
RAL-TR-1999-030On algorithms for permuting large entries to the diagonal ofa sparse matrix1Iain S. Du�2 and Jacko Koster3ABSTRACTWe consider bipartite matching algorithms for computing permutations of a sparse matrixso that the diagonal of the permuted matrix has entries of large absolute value. Wediscuss various strategies for this and consider their implementation as computer codes.We also consider scaling techniques to further increase the relative values of the diagonalentries. Numerical experiments show the e�ect of the reorderings and the scaling on thesolution of sparse equations by a direct method and by an iterative technique. The e�ecton preconditioning for iterative methods is also discussed.Keywords: sparse matrices, bipartite weighted matching, Dijkstra's algorithm, directmethods, iterative methods, preconditioning.AMS(MOS) subject classi�cations: 65F05, 65F50.1 Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directorypub/reports. This report is in �le dukoRAL99030.ps.gz. Report also available throughURL http://www.numerical.rl.ac.uk/reports/reports.html. Also published as Technical ReportTR/PA/99/13 from CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France.2 I.Du�@rl.ac.uk3 J.Koster@rl.ac.ukComputational Science and Engineering DepartmentAtlas CentreRutherford Appleton LaboratoryOxon OX11 0QXApril 19, 1999.

Contents1 Introduction 12 Bipartite matching 23 Matching 44 Weighted matching 65 Bottleneck matching 116 Scaling 157 Experimental results 167.1 Experiments with a direct solution method 177.2 Experiments with iterative solution methods 217.2.1 Preconditioning by incomplete factorizations 217.2.2 Experiments with a block iterative solution method 238 Conclusions and future work 25

i

1 IntroductionWe say that an n� n matrix A has a large diagonal if the absolute value of each diagonalentry is large relative to the absolute values of the o�-diagonal entries in its row andcolumn. Permuting large nonzero entries onto the diagonal of a sparse matrix can beuseful in several ways. If we wish to solve the systemAx = b; (1.1)where A is a nonsingular square matrix of order n and x and b are vectors of length n,then a preordering of this kind can be useful whether direct or iterative methods are usedfor solution (see Olschowka and Neumaier (1996) and Du� and Koster (1997)).The work in this report is a continuation of the work reported by Du� and Koster(1997) who presented an algorithm that maximizes the smallest entry on the diagonaland relies on repeated applications of the depth �rst search algorithm MC21 (Du� 1981)in the Harwell Subroutine Library (HSL 1996). In this report, we will be concerned withother bipartite matching algorithms for permuting the rows and columns of the matrix sothat the diagonal of the permuted matrix is large. The algorithm that is central to thisreport computes a matching that corresponds to a permutation of a sparse matrix suchthat the product (or sum) of the diagonal entries is maximized. This algorithm is alreadymentioned and used in Du� and Koster (1997), but is not fully described. In this report,we describe the algorithm in more detail. We also consider a modi�ed version of thisalgorithm to compute a permutation of the matrix that maximizes the smallest diagonalentry. We compare the performance of this algorithm with that of Du� and Koster (1997).We also investigate the in
uence of scaling of the matrix. Scaling can be used before orafter computation of the matching to make the diagonal entries even larger relative tothe o�-diagonals. In particular, we look at a sparse variant of a bipartite matching andscaling algorithm of Olschowka and Neumaier (1996) that �rst maximizes the product ofthe diagonal entries and then scales the matrix so that these entries are one and all otherentries are no greater than one.The rest of this report is organized as follows. In Section 2, we describe some conceptsof bipartite matching that we need for the description of the algorithms. In Section 3,we review the basic properties of algorithm MC21. MC21 is a relatively simple algorithmthat computes a matching that corresponds to a permutation of the matrix that puts asmany entries as possible onto the diagonal without considering their numerical values.The algorithm that maximizes the product of the diagonal entries is described in Section4. In Section 5, we consider the modi�ed version of this algorithm that maximizes thesmallest diagonal entry of the permuted matrix. In Section 6, we consider the scaling of thereordered matrix. Computational experience for the algorithms applied to some practicalproblems and the e�ect of the reorderings and scaling on direct and iterative methods of1

solution are presented in Sections 7 to 7.2. The e�ect on preconditioning is also discussed.Finally, we consider some of the implications of this current work in Section 8.2 Bipartite matchingLet A = (aij) be a general n� n sparse matrix. With matrix A, we associate a bipartitegraph GA = (Vr; Vc; E) that consists of two disjoint node sets Vr and Vc and an edge setE, where (u; v) 2 E implies that u 2 Vr, v 2 Vc. The sets Vr and Vc have cardinality n andcorrespond to the rows and columns of A respectively. Edge (i; j) 2 E if and only if aij 6= 0.We de�ne the sets ROW (i) = fjj(i; j) 2 Eg, for i 2 Vr, and COL(j) = fij(i; j) 2 Eg, forj 2 Vc. These sets correspond to the positions of the entries in row i and column j of thesparse matrix respectively. We use j : : : j both to denote the absolute value and to signifythe number of entries in a set, sequence, or matrix. The meaning should always be clearfrom the context.A subsetM � E is called a matching (or assignment) if no two edges ofM are incidentto the same node. A matching containing the largest number of edges possible is called amaximum cardinality matching (or simply maximum matching). A maximum matchingis a perfect matching if every node is incident to a matching edge. Obviously, not everybipartite graph allows a perfect matching. However, if the matrix A is nonsingular, thenthere exists a perfect matching for GA. A perfect matching M has cardinality n andde�nes an n� n permutation matrix P = (pij) with(pji = 1; for (i; j) 2 M;pji = 0; otherwise;so that both PA and AP are matrices with the matching entries on the (zero-free) diagonal.Bipartite matching problems can be viewed as a special case of network
ow problems (see,for example, Ford Jr. and Fulkerson (1962)).The more e�cient algorithms for �nding maximummatchings in bipartite graphs makeuse of augmenting paths. LetM be a matching in GA. A node v is matched if it is incidentto an edge inM . A path P in GA is de�ned as an ordered set of edges in which successiveedges are incident to the same node. A path P is called an M -alternating path if theedges of P are alternately in M and not in M . An M -alternating path P is called an M -augmenting path if it connects an unmatched row node with an unmatched column node.In the bipartite graph in Figure 2.1, there exists anM -augmenting path from column node8 to row node 8. The matchingM (of cardinality 7) is represented by the thick edges. Theblack entries in the accompanying matrix correspond to the matching and the connectedmatrix entries to the M -augmenting path. If it is clear from the context which matching2

M is associated with the M -alternating and M -augmenting paths, then we will simplyrefer to them as alternating and augmenting paths.Let M and P be subsets of E. We de�neM � P := (M n P) [(P nM):If M is a matching and P is an M -augmenting path, then M � P is again a matching,and jM � P j = jM j + 1. If P is an M -alternating cyclic path, i.e., an alternating pathwhose �rst and last edge are incident to the same node, then M � P is also a matchingand jM � P j = jM j. Figure 2.1: Augmenting path
Vc 1 2 3 4 5 6 7 8 9Vr

4

1

2

3

5

6

7

8

9

4

1

2

3

5

6

7

8

9

4

1

2

3

5

6

7

8

9In the sequel, a matchingM will often be represented by a pointer array m : Vr[Vc !Vr [Vc [fnullg with (mi = j and mj = i; for (i; j) 2 M;mi = null; for i unmatched:Augmenting paths in a bipartite graph G can be found by constructing alternatingtrees. An alternating tree T = (Tr; Tc; ET) is a subgraph of G rooted at a row or columnnode and each path in T is an M -alternating path. An alternating tree rooted at acolumn node j0 can be grown in the following way. We start with the initial alternatingtree (;; fj0g; ;) and consider all the column nodes j 2 Tc in turn. Initially j = j0. Foreach node j, we check the row nodes i 2 COL(j) for which an alternating path from ito j0 does not yet exist. If node i is already matched, we add row node i, column node3

mi, and edges (i; j) and (i;mi) to T . If i is not matched, we extend T by row node i andedge (i; j) (and the path in T from node i to the root forms an augmenting path). A keyobservation for the construction of a maximum or perfect matching is that a matching Mis maximum if and only if there is no augmenting path relative to M .Alternating trees can be implemented using a pointer array p : Vc ! Vc such that,given an edge (i; j) 2 ET nM , node j is either the root node of the tree, or the edges(i; j), (mj; j), and (mj; pj) are consecutive edges in an alternating path towards the root.Augmenting paths in an alternating tree (provided they exist) can thus easily be obtainedfrom p and m.Alternating trees are not unique. In general, one can construct several alternatingtrees starting from the same root node that have equal node sets, but di�erent edgesets. Di�erent alternating trees in general will contain di�erent augmenting paths. Thematching algorithms that we describe in the next sections impose di�erent criteria on theorder in which the paths in the alternating trees are grown in order to obtain augmentingpaths and maximum matchings with special properties.3 MatchingThe asymptotically fastest currently known algorithm for �nding a maximum matching isby Hopcroft and Karp (1973). It has a worst-case complexity of O(pn�), where � = jEj isthe number of entries in the sparse matrix. An e�cient implementation of this algorithmcan be found in Du� and Wiberg (1988). The algorithm MC21 implemented by Du�(1981) has a theoretically worst-case behaviour of O(n�), but in practice it behaves morelike O(n + �). Because this latter algorithm is simpler, we concentrate on this in thefollowing although we note that it is relatively straightforward to use the algorithm ofHopcroft and Karp (1973) in a similar way to how we will use MC21 in later sections.MC21 is a depth-�rst search algorithm with look-ahead. It starts o� with an emptymatching M , and hence all column nodes are unmatched initially. See Figure 3.1. Foreach unmatched column node j0 in turn, an alternating tree is grown until an augmentingpath with respect to the current matching M is found (provided one exists). A set B isused to mark all the matched row nodes that have been visited so far. Initially, B = ;.First, the row nodes in COL(j0) are searched (look-ahead) for an unmatched node i0.If one is found, the singleton path P = f(i0; j0)g is an M -augmenting path. If there isno such unmatched node, then an unmarked matched node i0 2 COL(j0) is chosen, i0is marked, the nodes i0 and j1, j1 = mi0 , and the edges (i0; j0), (i0; j1) are added tothe alternating tree (by setting pj1 = j0). The search then continues with column nodej1. For node j1, the row nodes in COL(j1) are �rst checked for an unmatched node.If one exists, say i1, then the path P = f(i0; j0); (i0; j1); (i1; j1)g forms an augmenting4

path. If there is no such unmatched node, a remaining unmarked node i1 is picked fromCOL(j1), i1 is marked, pj2 is set to j1, j2 = mi1 , and the search moves to node j2.This continues in a similar (depth-�rst search) fashion until either an augmenting pathP = f(i0; j0); (i0; j1); (i1; j1); : : : ; (ik; jk)g is found (with nodes j0 and ik unmatched) oruntil for some k > 0, COL(jk) does not contain an unmarked node. In the latter case,MC21 backtracks by resuming the search at the previously visited column node jk�1 forsome remaining unmarked node i0k�1 2 COL(jk�1). Backtracking for k = 0 is not possible;if MC21 resumes the search at column node j0 and COL(j0) does not contain an unmarkednode, then an M -augmenting path starting at node j0 does not exist. In this case, MC21continues with the construction of a new alternating tree starting at the next unmatchedcolumn node. (The �nal maximum matching will have cardinality at most n�1 and hencewill not be perfect.) Figure 3.1: Outline of MC21.for j0 2 Vc doj := j0; pj := null; iap := null;B := ;;repeatif there exists i 2 COL(j) and i is unmatched theniap := i;elseif there exists i 2 COL(j) nB thenB := B + fig;pmi := j;j := mi;elsej := pj ;end if;end if;until iap 6= null or j = null;if iap 6= null then augment along path from node iap to node j0;end for
5

4 Weighted matchingIn this section, we describe an algorithm that computes a matching for permuting a sparsematrix A such that the product of the diagonal entries of the permuted matrix is maximumin absolute value. That is, the algorithm determines a matching that corresponds to apermutation � that maximizes nYi=1 jai�ij: (4.1)This maximization multiplicative problem can be translated into a minimizationadditive problem by de�ning matrix C = (cij) ascij = (log aj � log jaijj; aij 6= 0;1; otherwise;where aj = maxi jaijj is the maximum absolute value in column j of matrix A. Maximizing(4.1) is equal to minimizinglog Qni=1 aiQni=1 jai�ij = log Qni=1 a�iQni=1 jai�ij = nXi=1 log a�i � nXi=1 log jai�ij = nXi=1(log a�i � log jai�ij) =nXi=1 ci�i: (4.2)Minimizing (4.2) is equivalent to �nding a minimumweight perfect matching in an edgeweighted bipartite graph. This is known in literature as the bipartite weighted matchingproblem or (linear sum) assignment problem in linear programming and combinatorialoptimization. Numerous algorithms have been proposed for computing minimum weightperfect matchings, see for example Burkard and Derigs (1980), Carpaneto and Toth (1980),Carraresi and Sodini (1986), Derigs and Metz (1986), Jonker and Volgenant (1987), andKuhn (1955). A practical example of an assignment problem is the allotment of tasks topeople; entry cij in the cost matrix C represents the cost or bene�t of assigning person ito task j.Let C = (cij) be a real-valued n � n matrix, cij � 0. Let GC = (Vr; Vc; E) be thecorresponding bipartite graph each of whose edges (i; j) 2 E has weight cij. The weightof a matching M in GC, denoted by c(M), is de�ned by the sum of its edge weights, i.e.,c(M) = X(i;j)2M cij :A perfect matching M is said to be a minimum weight perfect matching if it has smallestpossible weight, i.e., c(M) � c(M 0), for all possible maximum matchings M 0.6

The key concept for �nding a minimumweight perfect matching is the so-called shortestaugmenting path. An M -augmenting path P starting at an unmatched column node j iscalled shortest if c(M � P) � c(M � P 0), for all other possible M -augmenting paths P 0starting at node j. We de�nel(P) := c(M � P)� c(M) = c(P nM)� c(M \ P)as the length of alternating path P . A matchingM is called extreme if and only if it doesnot allow any alternating cyclic path with negative length.The following two relations hold. First, a perfect matching has minimum weight if itis extreme. Second, if matching M is extreme and P is a shortest M -augmenting path,thenM �P is extreme also. The proof for this goes roughly as follows. SupposeM �P isnot extreme. Then there exists an alternating cyclic path Q such that c((M � P)�Q) <c(M � P). Since (M � P) � Q = M � (P � Q) and M is extreme, there must exist asubset P 0 � P �Q that forms an M -augmenting path and is shorter than P . Hence, P isnot a shortest M -augmenting path. This contradicts the supposition.These two relations form the basis for many algorithms for solving the bipartiteweighted matching problem: start from any (possibly empty) extreme matching M andsuccessively augmentM along shortest augmenting paths untilM is maximum (or perfect).In the literature, the problem of �nding a minimum weight perfect matching is oftenstated as the following linear programming problem. Find matrix X = (xij) 2 Rn�n,minimizing X(i;j)2E cijxijsubject to Xj2Vc xij = 1; for i 2 Vr;Xi2Vr xij = 1; for j 2 Vc;xij � 0; for (i; j) 2 E;xij = 0; for (i; j) 62 E:If there is a solution to this linear program, there is one for which xij 2 f0; 1g and thereexists a permutation matrixX such thatM = f(i; j)jxij = 1g is a minimum weight perfectmatching (Edmonds and Karp 1972, Kuhn 1955). Furthermore, M has minimum weightif and only if there exist dual variables ui and vj with(ui + vj � cij ; for (i; j) 2 E;ui + vj = cij ; for (i; j) 2M: (4.3)7

Using the reduced weight matrix C = (cij), withcij := cij � ui � vj � 0;the reduced weight c(M) of matching M equalsc(M) = 0;the reduced length l(P) of any M -alternating path P equalsl(P) = X(i;j)2PnM cij � 0;and if M � P is a matching, the reduced weight of M � P equalsc(M � P) = l(P):Thus, �nding a shortest augmenting path in graph GC is equivalent to �nding anaugmenting path in graph GC, with minimum reduced length. Since cij = 0 for everyedge (i; j) 2 M and graph GC contains no alternating paths P with negative length,l(P 0) � l(P) for every principal leading subpath P 0 of P .Shortest augmenting paths in a weighted bipartite graph G = (Vr; Vc; E) can beobtained by means of a shortest alternating path tree. A shortest alternating path tree Tis an alternating tree each of whose paths is a shortest path in G. For any node i 2 Vr[Vc,we de�ne di as the length of the shortest path in T from node i to the root node (di =1if no such path exists). T is a shortest alternating path tree if and only if di + cij � dj,for every edge (i; j) 2 E and tree nodes i, j,An outline of an algorithm for constructing a shortest alternating path tree rooted atcolumn node j0 is given in Figure 4.1. Because the reduced weights cij are non-negative,and graph GC contains no alternating paths with negative length, we can use a sparsevariant of Dijkstra's algorithm (Dijkstra 1959). The set of row nodes is partitioned intothree sets B, Q, and W . B is the set of (marked) nodes whose shortest alternating pathsand distances to node j0 are known. Q is the set of nodes for which an alternating pathto the root is known that is not necessarily the shortest possible. W is the set of nodes forwhich an alternating path does not exist or is not known yet. (Note that sinceW is de�nedimplicitly as Vr n (B [Q), it is not actually used in Figure 4.1.) The algorithm starts with(;; fj0g; ;) as initial shortest alternating tree and extends the tree until an augmentingpath is found that is guaranteed to be a shortest augmenting path with respect to thecurrent matchingM . Initially, the length of the shortest augmenting path lsap in the treeis set to in�nity, and the length of the shortest alternating path lsp from the root to anynode in Q is set to zero. On each pass through the main loop, another column node j ischosen that is closest to the root j0. Initially j = j0.8

Each row node i 2 COL(j) whose shortest alternating path to the root is not knownyet (i 62 B), is considered. If Pj0!j!i, the shortest alternating path from the root nodej0 to node j (with length lsp) extended by edge (i; j) from node j to node i (with lengthcij), is longer than the tentative shortest augmenting path in the tree (with length lsap),then there is no need to modify the tree. If Pj0!j!i has length smaller than lsap, and iis unmatched, then a new shorter augmenting path has been found and lsap is updated.If i is matched and Pj0!j!i is also shorter than the current shortest alternating path toi (with length di), then a shorter alternating path to node i has been found and the treeis updated, di is updated, and if node i has not been visited previously, i is moved to Q.Next, if Q is not empty, a node i 2 Q is determined that is closest to the root. Since allweights cij in the bipartite graph are non-negative, there cannot be any other alternatingpath to node i that is shorter than the current one. Node i is marked (by adding it toB), and the search continues with column node j0 = mi. This continues until there areno more column nodes to be searched (Q = ;), or until no new augmenting path can befound whose length is smaller than the current shortest one (line lsap � lsp).The original Dijkstra algorithm (intended for dense graphs) has O(n2) complexity.For sparse problems, the complexity can be reduced to O(� log n) by implementing theset Q as a k-heap in which the nodes i are sorted by increasing distance di from the root(see for example Tarjan (1983) and Gallo and Pallottino (1988)). The running time ofthe algorithm is dominated by the operations on the heap Q of which there are O(n)delete operations, O(n) insert operations, and O(�) modi�cation operations (these arenecessary each time a distance di is updated). Each insert and modi�cation operationruns in O(logk n) time, a delete operation runs in O(k logk n) time. Consequently, thealgorithm for �nding a shortest augmenting path in a sparse bipartite graph has run timeO((� + kn) logk n) and the total run time for the sparse bipartite weighted algorithm isO(n(� + kn) logk n). If we choose k = 2, the algorithm uses binary heaps and we obtain atime bound of O(n(� +n) log2 n). If we choose k = d�=ne (and k � 2), we obtain a boundof O(n� log�=n n).The implementation of the heap Q is similar to the implementation proposed in Derigsand Metz (1986). Q is a pair (Q1; Q2) where Q1 is an array that contains all the rownodes for which the distance to the root is shortest (lsp), and Q2 = Q n Q1 is a 2-heap.By separating the nodes in Q that are closest to the root, we may reduce the numberof operations on the heap, especially in those situations where the cost matrix C hasonly few di�erent numerical values and many alternating paths have the same length.Deleting a node from Q for which di is smallest (see Figure 4.1), now consists of choosingan (arbitrary) element from Q1. If Q1 is empty, then we �rst move all the nodes in Q2that are closest to the root to Q1.After the augmentation, the reduced weights cij have to be updated to ensure thatalternating paths in the new G have non-negative length. This is done by modifying the9

Figure 4.1: Construction of a shortest augmenting path.B := ;; Q := ;;for i 2 Vr do di :=1;lsp := 0; lsap :=1;j := j0; pj := null;while true dofor i 2 COL(j) nB dodnew := lsp+ cij ;if dnew < lsap thenif i unmatched thenlsap := dnew; isap := i;elseif dnew < di thendi := dnew; pmi := j;if i 62 Q then Q := Q+ fig;end if;end if;end if;end for;if Q = ; then exit while-loop;choose i 2 Q with minimal di;lsp := di;if lsap � lsp then exit while-loop;Q := Q� fig; B := B + fig;j := mi;end while;if lsap 6=1 then augment along path from node isap to node j0;
10

dual vectors u and v. If T = (Tr; Tc; ET) is the shortest alternating path tree that wasconstructed until the shortest augmenting path was found, then ui and vj are updated asfollows: (ui := ui + di � lsap; for i 2 Tr;vj := cij � ui; for j 2 Tc:The updated dual variables u and v satisfy (4.3) and the new reduced weights cij arenon-negative.The running time of the weighted matching algorithm can be decreased considerablyby means of a cheap heuristic that determines a large initial extreme matching M . Weuse the strategy proposed by Carpaneto and Toth (1980). We calculateui := minj2ROW (i) cij; for i 2 Vr;vj := mini2COL(j)(cij � ui); for j 2 Vc:Inspecting the sets COL(j) for each column node j in turn, we determine a large initialmatching M of edges for which cij � ui � vj = 0. Then, for each remaining unmatchedcolumn node j, every node i 2 COL(j) is considered for which cij�ui�vj = 0 and that ismatched to a column node other than j, say j1. So (i; j1) 2M . If an unmatched row nodei1 2 COL(j1) can be found for which ci1j1 � ui1 � vj1 = 0, then (i; j1) in M is replacedby (i; j) and (i1; j1). After having repeated this for all unmatched columns, the search forshortest augmenting paths starts with respect to the current matching.Finally, we note that the above weighted matching algorithm can also be used formaximizing the sum of the diagonal entries of matrix A (instead of maximizing the productof the diagonal entries). To do this, we again minimize (4.2), but we rede�ne matrix C ascij = (aj � jaijj; aij 6= 0;0; otherwise:Maximizing the sum of the diagonal entries is equal to minimizing (4.2), sincenXi=1 a�i � nXi=1 jai�ij = nXi=1(a�i � jai�ij) = nXi=1 ci�i:5 Bottleneck matchingWe describe a modi�cation of the weighted bipartite matching algorithm from the previoussection for permuting rows and columns of a sparse matrix A such that the smallest ratio11

between the absolute value of a diagonal entry and the maximum absolute value in itscolumn is maximized. That is, the modi�cation computes a permutation � that maximizesmin1�i�n jai�ija�i (5.1)where aj is the maximum absolute value in column j of the matrix A. Similarly to theprevious section, we transform this into a minimization problem. We de�ne the matrixC = (cij) as cij = 8<: 1� jaijjaj ; aij 6= 0;1; otherwise:Then maximizing (5.1) is equal to minimizingmax1�i�n a�i � jai�ija�i = max1�i�n ci�i :Given a matching M in the bipartite graph GC = (Vr; Vc; E), the bottleneck value ofM is de�ned as c(M) = max(i;j)2M cij :The problem is to �nd a perfect (or maximum) bottleneck matchingM for which c(M) isminimal, i.e. c(M) � c(M 0), for all possible maximum matchings M 0. A matching M iscalled extreme if it does not allow any alternating cyclic path P for which c(M�P) < c(M).The bottleneck algorithm starts o� with any extreme matching M . The initialbottleneck value b is set to c(M). Each pass through the main loop, an alternating treeis constructed until an augmenting path P is found for which either c(M � P) = c(M)or c(M � P) � c(M) > 0 is as small as possible. The initializations and the main loopfor constructing such an augmenting path are those of Figure 4.1. Figure 5.1 shows theinner-loop of the weighted matching algorithm of Figure 4.1 modi�ed to the case of thebottleneck objective function. The main di�erences are that the sum operation on the pathlengths in Figure 4.1 is replaced by the \max" operation and, as soon as an augmentingpath P is found whose length lsap is less than or equal to the current bottleneck valueb, the main loop is exited, P is used to augment M , and b is set to max(b; lsap). Thebottleneck algorithm does not modify the edge weights cij .Similarly to the implementation discussed in Section 4, the set Q is implemented as apair (Q1; Q2), but now the array Q1 contains all the nodes whose distance to the root is lessthan or equal to the tentative bottleneck value b. Q2 contains the nodes whose distanceto the root is larger than the bottleneck value but not in�nity. Q2 is again implementedas a heap. 12

Figure 5.1: Modi�ed inner loop of Figure 4.1 for the construction of a bottleneckaugmenting path.for i 2 COL(j) nB dodnew := max(lsp; cij);if dnew < lsap thenif i unmatched thenlsap := dnew; isap := i;if lsap � b then exit while-loop;elseif dnew < di thendi := dnew; pmi := j;if i 62 Q then Q := Q+ fig;end if;end if;end if;end for;A large initial extreme matching can be found in the following way. We de�neri := minj2ROW (i) cij ; for i 2 Vr;sj := mini2COL(j) cij; for j 2 Vc;as the smallest entry in row i and column j, respectively. A lower bound b0 for thebottleneck value is b0 := maxfmaxi ri;maxj sjg:An extreme matching M can be obtained from the edges (i; j) for which cij � b0; we scanall nodes j 2 Vc in turn and for each node i 2 COL(j) that is unmatched and for whichcij � b0, edge (i; j) is added to M . Then, for each remaining unmatched column node j,every node i 2 COL(j) is considered for which cij � b and that is matched to a columnnode other than j, say j1. So (i; j1) 2M . If an unmatched row node i1 2 COL(j1) can befound for which ci1j1 � b, then (i; j1) in M is replaced by (i; j) and (i1; j1). After havingdone this for all unmatched columns, the search for shortest augmenting paths starts withrespect to the current matching.Other initialization procedures can be found in the literature. For example, a slightlymore complicated initialization strategy is used by Finke and Smith (1978) in the context13

of solving transportation problems. For every i 2 Vr, j 2 Vc, they usegi := jfcikjk 2 ROW (i) and cik � b0gj;hj := jfckj jk 2 COL(j) and ckj � b0gj;as the number of admissible edges incident to row node i and column node j respectively.The idea behind using gi and hj is that once an admissible edge (i; j) is added to M , allthe other admissible edges that are incident to nodes i and j are no longer candidatesto be added to M . Therefore, the method tries to pick admissible edges such that thenumber of admissible edges that become unusable is minimal. First, a row node i withminimal gi is determined. From the set ROW (i) an admissible entry (i; j) (provided oneexists) is chosen for which hj is minimal and (i; j) is added toM . After deleting the edges(i; k), k 2 ROW (i), and the edges (k; j), k 2 COL(j), the method repeats the same foranother row node i0 with minimal gi0. This continues until all admissible edges are deletedfrom the graph.Finally, we note that instead of maximizing (5.1) we also could have maximized thesmallest absolute value on the diagonal. That is, we maximizemin1�i�n jai�ij;and de�ne the matrix C as cij = (aj � jaijj; aij 6= 0;1; otherwise:Note that this problem is rather sensitive to the scaling of the matrix A. Suppose forexample that the matrix A has a column containing only one nonzero entry whose absolutevalue v is the smallest absolute value present in A. Then, after applying the bottleneckalgorithm, the bottleneck value b will be equal to this small value. The smallest entry onthe diagonal of the permuted matrix is maximized, but the algorithm did not have anyin
uence on the values of the other diagonal values. Scaling the matrix prior to applyingthe bottleneck algorithm avoids this.In Du� and Koster (1997), a di�erent approach is taken to obtain a bottleneckmatching. Let A� denote the matrix that is obtained by setting to zero in A all entriesaij for which jaijj < � (thus A0 = A) and M� denote the matching obtained by removingfrom matchingM all the entries (i; j) for which jaij j < � (thusM0 =M). Throughout thealgorithm, �max and �min are such that a maximum matching of size jM j does not existfor A�max but does exist for A�min. At each step, � is chosen in the interval (�min; �max),and a maximum matching for the matrix A� is computed using a variant of MC21. Ifthis matching has size jM j, then �min is set to �, otherwise �max is set to �. Hence,14

the size of the interval decreases at each step and � will converge to the bottleneck value.After termination of the algorithm, M 0 is the computed bottleneck matching and � thecorresponding bottleneck value.6 ScalingOlschowka and Neumaier (1996) use the dual solution produced by the weighted matchingalgorithm to scale the matrix. Let u and v be such that they satisfy relation (4.3). If wede�ne D1 = diag(d11; d12; : : : ; d1n); d1i = exp(ui);D2 = diag(d21; d22; : : : ; d2n); d2j = exp(vj)=aj; (6.1)then we have d1i jaijjd2j =exp(ui + log(jaijj) + vj � log(aj)) =exp(ui + vj � (log(aj)� log(jaijj))) =exp(ui + vj � cij) � 1Equality holds when ui+ vj = cij, that is (i; j) 2M . In words, D1AD2 is a matrix whosediagonal entries are one in absolute value and whose o�-diagonal entries are all less thanor equal to one. Olschowka and Neumaier (1996) call such a matrix an I-matrix and usethis in the context of dense Gaussian elimination to reduce the amount of pivoting that isneeded for numerical stability. The more dominant the diagonal of a matrix, the higherthe chance that diagonal entries are stable enough to serve as pivots for elimination.For iterative methods, the transformation of a matrix to an I-matrix is also of interest.For example, from Gershgorin's theorem we know that the union of all discsKi = 8<:� 2 C j j�� aiij �Xk 6=i jaikj9=;contains all eigenvalues of the n�n matrix A. Disc Ki has center at aii and radius that isequal to the sum of the absolute o�-diagonal values in row i. Since the diagonal entries ofan I-matrix are all one, all the n disks have center at 1. The estimate of the eigenvalueswill be sharper as A deviates less from a diagonal matrix. That is, the smaller the radii ofthe discs, the better we know where the eigenvalues are situated. If we are able to reducethe radii of the discs of an I-matrix, i.e. reduce the o�-diagonal values, then we tend tocluster the eigenvalues more around one. In the ideal case, all the discs of an I-matrixhave a radius smaller than one, in which case the matrix is strictly row-wise diagonally15

dominant. This guarantees that many types of iterative methods will converge (in exactarithmetic), even simple ones like the Jacobi and Gauss-Seidel method. However, if atleast one disc remains with radius larger than or close to one, zero eigenvalues or smalleigenvalues are possible.A straightforward (but expensive) attempt to decrease large o�-diagonal entries of amatrix is by row and column equalization (Olschowka and Neumaier 1996). Let A bean I-matrix. We de�ne matrix C = (cij) as cij = log jaijj. (For simplicity we assumethat A contains no zero entries.) Equalization consists of repeatedly equalizing the largestabsolute value in row i and the largest absolute values in column i:p := 0;for k := 1; 2; : : : dofor j := 1 to n doy1 := maxfcjr + pj � prjr 6= j; cjr 6= 0g;y2 := maxfcrj + pr � pjjr 6= j; crj 6= 0g;pj := pj + (y2 � y1)=2;end;end;For k =1, this algorithm minimizesmaxfcij + pi � pjji 6= j; cij 6= 0gand thus, if we de�ne d1i := exp(pi) and d2j := 1= exp(pj), the algorithm minimizes thelargest o�-diagonal absolute value in matrix D1AD2. The diagonal entries do not change.Note that the above scaling strategy does not guarantee that all o�-diagonal entriesof an I-matrix will be smaller than one in absolute value, for example if the I-matrix Acontains two o�-diagonal entries akl and alk, k 6= l, whose absolute values are both one.7 Experimental resultsIn this section, we discuss several cases where the reorderings algorithms from the previoussection can be useful. These include the solution of sparse equations by a direct methodand by an iterative technique. We also consider its use in generating a preconditioner foran iterative method.The set of matrices that we used for our experiments are unsymmetric matrices takenfrom the Harwell-Boeing Sparse Matrix Test Collection (Du�, Grimes and Lewis 1992)and from the sparse matrix collection at the University of Florida (Davis 1997).All matrices are initially row and column scaled. By this we mean that the matrix isscaled so that the maximum entry in each row and in each column is one.16

The computer used for the experiments is a SUN UltraSparc with 256 Mbytes of mainmemory. The algorithms are implemented in Fortran 77.We use the following acronyms. MC21 is the matching algorithm from the HarwellSubroutine Library for computing a matching such that the corresponding permutedmatrix has a zero free-diagonal (see Section 3). BT is the bottleneck bipartite matchingalgorithm from Section 5 for permuting a matrix such that the smallest ratio betweenthe absolute value of a diagonal entry and the maximum absolute value in its column ismaximized. BT' is the bottleneck bipartite matching algorithm from Du� and Koster(1997). MPD is the weighted matching algorithm from Section 4 and computes apermutation such that the product of the diagonal entries of the permuted matrixis maximum in absolute value. MPS is equal to the MPD algorithm, but after thepermutation, the matrix is scaled to an I-matrix (see Section 6).Table 7.1 shows for some large sparse matrices the order, number of entries, andthe time for the algorithms to compute a matching. The times for MPS are not listed,because they are almost identical to those for MPD. In general, MC21 needs the least timeto compute a matching, except for the ONETONE and TWOTONE matrices. For thesematrices, the search heuristic that is used in MC21 (a depth-�rst search with look-ahead)does not perform well. This is probably caused by the ordering of the columns (variables)and the entries inside the columns of the matrix. A random permutation of the matrixprior to applying MC21 might lead to other results. There is not a clear winner betweenthe bottleneck algorithms BT and BT', although we note that BT' requires the entriesinside the columns to be sorted by value. This sorting can be expensive for relativelydense matrices. MPD is in general the most expensive algorithm. This can be explainedby the more selective way in which this algorithm constructs augmenting paths.7.1 Experiments with a direct solution methodFor direct methods, putting large entries on the diagonal suggests that pivoting down thediagonal might be more stable. Indeed, stability can still not be guaranteed, but if we havea solution scheme like the multifrontal method of Du� and Reid (1983), where a symbolicphase chooses the initial pivotal sequence and the subsequent factorization phase thenmodi�es this sequence for stability, it can mean that the modi�cation required is less thanif the permutation were not applied.In the multifrontal approach of Du� and Reid (1983), later developed by Amestoy andDu� (1989), an analysis is performed on the structure of A+AT to obtain an ordering thatreduces �ll-in under the assumption that all diagonal entries will be numerically suitablefor pivoting. The numerical factorization is guided by an assembly tree. At each node ofthe tree, some steps of Gaussian elimination are performed on a dense submatrix whoseSchur complement is then passed to the parent node in the tree where it is assembled17

Table 7.1: Times (in seconds) for matching algorithms. Order of matrix is n andnumber of entries � .Matrix n � MC21 BT' BT MPDMAHINDAS 1258 7682 0.01 0.01 0.01 0.02GEMAT11 4929 33185 0.01 0.03 0.01 0.04ONETONE1 36057 341088 2.67 0.70 0.18 0.61ONETONE2 36057 227628 2.63 0.53 0.14 0.42TWOTONE 120750 1224224 60.10 6.95 2.82 2.17GOODWIN 7320 324784 0.27 2.26 4.17 1.82LHR01 1477 18592 0.02 0.04 0.10 0.10LHR02 2954 37206 0.04 0.14 0.16 0.21LHR07 7337 156508 0.04 0.58 0.24 0.82LHR14C 14270 307858 0.28 1.13 1.12 3.32LHR71C 70304 1528092 1.86 9.00 11.96 37.73AV41092 41092 1683902 35.72 10.81 37.82 65.13(or summed) with Schur complements from the other children and original entries of thematrix. If, however, numerical considerations prevent us from choosing a pivot then thealgorithm can proceed, but now the Schur complement that is passed to the parent islarger and usually more work and storage will be needed to e�ect the factorization.The logic of �rst permuting the matrix so that there are large entries on the diagonal,before computing the ordering to reduce �ll-in, is to try and reduce the number of pivotsthat are delayed in this way thereby reducing storage and work for the factorization. Weshow the e�ect of this in Table 7.2 where we can see that even using MC21 can be verybene�cial although the other algorithms can show signi�cant further gains.In Table 7.3, we show the e�ect of this on the number of entries in the factors. Clearlythis mirrors the results in Table 7.2.In addition to being able to select the pivots chosen by the analysis phase, themultifrontal code MA41 will do better on matrices whose structure is symmetric or nearlyso. Here, we de�ne the structural symmetry for a matrix A as the number of entries aij forwhich aji is also an entry, divided by the total number of entries. The structural symmetryafter the permutations is shown in Table 7.4. The matching orderings in some casesincrease the symmetry of the resulting reordered matrix, which is particularly apparentwhen we have a very sparse system with many zeros on the diagonal. In that case, thereduction in number of o�-diagonal entries in the reordered matrix has an in
uence onthe symmetry. Notice that, in this respect, the more sophisticated matching algorithmsmay actually cause problems since they could reorder a symmetrically structured matrixwith a zero-free diagonal, whereas MC21 will leave it unchanged.18

Table 7.2: Number of delayed pivots in factorization from MA41. An \-" indicatesthat MA41 needed more than 200 MBytes of memory.Matrix Matching algorithm usedNone MC21 BT MPD MPSGEMAT11 - 76 0 0 0ONETONE1 - 16261 298 100 0ONETONE2 40916 8310 411 100 0GOODWIN 536 1622 427 53 41LHR01 1378 171 42 18 0LHR02 3432 388 143 56 0LHR14C - 7608 1042 169 274LHR71C - 35354 7424 2643 3190AV41092 - 10151 2141 1730 1722Table 7.3: Number of entries (103) in the factors from MA41.Matrix Matching algorithm usedNone MC21 BT MPD MPSGEMAT11 - 128 79 78 78ONETONE1 - 10,359 7,329 4,715 4,713ONETONE2 14,083 2,876 2,298 2,170 2,168GOODWIN 1,263 2,673 2,058 1,282 1,281LHR01 997 137 210 113 111LHR02 2,299 333 374 235 230LHR14C - 3,111 2,676 2,164 2,165LHR71C - 18,787 17,528 11,600 11,630AV41092 - 16,226 14,968 14,110 14,111Table 7.4: Structural symmetry after permutation. (1.00 = symmetric)Matrix Matching algorithm usedNone MC21 BT MPD/MPSGEMAT11 0.002 0.530 0.947 0.957ONETONE1 0.990 0.368 0.427 0.434ONETONE2 0.148 0.461 0.564 0.574GOODWIN 0.642 0.288 0.365 0.583LHR01 0.009 0.302 0.133 0.168LHR02 0.009 0.302 0.141 0.168LHR14C 0.007 0.336 0.125 0.150LHR71C 0.002 0.384 0.182 0.207AV41092 0.001 0.101 0.082 0.08219

Finally, Table 7.5 shows the e�ect on the solution times of MA41. We sometimesobserve a dramatic reduction in time for the solution when preceded by a permutation.Table 7.5: Solution time required by MA41.Matrix Matching algorithm usedNone MC21 BT MPD MPSGEMAT11 - 0.28 0.20 0.20 0.20ONETONE1 - 225.71 95.33 44.22 42.97ONETONE2 81.45 17.05 11.70 11.54 11.13GOODWIN 3.64 14.63 7.98 3.56 3.56LHR01 10.10 0.41 0.72 0.28 0.28LHR02 24.85 1.07 1.10 0.58 0.55LHR14C - 12.66 10.48 5.88 5.83LHR71C - 148.07 127.92 43.33 42.90AV41092 - 226.20 180.39 155.70 154.44Our implementations of the algorithms described in this paper have been usedsuccessfully by Li and Demmel (1998) to stabilize sparse Gaussian elimination in adistributed-memory environment without the need for dynamic pivoting. Their methoddecomposes the matrix into an N �N block matrix A[1 : N; 1 : N] by using the notion ofunsymmetric supernodes (Demmel, Eisenstat, Gilbert, Li and Liu 1995). The blocks aremapped cyclically (in both row and column dimensions) onto the nodes (processors) of atwo-dimensional rectangular processor grid. The mapping is such that at step k of thenumerical factorization, a column of processors factorizes the block column A[k : N; k], arow of processes participates in the triangular solves to obtain the block row U [k; k+1 : N],and all processors participate in the corresponding multiple-rank update of the remainingmatrix A[k + 1 : N; k+ 1 : N].The numerical factorization phase in this method does not use (dynamic) partialpivoting on the block columns. This allows for the a priori computation of the nonzerostructure of the factors, the distributed data structures, the communication pattern, and agood load balancing scheme, which makes the factorization more scalable on distributed-memory machines than factorizations in which the computational and communicationtasks only become apparent during the elimination process. To ensure a solution thatis numerically stable, the matrix is permuted and scaled before the factorization tomake the diagonal entries large compared to the o�-diagonal entries, any tiny pivotsencountered during the factorization are perturbed, and a few steps of iterative re�nementare performed during the triangular solution phase if the solution is not accurate enough.Numerical experiments demonstrate that the method (using the implementation of theMPS algorithm) is as stable as partial pivoting for a wide range of problems.20

7.2 Experiments with iterative solution methodsFor iterative methods, simple techniques like Jacobi or Gauss-Seidel converge morequickly if the diagonal entry is large relative to the o�-diagonals in its row or column,and techniques like block iterative methods can bene�t if the entries in the diagonalblocks are large. Additionally, for preconditioning techniques, for example for diagonalpreconditioning or incomplete LU preconditioning, it is intuitively evident that largediagonals should be bene�cial.7.2.1 Preconditioning by incomplete factorizationsIn incomplete factorization preconditioners, pivots are often taken from the diagonal and�ll-in is discarded if it falls outside a prescribed sparsity pattern. (See Saad (1996) foran overview.) Incomplete factorizations are used so that the resulting factors are moreeconomical to store, to compute, and to solve with.One of the reasons why incomplete factorizations can behave poorly is that pivotscan be arbitrarily small (Benzi, Szyld and van Duin 1997, Chow and Saad 1997). Pivotsmay even be zero in which case the incomplete factorization fails. Small pivots allowthe numerical values of the entries in the incomplete factors to become very large, whichleads to unstable and therefore inaccurate factorizations. In such cases, the norm of theresidual matrix R = A�L̂Û will be large. (Here, L̂ and Û denote the computed incompletefactors.)A way to improve the stability of the incomplete factorization, is to preorder thematrix to put large entries onto the diagonal. Obviously, a successful factorization stillcannot be guaranteed, because nonzero diagonal entries may become very small (or evenzero) during the factorization, but the reordering may mean that zero or small pivotsare less likely to occur. Table 7.6 shows some results for the reorderings applied prior toincomplete factorizations of the form ILU(0), ILU(1), and ILUT and the iterative methodsGMRES(20), BiCGSTAB, and QMR. In some cases, the method will only converge afterthe permutation, in others it greatly improves the convergence.However, we emphasize that permuting large entries to the diagonal of matrix willnot always improve the accuracy and stability of incomplete factorization. An inaccuratefactorization can also occur in the absence of small pivots, when many (especially large)�ll-ins are dropped from the incomplete factors. In this respect, it may be bene�cial toapply a symmetric permutation after the matching reordering to reduce �ll-in. Anotherkind of instability in incomplete factorizations, which can occur with and without smallpivots, is severe ill-conditioning of the triangular factors. (In this situation, jjRjjF neednot be very large, but jjI � A(L̂Û)�1jjF will be.) This is also a common situation whenthe coe�cient matrix is far from diagonally dominant.21

Table 7.6: Number of iterations required by some preconditioned iterative methods afterpermutation. Matrix and method Matching algorithmMC21 BT MPD MPSIMPCOL EILU(0) GMRES(20) - 17 15 14BiCGSTAB 123 25 11 10QMR 101 25 17 16ILU(1) GMRES(20) 59 15 11 11BiCGSTAB 98 19 8 7QMR 72 21 12 12ILUT GMRES(20) 8 7 8 7BiCGSTAB 9 4 5 4QMR 10 7 8 8MAHINDASILU(0) GMRES(20) - - 179 116BiCGSTAB - - 39 38QMR - - 55 55ILU(1) GMRES(20) - - 69 58BiCGSTAB - - 26 21QMR - - 34 34ILUT GMRES(20) - - 15 13BiCGSTAB - 151 11 8QMR - - 17 14WEST0497ILU(0) GMRES(20) - 40 19 19BiCGSTAB - 71 22 16QMR - 48 23 21ILU(1) GMRES(20) - 19 15 15BiCGSTAB - 26 15 11QMR - 30 18 16ILUT GMRES(20) - 14 10 7BiCGSTAB - 11 7 4QMR - 15 12 722

We also performed a set of experiments in which we �rst permuted the columns of thematrix A by using a reordering computed by one of the matching algorithms, followed bya symmetric permutation of A generated by the reverse Cuthill-McKee ordering (Cuthilland McKee 1969) applied to A + AT . The motivation behind this is that the numberof entries that is dropped from the factors can be reduced by applying a reordering ofthe matrix that reduces �ll-in. In the experimental results, we noticed that the additionalpermutation sometimes has a positive as well as a negative e�ect on the performance of theiterative solvers. Table 7.7 shows some results for the three iterative methods from Table7.6 preconditioned by ILUT on the WEST matrices from the Harwell-Boeing collection.Table 7.7: Number of iterations required by some ILUT-preconditioned iterative methodsafter the matching reordering with and without reverse Cuthill-McKee.Matrix and method Matching algorithm Matching algorithmwithout RCM with RCMMC21 BT MPD MPS MC21 BT MPD MPSWEST0497 GMRES(20) - 14 10 7 14 15 10 5BiCGSTAB - 11 7 4 60 23 10 3QMR - 15 12 7 - 19 10 6WEST0655 GMRES(20) - - 58 17 - - - -BiCGSTAB - - 42 14 - - - 71QMR - - 38 18 - - - 76WEST0989 GMRES(20) - - - - - 37 13 8BiCGSTAB - - 280 - 262 35 9 5QMR - - - - - 36 15 8WEST1505 GMRES(20) - - - - - - 117 17BiCGSTAB - - 809 - - - 42 15QMR - - - - - - 60 20WEST2021 GMRES(20) - - - - - - 36 11BiCGSTAB - - - - - - 26 7QMR - - - - - - 30 127.2.2 Experiments with a block iterative solution methodThe Jacobi method is not a particularly current or powerful method so we focussed ourexperiments on the block Cimmino implementation of Arioli, Du�, Noailles and Ruiz(1992), which is equivalent to using a block Jacobi algorithm on the normal equations.In this implementation, the subproblems corresponding to blocks of rows from the matrix23

are solved by the sparse direct method MA27 (HSL 1996).We show the e�ect of this in Table 7.8 on the problem MAHINDAS from Table 7.6.The matching algorithm was followed by a reverse Cuthill-McKee algorithm to obtain ablock tridiagonal form. The matrix was partitioned into 2, 4, 8, and 16 blocks of rows andthe accelerations used were block CG algorithms with block sizes 1, 4, and 8. The blockrows are chosen of equal (or nearly equal) size.Table 7.8: Number of iterations of block Cimmino algorithm for the matrix MAHINDAS.Acceleration + Matching algorithm# block rows None MC21 BT MPD MPSCG(1)2 324 267 298 295 1054 489 383 438 438 1418 622 485 532 524 16716 660 572 574 574 175CG(4)2 148 112 130 133 684 212 190 199 194 928 261 235 232 233 11116 281 245 253 253 112CG(8)2 80 62 72 75 544 117 105 109 108 718 140 133 127 130 8416 151 142 137 136 90In general, we noticed in our experiments that the block Cimmino method often wasmore sensitive to the scaling (in MPS) and less to the reorderings. The convergenceproperties of the block Cimmino method are independent of row scaling. However, thesparse direct solver MA27 (HSL 1996) used for solving the augmented systems, performsnumerical pivoting during the factorizations of the augmented matrices. Row scalingmight well change the choice of the pivot order and a�ect the �ll-in in the factors and theaccuracy of the solution. Column scaling should a�ect convergence of the method since itcan be considered as a diagonal preconditioner. For more details see (Ruiz 1992).24

8 Conclusions and future workWe have considered, in Sections 3-4, techniques for permuting a sparse matrix so thatthe diagonal of the permuted matrix has entries of large absolute value. We discussedvarious criteria for this and considered their implementation as computer codes. We alsoconsidered in Section 6 possible scaling strategies to further improve the weight of thediagonal with respect to the o�-diagonal values.In Section 7, we then indicated several cases where such a permutation (and scaling)can be useful. These include the solution of sparse equations by a direct method andby an iterative technique. We also considered its use in generating a preconditioner foran iterative method. The numerical experiments show that for a multifrontal solver andpreconditioned iterative methods, the e�ect of these reorderings can be dramatic. Thee�ect on the block Cimmino iterative method seems to be less dramatic. For this method,the discussed scaling tends to have a more important e�ect.While it is clear that reordering matrices so that the permuted matrix has a largediagonal can have a very signi�cant e�ect on solving sparse systems by a wide range oftechniques, it is somewhat less clear that there is a universal strategy that is best in allcases. One reason for this is that increasing the size of the diagonal only is not alwayssu�cient to improve the performance of the method. For example, for the incompletepreconditioners that we used for the numerical experiments in Section 7, it is not only thesize of the diagonal but also the amount and size of the discarded �ll-in plays an importantrole. We have thus started experimenting with combining the strategies mentioned inSections 3-4 and, particularly for generating a preconditioner and the block Cimminoapproach, with combining our unsymmetric ordering with symmetric orderings.Another interesting extension to the discussed reorderings is a block approach toincrease the size of diagonal blocks instead of only the diagonal entries and use for examplea block Jacobi preconditioner on the permuted matrix. This is of particular interest forthe block Cimmino method. One could also build other criteria into the weighting forobtaining a bipartite matching, for example, to incorporate a Markowitz cost so thatsparsity would also be preserved by the choice of the resulting diagonal as a pivot. Suchcombination would make the resulting ordering suitable for a wider class of sparse directsolvers.Finally, we notice in our experiments with MA41 that one e�ect of the matchingalgorithm was to increase the structural symmetry of unsymmetric matrices. We areexploring further the use of ordering techniques that more directly attempt to increasestructural symmetry.Acknowledgments 25

We are grateful to Michele Benzi of Los Alamos National Laboratory and Miroslav Tumaof the Czech Academy of Sciences for their assistance on the preconditioned iterativemethods and Daniel Ruiz of ENSEEIHT for his help on block iterative methods.ReferencesAmestoy, P. R. and Du�, I. S. (1989), `Vectorization of a multiprocessor multifrontal code',Int. J. of Supercomputer Applics. 3, 41{59.Arioli, M., Du�, I. S., Noailles, J. and Ruiz, D. (1992), `A block projection method forsparse matrices', SIAM J. Sci. Stat. Comput. pp. 47{70.Benzi, M., Szyld, D. B. and van Duin, A. (1997), Orderings for incomplete factorizationpreconditioning of nonsymmetric problems, Technical Report LA-UR-97-3525, LosAlamos National Laboratory, Los Alamos, NM.Burkard, R. E. and Derigs, U. (1980), Assignment and Matching Problems: SolutionMethods with FORTRAN-Programs, Springer, Berlin-Heidelberg-New York. LectureNotes in Economics and Mathematical Systems 184.Carpaneto, G. and Toth, P. (1980), `Solution of the assignment problem (Algorithm 548)',ACM Trans. Math. Software pp. 104{111.Carraresi, P. and Sodini, C. (1986), `An e�cient algorithm for the bipartite matchingproblem', European Journal of Operational Research 23, 86{93.Chow, E. and Saad, Y. (1997), Experimental study of ILU preconditioners for inde�nitematrices, Technical Report TR 97/95, Department of Computer Science, andMinnesota Supercomputer Institute, University of Minnesota, Minneapolis.Cuthill, E. and McKee, J. (1969), Reducing the bandwidth of sparse symmetricmatrices, in `Proceedings 24th National Conference of the Association for ComputingMachinery', Brandon Press, New Jersey, pp. 157{172.Davis, T. A. (1997), University of Florida sparse matrix collection, Available athttp://www.cise.u
.edu/�davis and ftp://ftp.cise.u
.edu/pub/faculty/davis.Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. and Liu, J. W. H. (1995), Asupernodal approach to sparse partial pivoting, Technical Report UCB//CSD-95-883,Computer Science Division, University of California at Berkeley, CA. To appear inSIAM J. Matrix Anal. Appl. 26

Derigs, U. and Metz, A. (1986), `An e�cient labeling technique for solving sparseassignment problems', Computing 36, 301{311.Dijkstra, E. W. (1959), `A note on two problems in connection with graphs', NumerischeMathematik 1, 269{271.Du�, I. S. (1981), `Algorithm 575. Permutations for a zero-free diagonal', ACM Trans.Math. Software 7(3), 387{390.Du�, I. S. and Koster, J. (1997), The design and use of algorithms for permutinglarge entries to the diagonal of sparse matrices, Technical Report RAL-TR-97-059,Rutherford Appleton Laboratory, Oxfordshire, England. Accepted for publication inSIAM J. Matrix Anal. Appl.Du�, I. S. and Reid, J. K. (1983), `The multifrontal solution of inde�nite sparse symmetriclinear systems', ACM Trans. Math. Software 9, 302{325.Du�, I. S. and Wiberg, T. (1988), `Remarks on implementations of O(n1=2�) assignmentalgorithms', ACM Trans. Math. Software 14(3), 267{287.Du�, I. S., Grimes, R. G. and Lewis, J. G. (1992), Users' guide for the Harwell-Boeingsparse matrix collection (Release 1), Technical Report RAL-92-086, RutherfordAppleton Laboratory, Oxfordshire, England.Edmonds, J. and Karp, R. M. (1972), `Theoretical improvements in algorithmic e�ciencyfor network problems', Journal of the ACM 19, 248{264.Finke, G. and Smith, P. (1978), `Primal equivalents for the threshold algorithm', Op. Res.Verf. 31, 185{198.Ford Jr., L. R. and Fulkerson, D. R. (1962), Flows in Networks, Princeton Univ. Press,Princeton, NJ.Gallo, G. and Pallottino, S. (1988), `Shortest path algorithms', Annals of OperationsResearch 13, 3{79.Hopcroft, J. E. and Karp, R. M. (1973), `An n5=2 algorithm for maximum matchings inbipartite graphs', SIAM J. Comput. 2, 225{231.HSL (1996), Harwell Subroutine Library, A Catalogue of Subroutines (Release 12), AEATechnology, Harwell Laboratory, Oxfordshire, England.Jonker, R. and Volgenant, A. (1987), `A shortest augmenting path algorithm for denseand sparse linear assignment problems', Computing 38, 325{340.27

Kuhn, H. W. (1955), `The Hungarian method for the assignment problem', Naval ResearchLogistics Quarterly 2, 83{97.Li, X. S. and Demmel, J. W. (1998), Making sparse Gaussian elimination scalable by staticpivoting, in `Proceedings of Supercomputing', Orlando, Florida.Olschowka, M. and Neumaier, A. (1996), `A new pivoting strategy for Gaussianelimination', Lin. Alg. and Its Appl. 240, 131{151.Ruiz, D. (1992), Solution of large sparse unsymmetric linear systems with a block iterativemethod in a multiprocessor environment, PhD thesis, CERFACS, Toulouse, France.Saad, Y. (1996), Iterative methods for sparse linear systems, PWS Publishing Company,Boston.Tarjan, R. E. (1983), Data structures and network algorithms, SIAM, Philadelphia, USA.CBMS-NSF Regional conference series in applied mathematics 44.

28

