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In this lab you will learn and tinker with: 

• General function of capacitors 

• Behavior and functionality of flip-flops 

• Building finite state machines 

• Building a prototype for a motor drive circuit of the DEB 

1.1: The Problem to be Solved 

DC motors are essential additions to implementations that require a high 

starting torque and controllable speeds. However, most motors require high currents 

that are hard for IC chips to supply. If these motors are connected directly to ICs, they 

might get damaged. Consequently, motor drivers are an effective solution to this 

common problem. These circuits act as a bridge between the ICs and the motor itself, 

driving the motor with an amplified current and high voltage. Additionally, motor drive 

circuits protect motors by preventing failures in extreme circumstances, which include 

various temperature conditions.  

Motors and their drive circuits are tested in extreme conditions such as harsh 

temperatures to determine their reliability and durability. During this process, the 

motor goes through several forward and reverse cycles to verify that all functions work 

correctly and efficiently. Your job, therefore, is to build a digital circuit prototype that 

simulates this testing process. This will be done by using a powerful digital design tool 

known as finite state machines, which will be covered in the following sections of this 

lab.  

1.2: Learning about Motor Drive Circuits 

The diagram in figure 1 shows the driver circuit for a specific motor. As can be 

seen, the circuit consists of four switches labeled S1-S4. Switches S3 and S4 are active-

low switches, meaning that they are true when they are not pressed. On the other 

hand, S1 and S2 are active-high, meaning that they are true when they are pressed. 

Additionally, the driver has a charging circuit that supplies a capacitor with a large 

storage capacity. A capacitor is an electric component that stores energy (electrical 

charge) and resists sudden changes in voltage. In a motor drive circuit, the capacitor’s 

purpose is mainly to provide power to the motor when moving and to recharge when 

the motor is not moving.  

Now, let’s consider the two motion stages of the motor circuit in Figure 1. If we 

desire to make the motor move in a forward fashion, switches S1 and S3 should be on 

while S2 and S4 are off since this combination will provide a positive voltage to the 

motor. On the contrary, for the motor to move in reverse fashion, switches S2 and S4 

should be on while S1 and S3 are off, which will provide a negative voltage to the 

motor. Finally, if all the switches are off, this will prevent the motion of the motor and, 

therefore, the charging circuit will recharge the capacitor with a DC source.  

Moreover, inputs X and Y determine the state of the switches and when the 

charging circuit will be on or off. For example, when both inputs are 0, all of the 



Lab 4: Motor Drive Circuit 

 
 

DEB-C R1A. Copyright OZG Systems Engineering, LLC 2024 

 
 

switches will be off, but the charging circuit will be on, meaning that the capacitor is 

supplied with the DC source and recharged.  

 

a. For the first lab activity, draw diagrams for each of the four combinations of the 

X and Y inputs. In your diagrams, indicate which switches are open and which 

are closed. For example, in the scenario when both X and Y are off, the charging 

circuit will be on and, therefore, the battery and capacitor are shorted together. 

 

i. Consider when X and Y are both equal to 1. Is there an issue with this 

specific combination? Explain.  

 

b. Translate your diagrams from part a to the truth table shown below. Similar to 

part a, specify the input combinations for X and Y, the corresponding state of 

each of the switches (ON/OFF) for each combination, and whether the charging 

circuit is enabled or not. The first row has been completed for you. 

 

 

 

 

 

 

 

 

 

Inputs Switch Outputs 

X Y S1 S2 S3 S4 

0 0 OFF (0) OFF (0) OFF (1) OFF (1) 

      

      

      

Figure 1: Motor Drive Circuit. 
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1.3: Finite State Machines 

So far, you have learned about and constructed circuits that use combinational 

logic. This means that the outputs are dependent on the current state of the inputs 

and the previous state does not affect the output. However, some implementations 

need our circuit to remember the previous state of inputs in order to produce the 

outputs. Circuits that require this kind of logic are known as sequential logic circuits, 

which, as the name implies, consists of a sequence of output states.  

In order to design such circuits, it is important to first consider the sequence of 

states that the logic will follow. Such sequence can be illustrated using what is known 

as a state diagram, as shown in Figure 2. A state diagram consists of nodes (circles) 

each representing a state and arrows that indicate the next state in the logic. Each 

node is given a meaningful name that specifies its function.  

 

 

Translating a state diagram to logic circuitry uses a combination of both 

combinational and sequential logic. The states, for example, are held in memory using 

a sequential logic component known as a flip-flop (see appendix for more information 

on flip-flops). Transitions between one state to another as well as producing outputs 

requires combinational logic that uses the state held in memory by the flip-flops. 

Altogether, the overall design of any finite state machine is summarized by the block 

diagram shown in Figure 3.  

 

Figure 2: Example of a state diagram showing nodes and transitions. 
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As an example, let’s say we want to design a counter that counts a sequence of 

numbers within the range 0-7.  Since we need to account for numbers up to 7, we will 

use a 3-bit counter to properly represent all the numbers. Therefore, for this design 

the sequence of states will be 0→1→2→3→4→5→6→7 and then repeating the 

sequence after 7, each number represented as a 3-bit binary number.  

First, we need to draw a state diagram illustrating the sequence of states and 

the transitions. In Figure 4, you can see a completed state diagram for this specific 

example, showing each node with a specific label and arrows to represent the 

transitions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: General design of a finite state machine 

Figure 4: State diagram for 3-bit counter. 
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Next, we will create a state transition table, which simply consists of the 

outputs of the flip-flops, which represent the current states, and the inputs to the flip-

flops, which represent the next states. This table will consequently help us build the 

combinational logic portion of our design. In order to know how many flip-flops we will 

need, we must consider the number of states that our implementation needs. If our 

design requires N states, then the number of flip-flops we need is equal to ceil(log2N), 

ceil meaning that, in the case we get a decimal number, we need to round it up to the 

nearest whole number that is greater than or equal to the given number. In our case, 

for example, we have a total number of 8 states, therefore, the number of flip-flops we 

need is ceil(log28) = 3 flip-flops.  

In table 1, the state transition table is shown. In this case, the Q columns 

represent the current states and the D columns represent the next states. Furthermore, 

we can write down the logic equations for the D signals based on the Q signals.  

Current State Next State 

Q2 Q1 Q0 D2 D1 D0 

0 0 0 0 0 1 

0 0 1 0 1 0 

0 1 0 0 1 1 

0 1 1 1 0 0 

1 0 0 1 0 1 

1 0 1 1 1 0 

1 1 0 1 1 1 

1 1 1 0 0 0 

  

𝐷2 =  𝑄2 ∗/𝑄1 +  𝑄2 ∗/𝑄0 + /𝑄2 ∗ 𝑄1 ∗ 𝑄0 

𝐷1 = /𝑄1 ∗ 𝑄0 +  𝑄1 ∗/𝑄0 

𝐷0 = /𝑄0 

These logic equations will now help us design the combinational logic portion of 

our counter design. Figure 5 shows the translation of the logic equations into their 

logic gate equivalents. Furthermore, we can combine this design with our three flip-

flops as well as a clock signal to form the final product, as shown in Figure 6. 

 

Table 1: State transition table for 3-bit counter. 
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Figure 5: Combinational logic portion of counter design 

Figure 6: Full design of counter design including combinational logic and memory 

portion. 
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Now that we know how to construct finite state machines, we can design our 

motor drive circuit. As discussed previously, our goal is to automate the testing 

process for a motor and its drive circuit. To do this, we need to construct a finite state 

machine that produces a simple sequence determined by the value of outputs X and Y. 

This sequence is as follows: charge, forward motion, charge, reverse motion. For this 

final portion of the lab refer to your truth table from section 1.2 part b to determine 

which combination of X and Y we need to output the desired sequence of actions. 

a. Draw, on paper, a state diagram like the ones shown in figures 4 and 2 for your 

motor drive state machine to follow the sequence charge→forward→reverse and 

repeat the cycle. Remember to label each node/state in your diagram with an 

appropriate name describing its function and include the binary data 

corresponding to each state.   

b. How many flip-flops will you need for this state machine? 

c. Complete a state transition table like the one in table 1 to help you design the 

combinational logic for your motor drive state machine. After this, write down 

the logic equations for the X and Y outputs in your transition table. 

d. Design the combinational logic portion of your state machine based on your 

logic equations from part c.  

e. Incorporate flip-flop(s) to your combinational logic to complete your motor drive 

state machine design. Remember to include an input clock signal for your flip-

flop(s) and to connect preset and clear signals to VCC to deactivate them. 

f. Build your state machine on your DEB using appropriate switches for your 

inputs. For outputs, use OUT9 for X and OUT8 for Y. Check to yourself that your 

state machine correctly outputs the desired sequence.  

g. After designing your motor controller, consider the possibility of X=1 and Y=1 

occurring simultaneously. Why won’t this combination occur? Or, if it occurs in 

your design, what modification would you make in your design to prevent it 

from happening? Explain in words, no need for a prototype. 
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Appendix: 

Flip-Flops 

In digital electronics, flip-flops are memory devices that store data utilizing 

sequential logic, as discussed in section 1.3. Flip-flops have an input control signal 

called a clock. This clock’s signal continuously alternates between high and low, which 

is known as the clock pulse. For a flip-flop, whenever a rising edge or a falling edge 

(depending on the configuration of the clock) is encountered as seen in figure 7, the 

output of the flip-flop will change, meaning that as long as the clock does not 

encounter an edge, the state of the flip-flop will be preserved, which is why they are 

considered memory devices.  

 

The four most common types of flip-flops are SR, D, JK, and T flip-flop. The DEB 

kit contains two of these four types: the D flip-flop and the JK flip-flop. For now, 

however, our primary focus will be to learn about the D flip-flop since it is the one you 

will be using in this lab. A block diagram of a typical D flip-flop is shown in Figure 8.   

 

 

 

 

 

 

 

As you can see from Figure 8, the D flip-flop has four input signals and 1 output 

signal. The active-high D input signal sends the data that is to be preserved by the flip-

flop. The clock, as discussed previously, tells the flip-flop when its output should 

change, which often occurs at a rising or falling edge. The active-low input signals PRN 

and CLR are known as preset and clear signals, respectively. These signals control the 

output, Q, of the flip-flop regardless of the state of the clock. When the PRN signal is 

Figure 7: Clock pulse depicting rising and falling edges as well as true and false states. 

Figure 8: Block diagram of D flip-flop 
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set low (true), the Q output signal will be set to 1 or high. On the other hand, when the 

CLR signal is set low (true), the Q output signal will be reset to 0 or low.  

Table 2 shows the truth table for the D flip-flop. In this table, D is the input, Q 

represents the current state of the flip-flop, and Q(t+1) represents the next state of the 

flip-flop. You may notice that the Q column is filled with Xs, which are don’t cares. This 

is because the current state of the input does not matter for the next state, meaning 

that the value of the D input will be changed to the value of the output of the flip-flop 

regardless of the previous value of the output.  

Input Current State Next State 

D Q Q(t+1) 

0 X 0 

1 X 1 

 

 

Finally, Figure 9 shows us the pin diagram for the 74HC74 IC D flip-flop chip 

that is available in the DEB kit. This chip has access to two D flip-flops, each having its 

own set of inputs and outputs. More specifically, D flip-flop 1 can be accessed using 

the pins on the left side while D flip-flop 2 can be accessed using the pins on the right 

side. In this case, CLR is the clear input signal, PRE is preset, CLK is the clock, Q is the 

output of the flip-flop, and D is the data input. One important thing to note is that 

whenever several flip-flops are used simultaneously for a unique purpose, they all must 

share the same clock signal so that their behavior is synchronized. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Truth table for D flip-flop. 


