2019 Consumer Confidence Report for Public Water System CITY OF BEVIL OAKS

This is your water quality report for January 1 to December 31, 2019
CITY OF BEVIL OAKS provides ground water from Gulf Coast aquifer located in Jefferson County.

For more information regarding this report contact:
\qquad
Phone _409-753-1475_

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, f avor de llamar al telefono \qquad
\qquad _.

Definitions and Abbreviations

Definitions and Abbreviations
Action Level:
Action Level Goal (ALG):
Avg:
Level 1 Assessment:

Level 2 Assessment:

Maximum Contaminant Level or MCL:

Maximum Contaminant Level Goal or MCLG:
Maximum residual disinfectant level or MRDL: MFL
mrem:
na:
NTU
$\mathrm{pCi} / \mathrm{L}$

The following tables contain scientific terms and measures, some of which may require explanation.
The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
Regulatory compliance with some MCLs are based on running annual average of monthly samples.
A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL viola tion has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatme nt technology.

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of mi crobial contaminants. disinfectants to control microbial contaminants.
million fibers per liter (a measure of asbestos)
millirems per year (a measure of radiation absorbed by the body)
not applicable.
nephelometric turbidity units (a measure of turbidity)
picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb:
ppm:
ppq
ppt
Treatment Technique or TT:
micrograms per liter or parts per billion - or one ounce in $7,350,000$ gallons of water.
milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.
parts per quadrillion, or picograms per liter (pg/L)
parts per trillion, or nanograms per liter (ng/L)
A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surf ace of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildl ife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater dis charges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water syste ms . FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concer ns . For more information on taste, odor, or color of drinking water, please contact the system's business office.
You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or i mmunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing trea tment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from m aterials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the v ariety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tes ted. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http ://www.epa.gov/safewater/lead.

Information about Source Water

 orts at our system contact Sabrenna Crain at 409-753-1475.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	\# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	08/19/2017	1.3	1.3	0.238	0	ppm	N	Erosion of natural deposits; Leaching from wo od preservatives; Corrosion of household plu mbing systems.
Lead	08/19/2017	0	15	2.78	0	ppb	N	Corrosion of household plumbing systems; Er osion of natural deposits.

2019 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Dete cted	Range of Individua I Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2019	12	9.6-14.8	No goal for the to tal	60	ppb	N	By-product of drinking water disinfection.

* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Total Trihalomethanes (TT HM)	2019	79	51.2-88.4	No goal for the to tal	80	ppb	N	By-product of drinking water disinfection.

[^0]| Inorganic Contaminants | Collection Date | Highest Level Dete cted | Range of Individua I Samples | MCLG | MCL | Units | Violation | Likely Source of Contamination |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arsenic | 01/25/2018 | 4.6 | 4.6-4.6 | 0 | 10 | ppb | N | Erosion of natural deposits; Runoff from orchards ; Runoff from glass and electronics production w astes. |
| Barium | 01/25/2018 | 0.0507 | 0.0507-0.0507 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from met al refineries; Erosion of natural deposits. |
| Fluoride | 01/25/2018 | 0.78 | 0.78-0.78 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. |

Synthetic organic contamin ants including pesticides a nd herbicides	Collection Date	Highest Level Dete cted	Range of Individua I Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Di (2-ethylhexyl) phthalate	2019	1.2	1.2-1.2	0	6	ppb	N	Discharge from rubber and chemical factories.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels D etected	MRDL	MRDLG	Unit of Measu re	Violation (Y/N)	Source in Drinking Water
Chlorine	2019	0.86	0.20-4.0	4	4		ppm	Water additive used to control microbes.

Violations

Public Notification Rule			
The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency).			
Violation Type	Violation Begin	Violation End	Violation Explanation
PUBLIC NOTICE RULE LINKED TO VIOLATION	04/08/2019	2019	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulation s.

[^0]: * The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

