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ABSTRACT

The mechanophysiological conditions of injured skin greatly influence the degree
of scar formation, scar contracture, and abnormal scar progression/generation
(e.g., keloids and hypertrophic scars). It is important that scar mechanobiology
be understood from the perspective of the extracellular matrix and extracellular
fluid, in order to analyze mechanotransduction pathways and develop new strat-
egies for scar prevention and treatment. Mechanical forces such as stretching
tension, shear force, scratch, compression, hydrostatic pressure, and osmotic
pressure can be perceived by two types of skin receptors. These include cellular
mechanoreceptors/mechanosensors, such as cytoskeleton (e.g., actin filaments),
cell adhesion molecules (e.g., integrin), and mechanosensitive (MS) ion channels
(e.g., Ca21 channel), and sensory nerve fibers (e.g., MS nociceptors) that produce
the somatic sensation of mechanical force.Mechanical stimuli are received byMS
nociceptors and signals are transmitted to the dorsal root ganglia that contain
neuronal cell bodies in the afferent spinal nerves. Neuropeptides are thereby re-
leased from the peripheral terminals of the primary afferent sensory neurons in
the skin, modulating scarring via skin and immune cell functions (e.g., cell pro-
liferation, cytokine production, antigen presentation, sensory neurotransmission,
mast cell degradation, vasodilation, and increased vascular permeability under
physiological or pathophysiological conditions). Mechanoreceptor or MS
nociceptor inhibition and mechanical force reduction should propel the develop-
ment of novel methods for scar prevention and treatment.

During the growth and development of the human body,
the skin expands to cover the growing skeleton and soft
tissues and is constantly subjected to extrinsic and intrinsic
mechanical forces. These extrinsic forces include skin-
stretching tensions (e.g., due to body movement) and
external stimuli (e.g., scratch). Intrinsic forces include ex-
tracellular matrix (ECM) tension by the underlying skele-
tal growth, and fluid shear force and hydrostatic and
osmotic pressures by the extracellular fluid (ECF).

Following skin injury, the mechanophysiological condi-
tions are drastically changed by wound healing, granulation
tissue formation, wound contraction, and epithelialization.1

Coagulation and inflammation cause edema and blood cir-
culatory alterations in the skin and wound,2 thereby impact-
ing the ECF-based mechanophysiology. Moreover, the
proliferative and remodeling phases, which start within 1
week of injury and can continue for months, cause granula-
tion tissue formation and wound contraction by myofibro-
blast activity.3 These mechanophysiological alterations
of the injured skin considerably influence the degree of
scarring.1 Here, we analyze the mechanisms of scarring mech-
anobiology, with the goal of developing new strategies for
scar prevention and treatment.

CELLULAR AND TISSUE RESPONSES TO
MECHANICAL FORCES ON CUTANEOUS
WOUNDS

Mechanical forces, including stretching tension,4 shear
force,5 scratch,6 compression,5 and hydrostatic7 and os-

motic8 pressures, can be perceived by cellular mechano-
receptors9/mechanosensors10 (Figure 1) and/or nerve fiber
receptors (including mechanosensitive [MS] nociceptors11)
that produce the somatic sensation of mechanical force
(Figure 2). Cellular mechanoreceptors include the MS ion
channels (e.g., Ca21, K1, Na21, and Mg21),9,12–14 cyto-
skeleton (e.g., actin filaments),15 and cell adhesion mole-
cules (CAMs) (e.g., integrins)16 (Figure 1). Skin resident
cells are attached to the ECM via CAMs, and the cyto-
skeleton is connected to MS ion channels and CAMs.17

When the ECM is distorted by mechanical forces such as
skin tension, the cytoskeleton is altered and MS ion chan-
nels are activated.17 In contrast, ECF-based pressure
cannot activate MS ion channels through cytoskeletal alter-
ation, as hydrostatic pressure impacts ion inflow but not cell
shape.18 Cells convert mechanical stimuli into electrical
signals through mechanoreceptors, thereby accelerating cell
proliferation, angiogenesis, and epithelialization through
various mechanotransduction pathways. In particular,
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transforming growth factor (TGF-b)/Smad, integrin, mi-
togen-activated protein kinase G protein, tumor necrosis
factor/NF-kB, Wnt/b-catenin interleukin, and calcium ion
pathways have been the subject of extensive research in cuta-
neous scarring. TGF-b is particularly involved in the
way scar tissue reacts to mechanical forces. Supporting this
is that keloid-derived fibroblasts subjected to mechanical
force in the form of equibiaxial strain produce more TGF-
b1 and -b2 than normal skin-derived fibroblasts.19 Another
study has shown that stretching a myofibroblast-derived
ECM in the presence of mechanically apposing stress fibers
immediately activates latent TGF-b1, and that compared
with relaxed tissues, stressed tissues exhibit increased
activation of Smad2/3, which are the downstream targets of
TGF-b1 signaling.20

G proteins are additional membrane proteins that
modulate mechanotransduction pathways.1 Mechanical
stimulation alters the G protein conformation, leading
to growth factor-like changes that initiate secondary
messenger cascades and initiate cell growth.1 Calcium
ion MS channels are involved in phospholipase C activa-
tion, which can lead to protein kinase C activation
and subsequent epidermal growth factor (EGF) activa-
tion.1 These mechanotransduction pathways are thought
to be associated with cutaneous scarring as a cellular
response.

At the tissue level, sensory fibers act as mechanical stim-
uli receptors in the skin11 (Figure 2). Mechanical stimuli
are received by MS nociceptors, and signals are transmit-
ted to dorsal root ganglia that contain neuronal cell bodies
in the afferent spinal nerves. This results in neuropeptide
release from the peripheral terminals of primary afferent
sensory neurons, which innervate the skin and often con-
tact epidermal and dermal cells. These neuropeptides can
directly modulate the functions of keratinocytes, fibro-
blasts, and Langerhans, mast, dermal microvascular endo-
thelial, and infiltrating immune cells.21–23 Substance P
(SP), calcitonin gene-based peptide (CGRP), neurokinin
A, vasoactive intestinal peptide, and somatostatin are
neuropeptides that effectively modulate skin and immune
cell functions, including cell proliferation, cytokine pro-
duction, antigen presentation, sensory neurotransmission,
mast cell degradation, and vasodilation, and increase vas-
cular permeability under physiological or pathophysiolog-
ical conditions.24,25 These proinflammatory responses are
termed neurogenic inflammation.26–28 SP and CGRP act
through the neurokinin 1 receptor and CGRP1 receptor,
respectively, and are synthesized during nerve growth fac-
tor (NGF) regulation.21,24 Some have also suggested a re-
lationship between burn and abnormal scars (e.g., keloids
and hypertrophic scars [HSs]) and neurogenic inflamma-
tion/neuropeptide activities.29–33

Figure 1. Cellular mechanoreceptors.
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CLINICAL EVIDENCE OF THE RELATIONSHIP
BETWEEN MECHANICAL FORCES AND
SCARRING

While appropriate amounts of intrinsic tension are neces-
sary for wound closure,34 an important factor in the degree
of scarring after wounding is the extrinsic mechanical
force. The balance of these forces plays a key role in heavy
scar production (Figure 3). Mechanical forces promote the
growth of fibroproliferative skin disorders such as HSs and
keloids.35 Thus, abnormal scarring should be studied from
the perspective of the extreme example of excess wound
healing in the skin.

Site specificity of keloids and HSs

Keloids and HSs may constitute two stages of a continu-
ous disease, with only the chronic inflammation strength
being different between them (Figure 4). Although distin-
guishing between a keloid and a HS remains imprecise,36

with respect to hyalinizing collagen bundle formation, the
inflammation of a keloid is much greater than that of an
HS, and the inflammation of either is greater than that of
a mature scar.37 The inflammation strength reflects the
degree of angiogenesis in and around the scar, including
the redness of the scar itself and of the skin adjacent to the
scar. Keloids display scar and adjacent skin redness; in
contrast, redness on adjacent skin is not observed in HSs.38

It has been suggested that these inflammatory features are
closely related to the mechanical force sensitivity (Figure
4), although many other chronic inflammation triggers
may be involved.39

According to a statistical study of more than 1,000 an-
atomic regions in Asian patients, keloids tend to occur at
specific sites, including the anterior chest, shoulder, scap-
ular, and suprapubic regions (Figure 5).40 All of these sites
are constantly or frequently subjected to mechanical
forces, including skin stretching due to daily body move-
ments. The anterior chest skin is regularly stretched by
respiration and upper limb movements, the shoulder, and
scapula skin by upper limb movements and body bending
motions, and the lower abdomen and suprapubic skin
regions by sitting and standing motions.

HSs can occur anywhere in the body, especially when a
scar is long, wide, and located on a frequently moved joint.
Long and wide scars can produce an imbalance of the skin
stretching forces on adjacent scars and can sometimes
cause scar contracture. Plastic surgeons divide scars and
release contractures using geometrical plasties (e.g., z- and
w-plasties) and small-wave incisions for scar and scar con-
tracture treatments.41 In contrast, heavy scars rarely occur
on the scalp or the anterior lower leg40 (Figure 5). Even in
patients with keloids or HSs covering the entire body,
heavy scars on the scalp or the anterior lower leg are
rare.40 The commonality in these sites is that the bones lie
directly under the skin; consequently, the skin at these sites
is rarely subjected to tension.33 The site specificity of scar
development suggests that mechanical forces may not only
promote keloid/HS growth, but may also be a primary
trigger for their generation.33

There is a possibility that a genetic predisposition to
keloid exists, as suggested by a recent study of single nu-
cleotide polymorphism (SNP).42 In clinical situations, not
only keloid but also HS patients sometimes have genetic

Figure 2. Mechanosensitive nocicep-
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predispositions; thus, the relationship between these SNPs
and hypertrophic scarring should also be studied.

Relationship between scar growth and the direction of

the stretching tension

HSs do not grow beyond the boundaries of the original
wound, and thus only grow vertically. In contrast, keloids
grow and spread both vertically and horizontally, similar
in many respects to slowly growing malignant tumors. The
direction of their horizontal growth results in characteris-
tic shapes that depend on their location. For example,
keloids on the anterior chest grow in a ‘‘crab’s claw’’-like
pattern, whereas shoulder keloids grow in a ‘‘butterfly’’
shape. These patterns may reflect the predominant direc-
tions of skin tension at these sites.

Our previous finite element analysis of the mechanical
force distribution around keloids43 revealed high skin ten-
sion at the keloid edges and lower tension at the keloid
centers. This result indicates why keloids generally stop
growing in their central regions. Keloid expansion oc-
curred in the direction of skin pulling, and the skin stiff-
ness at the keloid circumference directly correlated with
the degree of skin tension (Figure 6). These observations
strongly support the notion that skin tension is closely

associated with the pattern and degree of keloid growth.
The growth pattern differences between HSs and normal
scars from those of keloids may reflect differences in their
responsiveness to skin tension (Figure 4).

BASIC RESEARCH ON THE RELATIONSHIP
BETWEEN MECHANICAL FORCES AND
SCARRING

Animal models of skin stretching

To accelerate skin growth, dermatogenesis, and wound
healing, skin-stretching strategies and devices have been
developed.30,44–46 The optimal amplitude and waveform of
skin tension may facilitate skin growth and expansion, but
excessive tension can cause heavy scarring.46 Static and
periodic tensile force application to rat ears showed vascu-
lar remodeling and epidermal proliferation.44 A gene chip
analysis performed on this rat model suggested tissue-
level hypoxia as a possible mechanism for the observed
effects.45 In addition, prior in vitro studies have shown
that mechanotransduction mechanisms can stimulate cell
proliferation47 and angiogenesis.48,49

Using a sophisticated servo-controlled device to stretch
murine dorsal skin, stretched samples had upregulated

Figure 3. Relationship between me-

chanical forces and scarring. An appro-

priate intrinsic tension is necessary for

incisional wound closure; however,

extrinsic mechanical forces can lead

to scarring. Scar formation is deter-

mined by the balance between these

internal and external forces. In particu-

lar, strong extrinsic forces can result

in the acceleration of angiogenesis,

nerve growth, cell proliferation, and

collagen hyperproduction, leading to

abnormal (keloid and hypertrophic)

scar formation.
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epidermal proliferation and angiogenesis.46 Real-time
RT-PCR revealed that EGF, NGF, vascular endothelial
growth factor, and TGF-b1 were more strongly expressed
in cyclically stretched than in statically stretched skin.30,46

This cyclical stimulation also significantly increased skin
neuropeptide accumulation, while the corresponding pep-
tide receptors were down-regulated.30 This study showed
that neuropeptides are produced in resident skin cells.
Although neuropeptide release from the peripheral nerve
fiber terminals was not shown, this study did prove that
neuropeptides are associated with the process of skin
stretching.

Construction of an HS animal model using

mechanotransduction

Many authors have attempted to construct suitable animal
models of heavy scars using mice, rats, and rabbits; how-
ever, these models, especially for keloids, seem to be driven
more by an acute inflammatory response than by chronic
inflammation, leading to immature scar formation.38 An
HS mouse model based on mechanical force loading
showed that scars subjected to tension exhibit less apopto-
sis, and that inflammatory cells and mechanical forces
promote fibrosis.50 These findings support the well-estab-
lished notion that mechanical forces strongly modulate
cellular behavior in the scar.

CLINICAL MECHANOBIOLOGY STRATEGIES
FOR SCAR PREVENTION AND TREATMENT

To limit skin stretching and external mechanical stimuli
during wound healing/scarring, wounds or scars should be
covered by fixable materials, such as tape, bandages, gar-
ments, or silicone gel sheets. A randomized-controlled trial
(RCT) showed that tape fixation helped to prevent HS
formation after a cesarean section in 70 subjects, with sig-
nificantly less scar volume when paper tape was used.49

Other RCTs have shown that silicone gel sheeting signifi-
cantly reduces the incidence of HSs or keloids.51,52 Our
computer analysis of mechanical force conditions around
scars showed that silicone gel sheeting reduces tension at
the scar edges,53 suggesting an important mechanism for
HS formation.

Fluid control may also help prevent and treat scars by
inducing hydrostatic pressure gradients and shear forces
that alter genomic expression through MS ion channels
(Figure 1). Therefore, the control of ECF-based mechan-
ical forces (fluid shear forces, hydrostatic pressure, and
osmotic pressure) may be achieved through various de-
vices or materials (e.g., vacuum-assisted closure,2 wound
dressings). The magnitude and balance of these force pat-
terns must be further studied to develop sophisticated de-
vices for scar prevention and treatment.

Based on the described relationships between scar for-
mation and mechanobiology, several potential scar thera-
peutic approaches can be suggested. With respect to
neurogenic inflammation, neuropeptide blockade using
continuous local anesthesia may be effective for abnormal

Figure 4. Relationship between scar type and mechanical
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Figure 5. Site specificity of scars. Keloids tend to occur at spe-

cific sites, such as on the anterior chest, shoulder, scapula, and

suprapubic region. All of these sites are constantly or fre-

quently subjected to mechanical forces, including skin stretch-

ing, according to body movements. In contrast, hypertrophic

scars can occur anywhere on the body, particularly when a scar

is long, wide, and/or located on movable joints. Even when ab-

normal scars cover other portions of the body, they rarely occur

on the scalp or the anterior lower leg, where the bones lie

directly under the skin and the skin is rarely subjected to

tension. The site specificity of scar development suggests that

mechanical forces may both promote keloid and HS growth and

trigger their generation.

Wound Rep Reg (2011) 19 S2–S9 c� 2011 by the Wound Healing SocietyS6

Mechanobiology of scarring Ogawa



scar treatment. Peripheral nerve activity, including neuro-
peptide release, can be controlled via the central nervous
system (Figure 2). Mechanoreceptors and neuropeptides
can be inhibited, such as through ion channel, integrin, or
neuropeptide receptor blockers. Indeed, calcium channel
blockers are already in use for scar treatments,54–56 where
they have been shown to decrease ECM formation57

and inhibit fibroblast and vascular smooth muscle cell
proliferation.58

CONCLUSION

Understanding the mechanobiological environments of
skin and wounds will be helpful in designing novel strate-
gies for scar prevention and treatment, such as through
mechanoreceptor or MS nociceptor control.
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