, described by King and Puttock
(1994), both of the red algal species used by Melville and
Pulkownik (2006) were recorded as occurring in mangrove
forests in northern Australian waters. While observations at
specific sites were not described, both C. nipae and Caloglossa
leprieurii were recorded between the South Alligator River
(NT) and Wyndham (WA). However, only C. leprieurii was
recorded further east, in the Gulf of Carpentaria between
Weipa (QId) and the Roper River (NT). Other surveys in the
Gulf of Carpentaria have reported 113 macroalgal species
(Phillips et al. 1999), with many of these also found in the
tropical east-coast regions of Queensland (Phillips 1997).

Interestingly, the tropical/sub tropical red alga, Champia
parvula, which is widely used as a test organism in the United
States and Canada (US EPA 2002), has been recorded from
both the Great Barrier Reef in north-east Australia (Lewis
1984) and the Dampier Archipelago and King Sound in
north-west Australia (Huisman 2004).
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Burridge et al. (1995) suggested that because members of
the Order Fucales (Phaeophyta) share similar reproductive
strategies, that the methods used for southern species from this
order (e.g. Phyllospora comosa, H. banksii) may be applied
at a broader scale. Up to 14 fucoid species were recorded in
Arnhem Land and Gulf of Carpentaria waters by Womersley
(1958) and Phillips et al. (1999).

Similarly, the endpoint of net photosynthesis, used by Melville
and Pulkownik (2006), could be applied to other tropical red
algal species, over 47 of which have been identified across
tropical Australia (Womersley 1958; Phillips et al. 1999).
However, the use of photosynthetic endpoints would need
to be validated against other endpoints such as reproduction/
fertilisation and growth for various types of toxicants.

Summary — Macroalgae

A macroalgal species may be relevant to consider as part of
a toxicity testing suite for tropical northern Australia, for the
following reasons:

e The incorporation of macroalgal tests into toxicity
testing suites increases the environmental relevance of
ecotoxicological assessments of discharges into the coastal
marine environment;

e A move in recent years to develop more macroalgae
tests has resulted in a wide suite of available species and
endpoints, although further standardisation of methods is
needed;

e Two species of red algae, C. nipae and C. leprieurii, that
have been successfully used in photosynthetic rate tests
in New South Wales, are known to occur in northern
Australian coastal waters; and

e Several procedures using southern Australian or
internationally occurring species may also be applicable
to macroalgal species of tropical Australia.

VASCULAR PLANTS

Marine vascular plants, including seagrasses and mangroves,
play a vital role in buffering the coast, providing habitat to
a wide range of organisms and cycling nutrients through the
production of large amounts of detrital material (Wightman
1989; Peters et al. 1997). Mangrove communities, in
particular, are culturally important to traditional coastal
people in that they provide food, medicine and materials
for tools, along with habitat for many useful faunal species
(Davis 1985). Seagrass beds are used as foraging grounds for
culturally important species such as dugong (Roelofs et al. 2005).

The seagrasses of northern Australia are typically found
in shallow waters, in or around inshore islands, small bays
and inlets. While their distribution is quite disjointed and
most meadows consist only of aggregate patches, they
are a common feature of the northern Australian coastal
environment (Roelofs et al. 2005). Mangroves are defined
as any vascular plant that regularly occurs in areas subject to
tidal inundation. They are more suited to the hot and humid
conditions of the tropics, and as such the highest diversity of
mangroves occurs in these regions. In Australia, they cover
between approximately 9 000 and 11 000 km? of river and
coastal regions, with over 90% of this located in the tropics
(Robertson and Alongi 1995; Duke 2006).
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In many areas of the world, coastal plant communities are
showing the effects of increasing pollutant concentrations.
A decline in the health of seagrass beds has been associated
with contaminant exposure, particularly in areas receiving
agricultural run-off (Peters et al. 1997; Lytle and Lytle 2001).
While mangrove communities have displayed signs of severe
impact (including mass leaf and bud drop, malformed and
discoloured leaves, reduced growth rates and mortality)
after devastating events such as oil spills (Burns et al. 1993;
Da Silva et al. 1997), lower concentrations of hydrocarbons
from leaking marine engines are also considered a threat to
mangrove communities in Australia (Mercurio 2002).

As with macroalgae, marine vascular plants are still rarely
used in ecotoxicological testing, primarily because of
difficulties in culturing and testing with such large, slow
growing organisms. Ralph and Burchett (1998) commented
on how large test volumes limited their ability to replicate in
tests using the tropical seagrass species Halophila ovalis. To
overcome culturing difficulties, and for greater environmental
relevance, more recent seagrass studies have involved the
measurement of photosynthetic endpoints (using PAM
fluorometry) on wild plants in in-situ chamber experiments
(Macinnis-Ng and Ralph 2002, 2003a and b, 2004a and
b), though the complexity of the apparatus meant that the
number of treatments and replication could not be improved.
Although this methodology has been used successfully in
Sydney Harbour to assess the impacts of herbicides, metals
and petrochemicals on seagrass populations, the ability to
conduct similar fixed chamber experiments in tropical waters
may be hindered by factors such as large tides (although
not all regions across tropical Australia experience large
tidal ranges) and the presence of crocodiles. Other tropical
seagrass species that have been used in toxicity studies in
Australia include Cymodocea serrulata, Halophila spinulosa,
Halodule uninervis and Zostera capricorni, with endpoints
typically focusing on photosynthetic activity (Haynes et al.
2000; Prange and Dennison 2000).

Mangrove species appear to have even more complex culturing
and testing requirements than seagrasses. Mercurio (2002)
raised mangrove seedlings in customised ‘tidal troughs’
(where water was pumped in and out according to the tidal
cycle) for twelve months prior to undertaking a six month
experiment on the effects of petrochemicals. MacFarlane and
Burchett (2001) germinated propagules of Avicennia marina
and maintained them with daily manual watering for six
months until the 8-week duration experiment was initiated.
While similar tests would provide valuable information on the
long-term response of mangroves to a particular contaminant
or discharge of concern, unfortunately, such methodologies
would not be suitable for incorporation into a routine toxicity
testing program.

Although both seagrasses and mangroves have been shown to
be highly sensitive to petrochemicals, only a small proportion
of the response is likely to be due to chemical toxicity. Rather,
physical (e.g. smothering and asphyxiation) and indirect
impacts (e.g. light amelioration and destruction of habitat)
are thought to contribute largely to the decline of exposed
populations (Peters et al. 1997; Lytle and Lytle 2001).
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Predictably, a number of herbicides have been shown to have
direct toxic effects on vascular marine plants, due to their
mechanisms of action (Ralph 2000; Lytle and Lytle 2001).
In several cases reviewed by Lytle and Lytle (2001), marine
vascular plants were found to have greater sensitivity to
herbicides than both freshwater and marine algae.

Seagrasses and mangroves have been shown to be highly
tolerant of heavy metal contamination. Recent laboratory and
in-situ studies using the photosynthetic endpoint, quantum
yield, have shown that concentrations of Cu, Cd, Pb and Zn
in, and above, the 0.1 — 1 mg/L range, were required to reduce
the photosynthetic activity of H. ovalis and Zostera marina
(Ralph and Burchett 1998; Macinnis-Ng and Ralph 2002).
These studies indicate that inhibition of photosynthesis may
not be as sensitive to metals as growth rate inhibition by
marine unicellular algae, which was significantly reduced at
concentrations less than 10 pug/L Cu (Stauber 1995).

Seagrasses can accumulate metals to concentrations far
greater than those found in the surrounding environment
without exhibiting visible signs of stress (Peters et al. 1997;
Lytle and Lytle 2001). Ward (1989) hypothesised that
seagrasses possessed a mechanism to sequester metals into
leaf tissue, thereby preventing them from affecting more
sensitive metabolic processes. Consequently, the major
potential toxicological impact of this bioaccumulation is
believed to be the biomagnification of contaminants in grazing
aquatic biota and higher trophic organisms.

The nature of mangrove sediments (i.e. fine particles, high
organic content and low pH) is ideal for sequestering high
concentrations of metals and preventing exposure, even at
very polluted sites (Peters et al. 1997). In addition, the grey
mangrove, A. marina, has been shown to prevent translocation
of metals to the leaves by actively sequestering them in root
tissue (MacFarlane and Burchett 2001). Even in cases where
elevated concentrations of metals have been measured in
mangrove leaf tissue (indicating a significant uptake by the
plants), no adverse health effects have been observed (Peters
etal. 1997).

Summary — Vascular plants

Considering the low sensitivity of marine vascular plants
to metals and the difficulties associated with seagrass and
mangrove testing, it does not seem practical or economical to
incorporate a vascular plant test into a routine ecotoxicology
testing program. However, marine vascular plants can be
highly sensitive to some herbicides; laboratory based research
into the effects on vascular plants could be considered if
a particular contaminant of concern or a stable discharge
requires a specific de novo risk assessment.

The value of seagrasses in a routine monitoring program
may lie in their ability to accumulate metals and act as an
integrated biomarker for heavy metal exposure, particularly
in terms of a direct route for exposure to those organisms
that use it as a food source. Also, field measurements of
photosynthetic efficiency in both seagrasses and mangroves
using PAM fluorometry (e.g. Macinnis-Ng and Ralph 2002)
in impacted and unimpacted sites may also prove useful for
monitoring plant health.

MICROCRUSTACEANS

Amphipods

Amphipods are extremely widespread and occur throughout
the ocean and in freshwater and groundwater (Marsden and
Rainbow 2004). Most are free-living and occupy an important
position in the food chain providing a major source of food
for predatory fish and other invertebrates (Ahsanullah and
Palmer 1980; Marsden and Rainbow 2004). Many amphipods
can burrow, constructing tubes out of sediment, and may also
be exposed to toxicants through the sediment (Marsden and
Wong 2001). However, the extent of sediment exposure can
depend on the behaviour of a species, e.g. they way they feed
and construct their dwellings (Simpson et al. 2005). Most
amphipods are detritus feeders or scavengers but some are
filter feeders (Ruppert and Barnes 1994). Reproduction occurs
through internal fertilisation and there may be one or more
broods (up to 750 eggs) per year with the maximum life span
usually only one year (Ruppert and Barnes 1994).

Numerous toxicity tests have been developed for various
species of marine amphipods, and being a sediment-dwelling
organism, they have also been regularly used for sediment
toxicity assessments (see Adams and Stauber, this issue).
Studies have focused on temperate regions, and species
that have been used for water column toxicity testing
include Allorchestes compressa, Paracorophium excavatum,
Corophium colo (formerly known as C. cf. volutator),
Ampelisca abdita and Gammarus locusta. The majority of
tests that have been developed are based on acute exposures
(96 h to 10 d) and responses (e.g. Ahsanullah and Palmer
1980; Ahsanullah 1982; Ahsanullah and Florence 1984; Bat
et al. 1998; Costa et al. 1998; Gulec and Holdway 1999;
Marsden and Wong 2001; Hyne et al. 2002; ESA 2005), with
very few having assessed chronic toxicity (e.g. Conradi and
Depledge 1998; Gale et al. 2006; van den Heuvel-Greve et
al. 2007). Chronic tests tend to have exposure durations =6
weeks, and measure endpoints such as growth and fertility.
According to ESA (2005), A. compressa can be tested at
water temperatures up to 25°C, however, this species is not
found in tropical waters (Australian Faunal Directory 2006).

Overall, the marine amphipod faunas of northern Australia
are very poorly known. Highlighting this, the first major
amphipod survey in tropical Australian waters, on the Great
Barrier Reef in February 2005, yielded around 180 species,
160 of which were new to science (J Lowry, Principal
Research Scientist, Crustacea Section, Australian Museum,
pers. comm. 2008). Additional surveys at other sites across
tropical Australia have been underway in the past two years,
however, results are yet to be published.

Summary — Amphipods

Given their presence at the surface water/sediment interface,
amphipods may represent a relevant biotic group to consider
as part of a toxicity testing suite for northern Australia.
Amphipods could represent a useful test organism for
assessing effects due to water column toxicants, pore water
toxicants, sediment-bound toxicants and even physical
smothering, and could potentially be used for in situ
exposures. However, much more information is required on
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the marine amphipod species of tropical Australia. Moreover,
there needs to be substantially more effort put towards
development of appropriate chronic tests with sub-lethal
endpoints, although some advances in this area have been
made in recent years.

Copepods

Copepods represent an important marine test species
because of their wide distribution and position towards the
base of the food chain (Forget et al. 1998). Most planktonic
copepod species feed on phytoplankton and are the main
link between phytoplankton and higher trophic levels in the
marine food chain (Ruppert and Barnes 1994), making them
the most important primary consumers in marine planktonic
communities. Further, copepods are essential prey items for
the larvae of many fish and larger invertebrates, and are used
as a live food source in aquaculture (Kusk and Wollenberger
2005). Planktonic copepods live mostly in the upper 50 m of
the water column but there are also benthic species (Ruppert
and Barnes 1994). Further highlighting their significance,
copepods constitute almost two thirds of mesozooplankton
abundance on tropical continental shelves (Longhurst 1985).

Copepod reproduction occurs through transfer of a
spermatophore to the female who then releases the fertilised
eggs into the water either individually or together within
an ovisac (Ruppert and Barnes 1994). Copepods grow and
change body shape through a series of moults before they
reach the adult stage (Rose 2004). Nauplii hatch from the
eggs and progress through five or six nauplii stages and five
copepodid stages before becoming adults, having a maximum
life span of six to twelve months (Ruppert and Barnes
1994). Phytoplankton is usually the main component of the
copepod diet; Rose (2004) noted that it has been found that
algal species of Isochrysis are most suited for nauplii and
small copepodid stages and the microalgae Rhodomonas and
Cryptomonas sp. for adult copepods.

Copepods are known for their sensitivity to chemicals and
suitability for toxicity testing (Nipper et al. 1993a; Kusk
and Petersen 1997; Rose 2004). Copepod species are ideal
for toxicity testing as they are suited to mass culture having
a high reproductive potential, short turnover time (from
egg to egg) and fast growth rate (Medina and Barata 2004;
Rose 2004). Furthermore, the distinct copepod life stages
facilitate the measurement of development and reproduction,
which provide sensitive and ecologically-relevant endpoints
that can be used to determine the potential sub-chronic or
chronic toxicity of contaminants (Rose 2004; Kusk and
Wollenberger 2005; OECD 2007). Numerous calanoid and
harpacticoid copepod species have been used over the past
30 years to evaluate the acute and chronic toxicity of single
chemicals and complex mixtures. Table 3 summarises tests
that have been conducted with some marine copepods both
in Australia and overseas (NB: Rose (2004) provides a more
detailed summary of copepod species that have been used for
toxicity testing). In addition, there is substantial information
on appropriate culturing requirements and physico-chemical
(e.g. salinity, temperature) tolerances for marine copepods
(e.g. Kusk and Wollenberger 1999; McKinnon et al. 2000;
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Medina and Barata 2004; Kusk and Wollenberger 2005;
Milione and Zeng 2007; OECD 2007). Researchers have
been able to measure numerous sub-lethal endpoints to assess
toxicity including: development rates; sex ratios; total viable
offspring production; time to first clutch; and time interval
between successive clutches (OECD 2007). Copepods have
demonstrated sensitivity to metals such as copper (Bechmann
1994; Arnott and Ahsanullah 1979; Kwok et al. 2008), zinc
and cadmium (Arnott and Ahsanullah 1979), organometallic
compounds such as tributyltin (Kusk and Petersen 1997), and
organic compounds such as pesticides (e.g. cypermethrin;
Barata et al. 2002) and surfactants (e.g. linear alkylbenzene
sulfonate; Kusk and Petersen 1997).

Of the two copepod species that have been used for toxicity
testing purposes in Australia, Acartia sinjiensis is found in
tropical waters, including those of the Northern Territory,
while Gladioferens imparipes is a temperate species
(McKinnon et al. 2000; Rose and Carruthers 2006; Duggan
et al. 2008). A. sinjiensis has been successfully cultured
in northern Australia as a hatchery feed source for finfish
(McKinnon et al. 2000; Milione and Zeng 2008). Rose
(2004) found A. sinjiensis to be a useful organism for acute
toxicity testing, and was confident that protocols measuring
sub-lethal endpoints could be developed. However, it should
be noted that A. sinjiensis does not grow optimally in full-
strength seawater (Milione and Zeng 2008) and, due to its
small size, can be difficult to work with in the laboratory
(CSIRO, unpublished information). Therefore, investigation
of alternative tropical copepod species may be beneficial.

The Organisation for Economic Co-operation and
Development (OECD) has recently published Phase 1 results
from a project that aims to validate chronic toxicity testing
protocols using the calanoid species, Acartia tonsa and
two harpacticoid species, Nitocra spinipes and Amphiascus
tenuiremis (OECD 2007). In addition, a full life-cycle test
using Amphiascus tenuiremis has been published recently
by the American Society of Testing and Materials (ASTM
2004). Such protocols provide a sound basis for developing
tests for other species.

Overall, the copepod fauna of northern Australia is reasonably
well characterised (McKinnon and Klumpp 1998; McKinnon
et al. 2005; Duggan et al. 2008; McKinnon et al. 2008),
making an assessment of the potential suitability of species
for toxicity testing moderately straightforward. For example,
several species of another calanoid genus, Pseudodiaptomus,
which is broadly distributed across northern Australia, have
also been identified as being potentially suitable for toxicity
testing (F Gusmao, Australian Institute of Marine Science,
pers. comm. 2008).

Summary — Copepods

Copepods may represent a relevant biotic group to consider
as part of a toxicity testing suite for northern Australia.
This is particularly so because the copepods constitute the
majority of the marine mesoplanktonic fauna, a group that
is of great importance in marine trophic food webs, and
that has been highly under-represented in ecotoxicological
studies in Australia to date. In addition, the genus that has
been most studied around the world, Acartia, is present
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across tropical Australia, with the species most recently
being studied in Australia, A. sinjiensis, being a tropical
species. Finally, the culturing requirements of A. sinjiensis
have been well researched and documented, and hence there
is a solid knowledge base from which to develop appropriate
protocols.

Cladocerans

Cladocerans are important freshwater microcrustaceans
with about 600 different species recorded. However, only
eight cladoceran species are known to populate marine
ecosystems and these species are represented in two groups:
the Podonidae, which includes the genera Evadne, Pleopis,
Podon and Pseudevadne; and the Sididae, which consists of
one species, Penilia avirostris (Cristescu and Hebert 2002). P.
avirostris is known for its cosmopolitan distribution in warm
waters and researchers have hypothesised that its increasing
abundance in temperate oceans may be due to increasing
sea surface temperatures (Johns et al. 2005). The marine
cladocerans are abundant in tropical and subtropical regions
and are found in both oceanic and coastal zones (Marazzo
and Valentin 2000). At certain times of the year they dominant
the mesozooplankton due to their ability to reproduce rapidly,
although their importance in tropical marine ecosystems is
under-appreciated (Rose et al. 2004).

Like their freshwater counterparts, marine cladocerans
are able to reproduce by parthenogenesis when conditions
are favourable (Turner et al. 1988). This trait makes them
highly desirable for toxicity testing because a reproductive
endpoint can be measured from one individual. Unfortunately,
a continuous laboratory culture of marine cladocerans has
not been maintained for longer than a few weeks, although
researchers are currently working to resolve this issue.
The difficult culture requirements are likely to be due to
their complex dietary requirements, which are believed to
consist of various microorganisms (Atienza et al. 2007).
Consequently, no toxicity tests have used marine cladocerans,
but this could change if researchers are able to establish their
culturing requirements.

Summary — Cladocerans

Marine cladocerans appear to represent an important
component of the mesozooplankton and are circumglobally
distributed in the tropics and subtropics. Their ability
to parthenogenically reproduce is likely to enable the
measurement of a reproductive endpoint. However, before
a toxicity test can be developed, a species needs to be
isolated and identified and the culturing requirements need
to be established, which would require a significant amount
of effort.

MACROCRUSTACEANS
Crabs

Crabs are crustaceans of the Order Decapoda (Ruppert and
Barnes 1994) and are related to prawns and amphipods (Class
Malacostraca). Their early development consists of a series
of moult stages being the zoea I-V, megalopa, crablet and
juvenile before becoming an adult. The larvae (zoea) are
planktonic until they begin to settle as megalopa, at which
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stage they have a pair of large claw-like arms. Most marine
crabs mature and spawn in seawater, spend post-larval and
juvenile stages in brackish water and then return to the sea as
a sub-adult. The majority of crab species combine predatory
feeding on small fish and invertebrates with scavenging of
detritus (Ruppert and Barnes 1994).

Some toxicity tests that have been conducted in Australia
and overseas using various crab species are listed in Table
4. Limited ecotoxicological testing using crab species
has been done in Australia. Anderson (2003) assessed
the effects of copper exposure for 10 weeks on carapace
lesions in juveniles of the tropical mud crab, S. serrata.
The exposures were generally ‘one-off” experiments, with
no well-developed methodologies resulting from the study.
Black (2003) assessed the acute toxicity of whole sediments
to the benthic scavenger hermit crab, Diogenes sp., although
the test itself was based on an amphipod sediment toxicity
testing protocol (US EPA 1994). This test is discussed in
more detail by Adams and Stauber (this issue). In the most
recent study, Neil et al. (2005) assessed the acute and chronic
toxicity of ammonia to S. serrata. The chronic toxicity test
lasted 19 days and assessed survival and moulting percentage
over the complete larval cycle (i.e. all zoea stages through
to megalopa). They reported that the tolerance of S. serrata
larvae to ammonia did not increase during development, i.e.
the megalopa stage was the most sensitive to ammonia (48-h
LC50 =21 mg/L total ammonia), while zoea 1 (48-h LC50
=50 mg/L total ammonia) and 5 life stages (48-h LC50=47
mg/L total ammonia) were the most tolerant.

The international literature contains many toxicity studies for
arange of species of marine crabs, however, the vast majority
of these have assessed acute toxicity, measuring mortality
over 48 to 96 h. Some studies have assessed the chronic
toxicity of various toxicants to crab species (e.g. Caldwell et
al. 1979; Kannupandi et al. 2001; L6épez Greco et al. 2001b;
Cripe et al. 2003). Exposure durations ranged from 20-180
days, and the types of endpoints assessed included growth
and associated moulting variables such as intermoult periods
and time to moult. Toxicity tests have been conducted using
both tropical and temperate species (Table 4). Certainly,
the crab zoea and megalopa stages lend themselves to the
conduct of short-term tests for estimating sub-lethal toxicity
using moulting/development variables as sensitive indicators
of toxicity.

Studies using crab larvae have shown them to be sensitive to
unionised ammonia (48-h LC50 = 1.35 mg/L for megalopa
stage of S. serrata; Neil et al. 2005), copper (96-h LC50 =
80-170 pg/L; Lopez Greco et al. 2001a, b; Ramachandran et
al. 1997; Ahsanullah and Arnott 1978) and cadmium (96-h
LC50 =78-490 pg/L; Ramachandran et al. 1997; Ahsanullah
and Arnott 1978).

There are four species of the genus Scylla that inhabit tropical
to warm temperate waters, and which are important for
commercial fisheries (Ruscoe et al. 2004). S. serrata, which
is the most widespread of these species, occurs throughout
the northern half of Australia (Gopurenko and Hughes
2002; Ruscoe et al. 2004), and has significant economic
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and cultural importance (Coleman et al. 2003; National
Oceans Office 2004). In addition, given its importance as a
fisheries/aquaculture resource, the culturing requirements of
S. serrata have already been well researched, established and
documented (Keenan and Blackshaw 1999; Allan and Fielder
2003), and they are currently cultured at a number of northern
Australian aquaculture facilities. However, it should be noted
that aquaculture facilities spawn their brood stock primarily
during the warm wet season months (i.e. October to March),
and testing would be restricted to this period unless methods
for dry season spawning were developed.

Summary - Crabs

A crab species would represent a relevant biotic group to
consider as part of a routine toxicity testing suite for northern
Australia. In particular, the mud crab, S. serrata represents a
very promising test species for the following reasons:

e S. serrata is present across tropical Australia, and
is a species of ecological, cultural and economic
importance;

e Crab larval (zoea and megalopa) stages are planktonic
while the juvenile and adults are generally demersal/
benthic, meaning that tests utilising different life stages
can be used to assess water column and sediment
contamination;

e §S. serrata has already been found to be a suitable test
organism for toxicity bioassays in tropical environments
(Ramachandran et al. 1997; Neil et al. 2005), with the
larval (zoea and megalopa) stages being particularly
sensitive to toxicant exposure (Caldwell et al. 1979;
Ramachandran et al. 1997); and

e The culturing requirements are well established and
documented, and a number of aquaculture facilities are
able to supply organisms on a consistent basis throughout
the wet season.

Prawns

Prawns or ‘shrimp’ also belong to the Order Decapoda. Prawn
larvae are an important food source for larger invertebrate and
fish species in marine systems (Ruppert and Barnes 1994).
The life cycle of penaeid prawns is relatively straightforward:
following mating in the ocean, the eggs hatch and the larvae
make their way to the shelter of estuarine nursery grounds
to become juveniles and continue growing (Provenzano
1985). Penaeid prawns progress through a series of moult
stages from nauplii (stages I-V or VI), to zoea (stages I-1II),
to mysis (stages I-III) and then to post larvae (PL). For the
tiger prawn, Penaeus monodon, the larval stages to PL take
approximately 12 days (Stgttrup and McEvoy 2003) and PLs
are then identified by the number of days they have been
post-larvae. For example, a PL15 has been a post-larva for
15 days and is approximately 27 days old in total.

Penaeus species are the most important commercial shrimps
throughout the world (Ruppert and Barnes 1994). Penaeus
merguiensis (white banana prawn) is of high commercial
importance within Australia (Denton and Burdon-Jones 1982)
and P. monodon is also economically important and cultivable
(Munshi et al. 1996; Das and Sahu 2005). The culturing
requirements of P. monodon have, in recent years, been the
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subject of substantial investigation, with many aspects now
well researched and documented (e.g. Glencross et al. 1999;
McKinnon et al. 2000).

Post-larvae of Penaeus spp. have been chosen as test organisms
in many toxicity tests for their sensitivity (Brecken-Folse et
al. 1994; Das and Sahu 2005) and because they survive
well under laboratory conditions (Denton and Burdon Jones
1982). In Australia, the vast majority of toxicity testing using
prawns has relied on acute exposures of the tiger prawn, P.
monodon and some other Penaeus species (e.g. Ahsanullah
and Ying 1995; Manning et al. 1996; Pablo et al. 1997; SKM
2002; Vaughan et al. 2002; ESA 2005). At present, this 96-h
survival test is offered by the small number of commercial
ecotoxicology laboratories operating in Australia, particularly
for tropical issues (ESA 2005). However, the availability
of the test relies on the seasonal availability of appropriate
stage post-larval prawns from various commercial hatcheries.
This test is used in Australia primarily because it is relatively
simple to perform, but also because a more appropriate test
using this or another species of marine crustacean has not
been properly developed. In fact, the key stimulus for the
development of a marine copepod toxicity test by Rose
(2004) was to develop a short-term chronic (sub-lethal) test
that could replace the acute prawn test. Moreover, moves to
include crustaceans within the Australian Code of Practice for
the Care and Use of Animals for Scientific Purposes — 2004
(NHMRC 2004), if implemented, would severely limit the
use of all crustaceans in acute toxicity tests.

Notwithstanding the above, there have been a few chronic
toxicity tests conducted in Australia using prawns. Florence et
al. (1994) conducted a series of 30-d microcosm experiments,
in which juvenile P. monodon (1.5-2.0 cm length) and
two other species (polychaete, Galeolaria caespitosa, and
gastropod, Nerita chamaeleon) were exposed to nickel ores.
The endpoint for P. monodon was growth (i.e. length and
weight), and although only slightly inhibited by the nickel
ores, this was a slightly more sensitive endpoint compared
to those used for the other species (i.e. total numbers).
Ahsanullah and Ying (1995) assessed the effects of copper
on the growth (net weight gain) of juvenile P. monodon
(2-3 cm length) and P. merguiensis (1.5-2.5 cm length) over
14 days, with the latter species being more sensitive than
the former. More recently, Anderson et al. (2002) assessed
growth and survival of juvenile banana prawns, P. merguiensis
(~12 weeks old at test commencement) exposed to fluoride
for 28 d. All the above chronic tests were undertaken using
juvenile prawns, presumably a consequence of having to
source them from commercial hatcheries. Ideally, however,
chronic toxicity tests using prawns should be conducted on
earlier life stages than juveniles, such as the nauplii, zoea
and PL stages.

Prawns are a common test species in overseas studies, but as
with Australian experience, most of the studies have related
to the assessment of survival over acute exposure durations
(e.g. Denton and Burdon-Jones 1982; Chen et al. 1996; Clark
et al. 1989; Baticados and Tendencia 1991; Brecken-Folse
et al. 1994; Munshi et al. 1996; Sulaiman and Noor 1996;
Chinni et al. 2002; Das and Sahu 2005; Overmyer et al. 2005).
However, some studies have focused on chronic toxicity of
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various toxicants (e.g. ammonia, cadmium, copper, mercury),
over durations from 20 to 72 days (Wickins 1976; McClurg
1984; Chen and Lin 2001).

Summary — Prawns

Prawns may represent a relevant biotic group to consider as
part of a toxicity testing suite for northern Australia. Benefits
of utilising a prawn species include:

e Like the copepods, larval prawns represent the marine
planktonic fauna, a group that is of great importance in
marine trophic food webs;

e The black tiger prawn (P. monodon), which has been the
most commonly used prawn species for ecotoxicity testing,
is present throughout northern Australia (Brooker et al.
2000); and

* P. monodon is a commercially important cultivable
species.

However, there are also some limitations of utilising a prawn
species such as P. monodon, including:

e The vast majority of toxicity testing using prawns has
involved acute exposures assessing survival only; of the
few chronic toxicity studies that have been done, none
have produced a fully documented, potentially routine test
method; and

e The culturing requirements, whilst well-documented,
would be difficult to reproduce in a research laboratory,
meaning that test animals would almost certainly have to
be sourced from commercial hatcheries, with availability
being seasonally-dependent.

BIVALVE MOLLUSCS

Oysters

Oysters are largely sessile filter-feeding bivalve molluscs
(Phylum Mollusca, Class Bivalvia, Family Ostreiidae), that
feed on fine plankton, largely phytoplankton (Ruppert and
Barnes 1994). In most oysters, fertilisation occurs in the
water column after the male and female have released eggs
and sperm into the current (i.e. broadcast spawning). A free-
swimming trochophore then develops followed by a veliger
larva which is bilaterally symmetrical and eventually becomes
enclosed within two valves (Ruppert and Barnes 1994). After
2-3 weeks, the larvae settle and attach themselves to a surface
where they continue to grow, as spat (Queensland Department
of Primary Industries and Fisheries 2001).

Many oyster species are of great ecological and economic
importance in Australia, in particular Saccostrea commercialis
(Smith et al. 2004), Pinctada maxima (Negri et al.
2004) and Saccostrea echinata (Peerzada and Dickinson
1989). In northern Australian waters, the milky oyster
(Saccostrea cuccullata) and the black-lip oyster (S. echinata
— syn Striostrea mytiloides) are wild-harvested from rocky
foreshore areas where they have settled and grown naturally
and, while there is little interest in their aquaculture, small
quantities have been cultured and at least one hatchery has
produced spat (AFFA 2002). There has been a small amount
of research conducted on the culturing/rearing requirements
of the tropical species, S. echinata (Southgate and Lee 1998;

Horpet and Southgate 2004). Apparently, S. echinata has the
fastest development to the trochophore and veliger stages so
far recorded for Ostreid larvae; trochophore larvae develop
5.5 hours after fertilisation while D-stage veligers first appear
12.5 hours after fertilisation (Horpet and Southgate 2004). The
pearl oyster, P. maxima, is commonly farmed across northern
Australia, and its hatchery culturing/rearing requirements,
have been reasonably well established (Minaur 1969; Love
and Langenkamp 2003; Barton and Schipp 2004).

Oysters have been demonstrated to be useful indicators of
trace metal and organochlorine contamination of marine
waters (Scanes 1996). Further, they have been used as toxicity
testing organisms for many years (e.g. Wisely and Blick
1967; Calabrese et al. 1973). Table 5 lists some oyster species
that have been used in toxicity testing both in Australia and
overseas. The vast majority of toxicity studies using oysters
have assessed larval development and/or growth, endpoints
that have provided one of the most rapid and sensitive toxicity
tests (Geffard et al. 2002). These tests involve exposing
fertilised eggs from wild-caught or hatchery-reared adults
to a toxicant(s) and assessing normal development to the
D-veliger stage after 24 - 72 h (ESA 2005).

In Australia, there is little published work of studies using
oysters as toxicity test species, although a large amount of
commercial-in-confidence work utilising oysters has been
carried out (e.g. SKM 2002; Vaughan et al. 2002). Denton
and Burdon-Jones (1981) studied the tropical species, S.
echinata, but looked only at metal uptake, distribution and
depuration, not toxicity. Negri et al. (2004) studied the tropical
pearl oyster, P. maxima, although the focus was on effects
to juveniles exposed to populations of cyanobacteria, rather
than a toxicity study per se. Most toxicity studies in Australia
have used the Sydney rock oyster, S. commercialis, larval
development test, which has been demonstrated to be sensitive
to metals (Krassoi 1995; Wilson and Hyne 1997), ammonia,
and petroleum hydrocarbons and dispersants (Smith et al.
2004). Although it is a temperate species, S. commercialis is
regularly used for tropical toxicity testing, because the species
can tolerate temperatures up to 25°C. However, the species
is restricted to the east coast and is not found in the tropics,
with its northern-most limit being around Gladstone, Qld
(approx. Latitude 24°S). As S. commercialis is commercially
grown, broodstock can be purchased from local fish markets
or directly from growers. However, the availability of reliable
broodstock, and therefore availability for toxicity testing,
tends to be limited to the summer months, which is the
breeding season for this species (Smith et al. 2004).

Many overseas studies using oysters as test species have
been published. As with the Australian studies, the majority
have focused on larval/embryo development over 24 to 48 h
as the endpoint (e.g. Calabrese et al. 1973; Ramachandran
et al. 1997; Geffard et al. 2002), although some have
assessed longer exposure durations (e.g. His et al. 1996).
The US EPA has documented a 48-h larval development
test using the American oyster, Crassostrea virginica (US
EPA 1995). Elfwing and Tedengren (2002) assessed effects
of copper on three tropical oyster species, including S.
cuccullata, although the study focused on the measurement
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of physiological endpoints rather than embryo/larval
development. Ramachandran et al. (1997) assessed the effect
of exposure to copper and cadmium on larval development of
the tropical estuarine oyster, Crassostrea iredalei.

Peerzada and Dickinson (1989) documented two oyster
species, S. echinata (black-lip oyster) and Saccostrea
cuccullata (milky oyster), as existing in Northern Territory
waters. Neil et al. (2003) identified an additional oyster
species, mangrove oyster (Isognomon ephippium, also known
as tree oyster; Rees et al. 2006) to be present in north-east
Arnhem Land, in the Northern Territory. Finally, the pearl
oyster, P. maxima, is known to be broadly distributed across
northern Australia, from Carnarvon on the west coast to south
of Cairns on the east coast (Love and Langenkamp 2003).

Other bivalve molluscs

Other bivalves, such as scallops and mussels have also been
used as toxicity testing organisms. To our knowledge, there
have been very few, if any toxicity studies using tropical
scallops. A standard scallop test is used in Australia, using
the temperate doughboy scallop, Mimachlamys asperrima
(Krassoi et al. 1996; ESA 2005), but this test is generally not
run above temperatures of 18°C (ESA 2005). There have been
some toxicity studies using tropical mussels, predominantly
the Asian green mussel, Perna viridis, and the brown mussel,
Perna perna (Watling and Watling 1982; Tan and Lim 1984;
Mohan et al. 1986; Cheung and Cheung 1995). However,
neither of these species is native to tropical Australia, and P.
viridis is, in fact, a declared introduced marine pest (NIMPIS
2002a). There do not appear to have been any toxicity studies
using Australian tropical marine mussels.

Summary - Bivalves

Bivalve molluscs may represent a relevant biotic group
to consider as part of a toxicity testing suite for northern
Australia. Given the common use of oysters as toxicity testing
species and the fact that species previously used for toxicity
testing are present in northern Australian marine waters,
oysters may be the most appropriate bivalve group to target.
Oysters have proven to be relevant and sensitive toxicity
testing species. Saccostrea spp. have been regularly used
as toxicity test species due to the ease of gamete generation
and they adjust well to laboratory conditions (Ramachandran
et al. 1997). What appear to be two of the major species of
Saccostrea in northern Australia, the black-lip (S. echinata)
and milky oyster (S. cuccullata), both have economic
importance as seafood and also significance to indigenous
communities. In addition, the pearl oyster (P. maxima) is
a commercially important species and is common across
northern Australia. All the above species have been used
previously in laboratory studies, albeit not to the extent of
temperate species such as S. commercialis. In addition, the
availability of broodstock, either wild or hatchery-sourced,
would need to be ascertained.

GASTROPOD MOLLUSCS

Gastropods are the largest class of molluscs and are ubiquitous
within the marine environment, existing from the tropics to
the polar regions. They are distinguished by their large, flat,
locomotive ‘foot’ and the asymmetric shell that many species,
but not all, possess (Ruppert and Barnes 1994).

Several species of gastropod have been used for toxicity
testing in Australia. The tropical snail, Nerita chamaeleon
(collected from Cairns), has been used in a 30-day microcosm
sediment study (with P. monodon and G. caespitosa) to
assess the toxicity of nickel ores. However, the snails were
insensitive to the ore with 100% survival reported at the end
of the test (Florence et al. 1994). Australian researchers have
also used the temperate marine snails, Polinices conicus
and Austrocochlea porcata, to test the toxicity of crude oil,
dispersants and dispersed oil (Gulec et al. 1997; Reid and
MacFarlane 2003).

A few acute toxicity studies have been conducted by foreign
research groups using tropical marine gastropods that are found
in northern Australia to assess survival following exposure
to metals and organometals, e.g. Planaxis sulcatus, Trochus
radiatus, Nerita albicilla, Nerita chamaeleon, Nassarius
reticulates (Kumar and Devi 1995; Kidwai and Ahmed 1999;
Kulkarni et al. 2004; Sousa et al. 2005). Researchers in Florida
investigated the use of the queen conch embryos, Strombus
gigas, and reported that the control survival was good but the
bioassay was not as sensitive as other species (Rumbold and
Snedaker 1997). A Brazilian group exposed neonates from
the tropical snail, Pomacea lineata, to effluents for up to 15
d but used survival as an endpoint (Lima Melo et al. 2000).
It should be noted that the authors could find no studies
that have used sub-lethal endpoints to assess the toxicity of
environmental contaminants in the laboratory, although sub-
lethal endpoints (specifically imposex) are commonly used
in biomonitoring studies.

The vast majority of gastropod studies have used them as tools
in biomonitoring, biomarker and bioaccumulation studies, due
to their apparent sensitivity to tributyltin (TBT). The temperate
marine snails, Austrocochlea constricta, Bembicium auratum
and Thais orbita, have been used in Australia for monitoring
the bioaccumulation of metals and organopollutants (Walsh
etal. 1995; Taylor and Maher 2006) and in biomarker studies
(Reid and MacFarlane 2003; Gibson and Wilson 2003).
Internationally, the common (edible) periwinkle, Littorina
littorea, and the dogwhelk, Nucella lapillus, have been used
extensively in coastal biomonitoring programs, which have
focused on the impacts of metals, and imposex and intersex
induction following exposure to tributyltin (Ketata et al.
2008). These species do not occur in the tropics but a similar
species of ubiquitous intertidal snails has been reported
in northern Australia (e.g. Littoraria spp.; URS Australia
and Alcan 2004). A limited number of studies have used
L. littorea in laboratory exposure tests (Cajaraville et al.
1989), with the primary focus of most being the identification
of biomarkers that can be applied in the field (Kwamla
Atupra 2001).
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Summary — Gastropods

Marine gastropods may be a useful addition to an
ecotoxicological testing suite, as they are common in the
marine environment and have been used extensively in
biomonitoring studies. It is also likely that they will be easily
cultured under laboratory conditions. However, a limited
number of laboratory exposure studies have been conducted
and none of these studies has used sub-lethal endpoints.
Consequently, the development of a chronic sub-lethal snail
test may involve significant developmental effort.

ECHINODERMS

Sea urchins

Sea urchins and other echinoderms make up a diverse and
widely distributed group of marine organisms. The Phylum
Echinodermata includes sea stars, sea urchins and sea
cucumbers all of which are exclusively marine and mostly
bottom-dwellers (Ruppert and Barnes 1994). For sea urchins
and sea cucumbers, fertilisation of eggs by spermatozoa
occurs in the water column. Notably, artificial spawning
of sea urchins can be induced through the injection of 0.5
M potassium chloride into the body cavity (Nipper et al.
1997).

The use of sensitive life stages of echinoids for toxicity testing
is relevant to assessing the health of reef communities, given
the importance of some sea urchin species in maintaining
healthy reef systems (Nipper and Carr 2001). Sea urchin
tests are ideal for the detection of effects of low levels of
pollution, due to the high sensitivity of sea urchin embryos
and larvae (Nipper et al. 1997; Ozretic et al. 1998) and their
specific morphological and physiological metamorphosis
(Ozretic et al. 1998). Toxicity tests on echinoid sperm viability
and embryo development are well established (e.g. US EPA
2002; ASTM 2003) and exposures of gametes have shown
comparable or greater sensitivity to many contaminants than
other marine species and life stages (ESA 2005).

Table 6 lists some tests that have been conducted on various
echinoderm species in Australia and overseas. To our
knowledge, no toxicity tests have been developed in Australia
using tropical echinoids. However, the temperate sea urchin,
Heliocidaris tuberculata, has become widely used in toxicity
testing programs in Australia, with fertilisation (1-h exposure)
and larval development (72-h exposure) being the major
endpoints measured (as summarised by Smith et al. 2004).
Both the fertilisation and larval development endpoints have
been shown to be particularly sensitive to metals (Doyle et al.
2003). As there is currently no hatchery rearing of sea urchin
species in Australia, it is necessary to collect broodstock for
toxicity testing from wild populations.

Some toxicity testing using sub-tropical or tropical sea
urchins, namely Anthocidaris crassispina (Vaschenko et al.
1999; Au et al. 2000), Arbacia punctulata (Nipper and Carr
2001), Diadema setosum (Kobayashi 1994; Ramachandran
et al. 1997), Echinometra mathaei (Heslinga 1976) and
Lytechinus variegates (Nipper et al. 1993b), has been
undertaken overseas. Various life stages and endpoints
have been measured, ranging from exposures of embryos
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and larvae for standard fertilisation and larval development
tests to long-term (i.e. 4-week) exposures of adults and
associated assessment of various reproductive parameters
(e.g. sperm motility, egg morphology, fertilisation capability).
Ramachandran et al. (1997) found D. setosum to be more
sensitive to copper, but less sensitive to cadmium, than the
oyster, C. iredalei, and the mud crab, S. serrata. It should
also be noted that D. sefosum is common throughout northern
Australian coastal waters (Marsh and Morrison 2004;
Australian Faunal Directory 2006).

Holothurians

Another group of echinoids, which has not been used for
toxicity testing purposes, but which is relatively common
and carries significant economic and cultural significance is
the holothurians or sea cucumbers. Also known as trepang,
holothurians are fished commercially across northern
Australia, with the most common species being Holothuria
scabra (or sand fish; National Oceans Office 2004). The
fishery has been heavily exploited, and recent research has
investigated conditions under which holothurians can be
bred and reared for wild restocking purposes (Ramofafia et
al. 2003; DBIRD 2004). Unlike the sea urchins, spawning in
H. scabra cannot be induced by chemical stimuli. However,
spawning can be artificially induced through exposure
to short-term environmental stresses, e.g. temperature
change, light intensity, photoperiod, salinity, tidal flux, food
availability (Morgan 2000; Battaglene et al. 2002). H. scabra
has a planktonic larval phase of 10-14 days during which they
feed on microalgae. Following this they settle onto substrata
and grow up to 40 mm in a month. However, during this first
month of growth aquaculturists have reported high mortality
rates (Battaglene et al. 1999). Given the above, holothurians
represent relevant and potentially useful tropical marine
toxicity testing species, although suitable laboratory culture
conditions and sub-lethal endpoints need to be investigated.

Summary — Echinoderms

Echinoids, particularly sea urchins and potentially sea
cucumbers, may represent a relevant biotic group to consider
as part of a toxicity testing suite for northern Australia.
Short-term, sub-lethal toxicity tests using sea urchin early
life stages are well documented and established, and have
been found to be sensitive to a range of toxicants. In addition,
a species of tropical urchin that has been used in south-east
Asia for toxicity testing, D. sefosum, is known to occur
throughout northern Australia. The sea cucumber, H. scabra,
is also distributed across the region, is economically and
culturally significant, and recent research has focused on
hatchery breeding and rearing requirements. A key factor
in determining the suitability of an echinoid species as part
of a toxicity testing suite would be the ongoing need for
field collection of broodstock or experimental adults. This
latter requirement may be problematic given (i) the need for
a conveniently located and abundant population of adults,
and, possibly more importantly, (ii) the presence of estuarine
crocodiles in the coastal waters of northern Australia.
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Table 7. The sensitivity of corals to copper.

Species Temperate or Tropical Endpoint Test duration Cu EC50 (pg/L) Reference
Acropora millepora Tropical Fertilisation 4h 17 Negri and Heyward (2001)
Acropora millepora Tropical Metamorphosis 24h 110 Negri and Heyward (2001)
Acropora tenuis Tropical Larval settlement 48h 35 Reichelt-Brushett and Harrison (2000)
Goniastrea aspera Tropical Fertilisation 5h 15 Reichelt-Brushett and Harrison (1999)

BRYOZOANS

Bryozoans are a group of invertebrates that form sessile
colonies composed of small zooids approximately 0.5 mm in
length (Ruppert and Barnes 1994). Colonies are formed by
rapid asexual budding of these zooids which are physically and
physiologically interjoined. Each zooid typically consists of a
stationary trunk and a food-catching organ which encircles the
mouth and bears tentacles (Ruppert and Barnes 1994). Each
zooid possesses both male and female reproductive organs.
Egg fertilisation and embryo development occur within the
zooid (i.e. internal brooding) before the free-swimming larvae
are released. Released larvae then settle to produce a colony
(NIMPIS 2002b).

Of the few toxicity studies that have been undertaken using
bryozoans, the majority appear to be Australian. Between
the 1940s and 1960s, substantial research was undertaken in
relation to the effects of antifouling paints on marine fouling
species, including bryozoans. Wisely (1958) and Wisely
(1962a, b) assessed the effects of antifouling paints, with a
focus on copper, to either Bugula neritina or Watersipora
cucullata. Wisely and Blick (1967) assessed the survival
of both the above two species and five other invertebrate
species, following exposure to copper, mercury and zinc.
Of the species tested, W. cucullata was the most sensitive to
copper and mercury. More recently, Tania and Keough (2003)
assessed the delayed effects of larval exposure to copper
for Watersipora subtorquata, and Bennett (2006) assessed
the effects of 24-h exposure to produced formation waters
on various behavioural and physiological responses (e.g.
attachment, metamorphosis, survival) of W. subtorquata and
two populations of B. neritina, one of which was collected
from Townsville. The Townsville-sourced B. neritina appears
to be the only bryozoan used for ecotoxicological studies
that has been collected from tropical waters, although the
experiments were conducted at 20°C (Bennett 2006), which
is more typical of temperate/sub-tropical waters.

B. neritina is a common marine species of Bryozoa (Ruppert
and Barnes 1994), which is reported to be present in areas of
tropical Australia (Arnold 2000). It is an upright, arborescent,
red-purple-brown coloured, flexible species (Bennett 2006),
which filter-feeds on microscopic plankton using its tentacles
(NIMPIS 2002b). Along with W. subtorquata, B. neritina
is considered an introduced species abundant in ports and
harbours, growing well on pier piles, vessel hulls and other
submerged surfaces (NIMPIS 2002b). Other Bryozoan
species reported by Arnold (2000) to exist in northern
Australia are Bugula robusta, Zoobotryon verticillatum,
Biflustra savartii and Savignyella lafontii. Of these species,
Bugula robusta is likely to be a naturally-occurring species
in Australia (Arnold 2000).
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Summary — Bryozoans

Bryozoans may represent a relevant biotic group to consider as
part of a toxicity testing suite for tropical marine ecosystems.
Previous studies have demonstrated that bryozoans can be
used as toxicity testing organisms, although they have not
been used routinely and there has not been a great deal of
developmental work undertaken. Consequently, a suitable,
and ideally native, species would first need to be identified,
followed by a substantial amount of test development
research.

CORALS

Of all the tropical marine biota groups, corals have probably
received the most attention in terms of their health and the
impacts of anthropogenic activities, including chemical
contamination (Wilkinson 2004; Downs et al. 2005a).
Scleractinian corals are generally composed of small colonial
invertebrates that build hard calcareous skeletons, forming a
variety of three dimensional colony types that provide habitat
for hundreds of species of tropical invertebrates. Most corals
in the tropics are host to symbiotic dinoflagellates of the
species Symbiodinium which provide up to 95% of the energy
required by the host animal colonies through the transfer of
photosynthates across the cell walls of the alga (Muscatine
1990). Reproduction typically occurs via broadcast spawning,
with many species ejecting gametes into the water column
simultaneously at annual spawning events (Richmond and
Hunter 1990). Fertilisation is usually external, with the
planula larvae normally competent to undergo settlement
and metamorphosis after five days of development. Coral
spawning occurs annually (although at different times for
different coral communities), which restricts the ability to
undertake routine toxicity testing using early life stage forms
such as gametes and larvae.

In Australia, a substantial amount of tropical coral
ecotoxicology research has been undertaken, with studies
focusing mostly on four endpoints: fertilisation; settlement
and metamorphosis; responses of juvenile corals; and
responses of adult colonies. The comparative sensitivity
of these endpoints to copper is shown in Table 7. Coral
fertilisation toxicity tests, which are usually of a short,
2-5 h duration, were first performed by Heyward (1988) to
assess the effects of copper (Table 7) and zinc. Comparable
studies have since assessed the effects of other metals as
well as the antifoulant TBT, hydrocarbons, dispersants,
herbicides and other toxicants on coral fertilisation (Reichelt-
Brushett and Harrison 1999; Negri and Heyward 2000, 2001;
Mercurio et al. 2004; Negri et al. 2005). Larval settlement
and metamorphosis tests, which usually span 24-48 h, have
also been used successfully for a range of coral species and
toxicants, although exposure methods have varied (Reichelt-
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Brushett and Harrison 2000; Negri and Heyward 2001; Negri
etal. 2005). As noted above, it is difficult to use coral early life
stages for routine toxicity testing purposes, because they are
available only for short periods during the annual spawning
events. The early life stages are, however, useful for research
on specific toxicants, which can be timed to coincide with
the spawning events.

Ecotoxicology experiments on adult coral colonies have been
less common. They require larger experimental apparatus than
those used for the early life histories, but this problem can
be overcome by testing coral branchlets as an alternative to
entire colonies. Numerous responses of coral branchlets to
toxicant exposure have been assessed, including mortality,
tissue retraction, tissue death, bleaching (loss of symbionts),
and reproductive potential and output (Jones 1997; Jones and
Hoegh-Guldberg 1999; Mercurio et al. 2004; Markey et al.
2007). In addition, several new methods have been developed
including the measurement of stress proteins and enzymes,
gene regulation (Downs et al. 2005b) and photosynthetic
efficiency in the symbiotic algae (Jones and Hoegh-Guldberg
1999), although the ecological relevance of these remains
unclear.

Overall, corals have been shown to be sensitive to a range
of toxicants, including copper, TBT, petroleum products and
herbicides such as diuron, atrazine and Irgarol 1051 (Harrison
1999; Negri and Heyward 2000; 2001; Jones and Kerswell
2003; Negri et al. 2005; Victor and Richmond 2005; Markey et
al. 2007). Herbicides can affect coral symbiont photosynthesis
at very low concentrations (e.g. <1 ug/L), however, these
effects are largely reversible, and secondary effects such as
bleaching and tissue retraction are not generally observed at
environmentally relevant concentrations (Negri et al. 2005).
Metals and organometals, however, are more likely to affect
the coral tissue rather than the symbiont (Smith et al. 2003;
Markey et al. 2007).

There have been numerous coral species used in Australia
for toxicity testing purposes, with the most common being
Acropora tenuis, Acropora millepora, Pocillopora damicornis
and Goniastrea aspera, all of which are widely distributed
across northern Australia (Veron 2000).

Summary — Corals

Corals represent a relevant biotic group to consider as part
of a toxicity testing suite for tropical marine ecosystems, as
they are important for reef and ecosystem integrity in tropical
marine environments and have demonstrated sensitivity to
a range of contaminants. Toxicity testing procedures have
been developed to measure various responses, ranging
from fertilisation to various responses of adult colonies.
However, there are no formally documented test protocols for
corals, with existing research using a variety of approaches.
Fertilisation and metamorphosis toxicity tests are likely to
be useful for research and to establish toxic thresholds for
a variety of contaminants, but these tests must be timed to
coincide with annual spawning events. The use of adult
branchlets offers an alternative approach that can be applied
to more routine testing year round.

FISH

Fish are the primary vertebrate component in aquatic systems
and, as such, have comprised an integral part of toxicity
assessments (Smith et al. 2004). Fish are ideal indicators of
heavy metal contamination in aquatic systems because they
occupy different trophic levels and are different sizes and ages
(Burger et al. 2002). The early life stages of fish are generally
considered to be the most sensitive to toxicant exposure
(McKim 1977). It is important to note that in Australia,
toxicity testing conducted on any vertebrate species, including
fish, requires animal ethics approval, in accordance with the
Australian Code of Practice for the Care and Use of Animals
for Scientific Purposes — 2004 (NHMRC 2004).

This section reviews toxicity testing for tropical marine fish
only, as the body of literature on temperate fish toxicity testing
is far too extensive to enable a proper overview within the
scope of this review. Thus, Table 8 lists some of the tropical
marine fish species that have been used for toxicity testing in
Australia and overseas. In Australia, several tropical species
have been used to assess acute toxicity of chemicals, although
only one with any regularity.

Denton and Burdon-Jones (1986) assessed the acute toxicity
(96-h survival) of copper, cadmium, lead, mercury, nickel
and zinc to juveniles of two species of tropical marine fish,
the glass perch, Ambassis marianus (formerly known as
Priopidichthys marianus), and the diamond-scaled mullet,
Liza vaigiensis. However, neither of these species appears
to have been used considerably for toxicity testing purposes
since. In contrast, the barramundi, Lates calcarifer, has
been used regularly for toxicity assessments, although
most often as part of commercial-in-confidence studies,
which are rarely published in the peer-reviewed literature.
In Australia, L. calcarifer fry are available from specialist
commercial hatcheries. These operations spawn their brood
stocks regularly during summer (wet-season) but they are also
able to provide fry during the ‘off-season’, although there
is an increased cost involved. The predominant existing L.
calcarifer test is a 96-h imbalance test, which measures the
loss of swimming ability of juveniles, typically 20-30 mm
in length, such that the fish can no longer remain upright
(Smith et al. 2004; ESA 2005). The development of this
sub-lethal endpoint over an acute exposure was in response
to strict animal ethics legislation. It would be useful to
understand the applicability of the 96-h imbalance response
as a predictor of sub-lethal responses (e.g. on growth) to
longer-term exposures, although there appear to be no data
addressing this.

L. calcarifer has also been commonly used in overseas
studies, particularly in Asia, where the species, known as
sea bass, is an important aquaculture species (Shazili 1995).
Most studies have assessed survival of juveniles over acute
exposures (e.g. Perngmark and Tookwinas 1986; Shazili
1995; Krishnani et al. 2003), although some have investigated
effects of contaminant exposure over sub-chronic exposures
(e.g. Shazili 1995 —up to 23 days, survival; Thongra-ar et al.
2003 — 7 days, growth and survival). Thongra-ar et al. (2003)
found growth to be a more sensitive indicator than survival
following a 7-d exposure of L. calcarifer to mercury.
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DISCUSSION AND SYNTHESIS

There are very few Australian tropical marine species for
which routine, fully documented sub-lethal toxicity tests for
assessing chronic toxicity have been established. One of the
few examples, the diatom, N. closterium, is a well-established
toxicity testing organism, is known to be sensitive to chronic
exposure to metals (Table 1), and is widely distributed in
northern Australian marine waters. Recent studies have
further refined this protocol in terms of temperature tolerances
of a tropical strain of N. closterium (Harford et al. unpublished
data). Another tropical microalgal species, I. aff. galbana, has
also been used regularly and test protocols are established
(Table 1). Sub-lethal toxicity tests have also been developed
and applied for early life stages of numerous coral species
(e.g. A. tenuis, A. millepora, G. aspera, Table 7). However,
they are less standardised than the microalgal tests and, due
to the reliance on natural annual spawning events, cannot be
conducted routinely.

There are several other marine species that are known to occur
in northern Australia for which acute toxicity tests exist, but
for which sub-lethal chronic test protocols have not been
established. These include the copepod (A. sinjiensis), tiger
prawn (P. monodon) and barramundi (L. calcarifer). For these
species, moderate to significant developmental work would be
required to develop sub-lethal chronic tests (see below).

In the past five years, the regulatory agencies of the three
northern jurisdictions (i.e. Queensland, Western Australia,
Northern Territory) have begun to recognise and utilise the
framework provided by the ANZECC/ARMCANZ (2000)
Water Quality Guidelines. Emphasis has been placed on site-
specific assessment, and approaches such as toxicity testing
have been incorporated into new waste discharge licences or
at least environmental policy (Smith et al. 2004; Government
of Western Australia 2005; EPA Northern Territory 2006).
However, at present, there are insufficient ecotoxicity tests in
existence for Australian tropical marine environments to meet
the ANZECC/ARMCANZ (2000) preferred requirement for
direct toxicity assessment of sub-lethal chronic toxicity tests
for at least five regionally-relevant species from at least four
taxonomic groups. In fact, this review has concluded that only
the 72-h growth rate inhibition test using N. closterium or 1.
aff. galbana, and the sub-lethal tests for coral species such
as A. tenuis, A. millepora and G. aspera could be considered
to have such relevance.

Due to the lack of routine sub-lethal tests for tropical
marine species, regulatory agencies have had to accept the
use of (i) temperate species (e.g. the Sydney rock oyster,
S. commercialis, and copepod, G. imparipes), and (ii)
lethal acute tests (e.g. prawn 96-h survival) to supplement
the existing sub-lethal chronic tropical algal tests when
undertaking assessments of tropical marine contaminant
issues. Whilst the use of a few established tests using a mix
of non-local, tropical and temperate species with known
sensitivity and reproducibility (with good QA) might be
considered acceptable for preliminary toxicity studies in
a tiered assessment approach, it still would not provide
appropriate answers on the effects to locally present species
under local conditions. Furthermore, such tests would not be

appropriate to use for more specific research studies. Indeed,
Kwok et al. (2007) found marked differences between the
sensitivities of tropical and temperate freshwater species to
arange of toxicants. Consequently, rather than continuing to
accept and even recommend the use of temperate species and
acute tests for tropical issues (e.g. WA DOIR 2006), relevant
government agencies need to be more active in encouraging
the development of appropriate test protocols for tropical
marine species in line with the ANZECC/ARMCANZ
(2000) rationale for more ecologically-relevant water quality
assessment and monitoring.

Table 9 lists candidate species and summarises relevant
attributes that could be used to help determine the relative
worth of pursuing the development of particular toxicity tests.
The categories in the column, Developmental effort, were
based on the simple matrix of issues for candidate species
and test methodology shown in Table 10. The information in
Table 9 could be used to guide the final selection of a suite
of tropical marine species for sub-lethal toxicity testing, with
overall key criteria being:

1 Ecologically, economically and/or culturally relevant;

2 Readily obtainable/culturable;

3 A sub-lethal response can be measured, and the response
is sensitive to key toxicants (although in many cases the
sensitivity may not be known unless specific investigations
are undertaken);

4 The suite of tests consists of at least five species from at
least four taxonomic groups; and

5 The development of the suite of tests is cost-effective (e.g.
the selection of one of two equally suited species could be
based on predicted test development costs).

Based on these criteria, several species/species groups stand
out as being good candidates for toxicity test development
(in addition to the aforementioned microalgae and coral
species):

e A microcrustacean, possibly a copepod (A. sinjiensis or
other species). Copepod faunas across northern Australia
are well known, some are readily culturable, and an
existing sub-lethal test based on the temperate copepod,
A. tonsa, could readily be adapted;

e The mud crab, S. serrata. This species is present across
northern Australia, is of ecological, cultural and economic
importance, its culturing requirements are well established,
and several of its life stages may lend themselves to various
types of toxicity testing. However, at present, toxicity
testing would be restricted to the warmer months (October
to March) when spawning takes place;

e The seaurchin, D. setosum, which almost certainly occurs
across northern Australia and represents another trophic
group, and for which there already exist well established
protocols for sub-lethal toxicity testing (although the
need for wild collection of adult broodstock may be
problematic);

e Qysters, Saccostrea spp. and P. maxima are distributed
across northern Australia, and are of ecological, cultural
and economic importance. There already exist well-
established protocols for oyster sub-lethal toxicity
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testing, and they may also serve as useful biomarker
- species (although the potential need for wild collection
s 3 of adult Saccostrea, but not P. maxima, broodstock may
é 5 be problematic); and
7 % e Barramundi, L. calcarifer, is present across northern
=7 ‘§ . . Australia, is of ecological, economic and possibly cultural
2] & S S importance, can be readily sourced from hatcheries
—_ - = ] ] . .
2 z 5 = = and may also serve as a useful blomarker species. Test
2o “ development should focus on early life stages, as acute
§ ) tests with adult barramundi have been found to be
gg insensitive to metals such as copper (J Stauber, CSIRO,
§§ pers. comm.). However, significant developmental effort
5 Z would be required and the feasibility of the protocol may
<9 be compromised by animal ethics constraints.
f_c As already noted, the need to regularly collect adult
“‘E 2 broodstock or test organisms from the wild, such as may be
g '§ the case for amphipods, oysters, sea urchins, bryozoans and
; 2 corals, may limit the suitability of the species, because of
§ 28] T the potential need to rely on (i) a conveniently-located and
2| £ S| § 3 S abundant wild population of adults, and (ii) infrequent natural
_%n ﬁ E "§ %\0 § spawning events, and also the hazards posed by the presence
;5 f g = A of estuarine crocodiles across the region.
L w
é § A substantial research and development (R&D) effort would
% E* be required to develop appropriate toxicity test methods for
g9 the above species. This effort would be greater for some
g Tz protocols and species than others. In addition to the need
to identify appropriate species and to develop culturing
3 and testing methods (including selecting test conditions
QE and endpoints), studies may be required to investigate
g the influence of key physico-chemical variables, such as
8 temperature and alkalinity, and key contaminants, on test
g - N = species, and how these variables interact with each other. Final
£ g 3 S decisions regarding species and protocol selection would
= 8| & § = need to take into account the relative costs and benefits of
F’é é = = e%o addressing the various R&D aspects.
Eg
85 SUMMARY
ég Toxicity testing methods are currently required as a tool
S e for predicting and assessing the impacts of anthropogenic
<= environmental stressors on tropical marine ecosystems.

Bearing in mind the pristine nature of most tropical Australian
ecosystems, and the expected expansion of industry and
agriculture in these regions, such methods will also play
a critical role in ensuring the ecologically sustainable
development of future activities. However, this review found
there is a paucity of fully-developed, regionally-relevant
marine toxicity testing methods for Australian tropical marine
species. Currently, just two fully-developed routine sub-lethal/
chronic test protocols exist, both of which are for marine
microalgae, while sub-lethal tests using various coral species
have also been applied regularly. In order to meet minimum
requirements recommended by ANZECC/ARMCANZ
(2000) for site-specific assessments, additional toxicity tests
need to be developed for at least four other tropical marine
species representing at least three other taxonomic groups.
This review identified a number of different tropical marine
species that may be suitable candidates in a suite of toxicity
test protocols. The development of such methods will require

Table 10. Matrix to determine the extent of effort required to develop toxicity tests for local species.

There are some species identification, selection,

availability and culturing issues to resolve
There are many species identification, selection,

There are few species identification, selection,
availability and culturing issues to resolve

availability and culturing issues to resolve

Species issues
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alarge R&D effort, and regulators, industries and community
stakeholders should all have an interest in ensuring that these
important knowledge gaps are addressed.
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