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1 Introduction 

We study algorithms for the permutation of a square unsymmetric sparse matrix A 
of order n so that the diagonal of the permuted matrix has large entries. This can 
be useful in several ways. If we wish to solve the system 

where A is a nonsingular square matrix of order n and x and b are vectors of length 
n, then a preordering to place large entries on the diagonal can be useful whether 
direct or iterative methods are used for solution. 

For direct methods, putting large entries on the diagonal suggests that pivoting 
down the diagonal might be more stable. There is, of course, nothing rigorous in this 
and indeed stability is not guaranteed. However, if we have a solution scheme like 
the multifrontal method of Duff and Reid (1983), where a symbolic phase chooses 
the initial pivotal sequence and the subsequent factorization phase then modifies 
this sequence for stability, it can mean that the modification required is less than if 
the permutation were not applied. 

For iterative methods, simple techniques like Jacobi or Gauss-Seidel converge 
more quickly if the diagonal entry is large relative to the off-diagonals in its row or 
column and techniques like block iterative methods can benefit if the entries in the 
diagonal blocks are large. Additionally, for preconditioning techniques, for example 
for diagonal preconditioning or incomplete LU preconditioning, it is intuitively 
evident that large diagonals should be beneficial. 

We consider more precisely what we mean by such permutations in Section 2, and 
we discuss algorithms for performing them and implementation issues in Section 3. 
We consider the effect of these permutations when using direct methods of solution 
in Section 4 and their use with iterative methods in Sections 5 and 6, discussing 
the effect on preconditioning in the latter section. Finally, we consider some of the 
implications of this current work in Section 7. 

Throughout, the symbols 121 should be interpreted in context. If x is a scalar, 
the modulus is intended; if x is a set, then the cardinality, or number of entries in 
the set, is understood. 

2 Permuting a matrix to have large diagonals 

2.1 Transversals and maximum transversals 
We say that an n x n matrix A has a large diagonal if the absolute value of each 
diagonal entry is large relative to the absolute values of the off-diagonal entries in 
its row and column. We will be concerned with permuting the rows and columns 
of the matrix so the resulting diagonal of the permuted matrix has this property. 
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That is, for the permuted matrix, we would like the ratio 

to be large for all j ,  1 5 j 5 n. Of course, it is not even possible to ensure that 

this ratio is greater than 1.0 for all j as the simple example ( i) shows. It 

is thus necessary to first scale the matrix before computing the permutation. An 
appropriate scaling would be to scale the columns so that the largest entry in each 
column is 1.0. The algorithm that we describe in Section 2.2 would then have the 
effect of maximizing (2.1). 

For an arbitrary nonsingular n x n matrix, it is a necessary and sufficient 
condition that for a set of n entries to be permuted to the diagonal, no two can 
be in the same row and no two can be in the same column. Such a set of entries 
is termed a maximum transversal, a concept that will be central to this paper and 
which we now define more rigorously. 

We let T denote a set of (at most n) ordered index pairs (i, j ) ,  1 5 i , j  5 n, in 
which each row index i and each column index j appears at most once. T is called 
a transversal for matrix A, if aij # 0 for each ( i , j )  E T. T is called a maximum 
transversal if it has largest possible cardinality. IT1 is equal to n if the matrix is 
nonsingular. If indeed IT1 = n, then T defines an n x n permutation matrix P with 

p;j = 1 ,  for ( i , j )  E T, { p;j = 0 ,  otherwise 

so that PTA is the matrix with the transversal entries on the diagonal. 
In sparse system solution, a major use of transversal algorithms is in the 

first stage of permuting matrices to block triangular form. The matrix is first 
permuted by an unsymmetric permutation to make its diagonal zero-free after which 
a symmetric permutation is used to obtain the block triangular form. An important 
feature of this approach is that the block triangular form does not depend on which 
transversal is found in the first stage (Duff 1977). A maximum transversal is also 
required in the generalization of the block triangular ordering developed by (Pothen 
and Fan 1990). 

2.2 Bottleneck transversals 

We will consider two strategies for obtaining a maximum transversal with large 
transversal entries. The primary strategy that we consider in this paper is to 
maximize the smallest value on the diagonal of the permuted matrix. That is, we 
compute a maximum transversal T such that for any other maximum transversal 7'1 
we have 

min la,jl 5 min 1a;jl. 
(i,j) ET1 (i,j)€T 
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Transversal T is called a bottleneck transversal ’, and the smallest value la,jl, (i, j )  E 
T, is called the bottleneck value of A. Equivalently, if IT1 = n, the smallest value 
on the diagonal of PTA is maximized, over all permutations P, and equals the 
bottleneck value of A. 

An outline of an algorithm that computes a bottleneck transversal T’ for a matrix 
A is given below. We assume that we already have an algorithm for obtaining a 
maximum transversal and denote by MT(A,T)  a routine that returns a maximum 
transversal for a matrix A, starting with the initial “guess” transversal T. We let 
A, denote the matrix that is obtained by setting to zero in A all entries Iaijl for 
which la,jl < E (thus A,-, = A) and T, denote the transversal obtained by removing 
from transversal T all the elements ( i , j )  for which laijl < E (thus To = T ) .  

ALGORITHM BT 
Initialization: 
Set Emin to  zero and Emax to infinity. 
M := MT(A,Q) ;  
T’ := M ;  
while (there exist i , j  such that rmin < la,jl < rmax) do 
begin 

choose E = la,j I; 
(We discuss how this is chosen later) 
T := MT(A,,T‘) ;  
if IT1 = IMI 
then 

T‘ := T ;  (*) 
Emin := E ;  

Emax := E ;  

else 

endif 
end; 
Complete transversal for permutation; 
(Needed if matrix structurally singular) 

M is a maximum transversal for A, and hence IMI is the required cardinality 
of the bottleneck transversal T’ that is to be computed. If A is nonsingular, then 
IM( = n. Throughout the algorithm, Emux and rmin are such that a maximum 
transversal of size IMI does not exist for A,,,, but does exist for A,,,,,. At each 
step, E is chosen in the interval (Emin,Emux), and a maximum transversal for the 
matrix A, is computed. If this transversal has size IMI, then rmin is set to E ,  

‘The term bottleneck has been used for many years in assignment problems, for example 
(Fulkerson, Glicksberg and Gross 1953) 
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otherwise Emax is set to E. Hence, the size of the interval decreases at each step and 
E will converge to the bottleneck value. After termination of the algorithm, T' is 
the computed bottleneck transversal and E the corresponding bottleneck value. The 
value for e is unique. The bottleneck transversal T' is not usually unique. 

Algorithm BT makes use of algorithms for finding a maximum transversal. The 
currently known algorithm with best asymptotic bound for finding a maximum 
transversal is by Hopcroft and Karp (1973). It has a worst-case complexity of 
O ( f i ~ ) ,  where T is the number of entries in the matrix. An efficient implementation 
of this algorithm can be found in Duff and Wiberg (1988). The depth-first search 
algorithm implemented by Duff (1981) in the Harwell Subroutine Library code MC21 
has a theoretically worst-case behaviour of O ( ~ T ) ,  but in practice it behaves more 
like O(n + 7). Because this latter algorithm is far simpler, we concentrate on this 
in the following although we note that it is relatively straightforward to modify and 
use the algorithm of Hopcroft and Karp (1973) in a similar way. 

A limitation of algorithm BT is that it only maximizes the smallest value on 
the diagonal of the permuted matrix. Although this means that the other diagonal 
values are no smaller, they may not be maximal. Consider, for example, the 3 x 3 
matrix 

with S close to zero. Algorithm BT applied to this matrix returns E = S and 
either the transversal {(1,1), (2,2),  (3,3)} or {(2,1), (1,2), (3,3)}. Clearly, the latter 
transversal is preferable. The modifications that we propose help to do this by 
choosing large entries when possible for the early transversal entries. 

It is beneficial to first permute the matrix to block triangular form and then to 
use BT on only the blocks on the diagonal. This can be done since all entries in any 
maximum transversal must lie in these blocks. Furthermore, not only does this mean 
that BT operates on smaller matrices, but we also usually obtain a transversal of 
better quality inasmuch as not only is the minimum diagonal entry maximized but 
this is true for each block on the diagonal. Thus for matrix (2.2)) the combination 
of an ordering to block triangular form followed by BT would yield the preferred 
transversal {(2,1), (1,2), (3,3)}. 

There are other possibilities for improving the diagonal values of the permuted 
matrix which are not the smallest. One is to apply a row scaling subsequent to an 
initial column scaling of the matrix A. This will increase the numerical values of all 
the nonzero entries in those rows for which the maximum absolute numerical value 
is less than one, A row scaling applied to the matrix (2.2) changes the coefficient 
a33 from S to 1.0, and now algorithm BT will compute ((2, l), (1,2),  (3,3)) as the 
bottleneck transversal of the matrix (2.2). Unfortunately, such a row scaling does 

4 



not always help, as can be seen by the matrix 

with the maximum transversals 

all legitimate bottleneck transversals. Indeed the BT algorithm is very dependent on 

scaling. For example, the matrix ( ) has bottleneck transversal {(2,1), (1,2)} 

whereas, if it is row scaled to  ( ), the bottleneck transversal is ((1, l), (2,2)}. 

Another possibility for improving the size of the diagonal values is to apply 
algorithm BT repeatedly. Without loss of generality, suppose that, after application 
of BT, entry ann has the smallest diagonal value. Algorithm BT can then be 
applied to the (n - 1) x (n - 1) leading principal submatrix of A, and this could be 
repeated until (after k steps) the (n - k )  x (n - k )  leading principal submatrix of 
A only contains ones (on assumption original matrix was row and column scaled). 
Obviously, this can be quite expensive, since algorithm BT is applied O(n) times 
although we have a good starting point for the BT algorithm at each stage. We call 
this algorithm the successive bottleneck transversal algorithm. Because of this and 
the fact that we have found that it usually gives little improvement over BT, we do 
not consider it further in this paper. 

{ (1 ,1) ,  (2,2), ( 3 , 3 ) 1 ,  ((2, I), (3,311, and {(1,3),  (2,213 (3,l))  

2.3 Maximum Product transversals 
An algorithm yielding the same transversal independent of scaling is to maximize 
the product of the moduli of entries on the diagonal, that is to find a permutation 
Q so that 

n 

I n I 
i=l 

is maximized. This is the strategy used for pivoting in full Gaussian elimination by 
Olschowka and Neumaier (1996) and corresponds to  obtaining a weighted bipartite 
matching. Olschowka and Neumaier (1996) combine a permutation and scaling 
strategy. The permutation, as in (2.3), maximizes the product of the diagonal entries 
of the permuted matrix. (Clearly the product is zero if and only if the matrix is 
structurally singular.) The scaling transforms the matrix into a so-called I-matrix, 
whose diagonal entries are all one and whose off-diagonal entries are all less than or 
equal to one. 

Maximizing the product of the diagonal entries of A is equivalent to minimizing 
the sum of the diagonal entries of a matrix C = (q j )  that is defined as follows (we 
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here assume that A = (a; j )  denotes an n x n nonnegative nonsingular matrix): 

l o g q  - log aaj a;j # 0 c.. = 
” { o  a; j  = 0 

where Zj = maxk(akj) is the maximum absolute value in column j of matrix A. 
Minimizing the sum of the diagonal entries can be stated in terms of an 

assignment problem and can be solved in O(n3) time for full n x n matrices or in 
O(n7logn) time for sparse matrices with r entries. A bipartite weighted matching 
algorithm is used to solve this problem. Applying this algorithm to C produces 
vectors U, U and a transversal T, all of length n, such that 

If we define 
D1 = diag(di, dg,. . . , d;), da = exp(u;), and 
D2 = diag(@, d i , .  . . ,e), df = exp(vj)/Ej, 

then, the scaled matrix B = DlADz is an I-matrix. We do not do this scaling 
in our experiments but, unlike Olschowka and Neumaier, we use a sparse bipartite 
weighted matching whereas they only considered full matrices. 

The worst case complexity of this algorithm is O(nr log n) .  This is similar to BT, 
although in practice it sometimes requires more work than BT. We have programmed 
this algorithm, without the final scaling. We have called it algorithm MPD (for 
Maximum Product on Diagonal) and compare it with BT and MC21 in the later 
sections of this paper. Note that on the matrix 

the MPD algorithm obtains the transversal {(1,1), (2 ,2) ,  (3,3)} whereas, 
for example for Gaussian elimination down the diagonal, the transversal 
{(1,3), (2 ,2 ) ,  (3,l)) would be better. Additionally, the fact that scaling does 
influence the choice of bottleneck transversal could be deemed a useful characteristic. 
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3 Implementation of the BT algorithm 

We now consider implementation details of algorithm BT from the previous section. 
We will also illustrate its performance on some matrices from the Harwell-Boeing 
Collection (Duff, Grimes and Lewis 1989) and the collection of Davis (1997). A code 
implementing the BT algorithm will be included in a future release of the Harwell 
Subroutine Library (HSL 1996). 

When we are updating the transversal at stage (*) of algorithm BT, we can 
easily accelerate the algorithm described in Section 2 by computing the value of the 
minimum entry of the transversal, viz. 

and then setting Emin to this value rather than to E .  The other issue, crucial 
for efficiency, is the choice of E at the beginning of each step. If, at each step, 
we choose E close to the value of Emin then it is highly likely that we will find 
a maximum transversal, but the total number of steps required to  obtain the 
bottleneck transversal can be very large. In the worst case, we could require r - n 
steps when the number of nonzero entries in A, reduces by only one at each iteration. 

The algorithm converges faster if the size of the interval (Emin,cmaz) reduces 
significantly at each step. It would therefore appear sensible to choose E at each 
step so that the interval is split into two almost equal subintervals, that is E x 
(~min+~maz)/2. However, if most of the nonzero values in A that have a magnitude 
between Emin and emox, are clustered near one of these endpoints, the possibility 
exists that only a few nonzero values are discarded and the algorithm again will 
proceed slowly. To avoid this, E should be chosen as the median of the nonzero 
values between Emin and Emax. 

We now consider how a transversal algorithm like MC21 can be modified to 
implement algorithm BT efficiently. Before doing this, it is useful to describe briefly 
how MC21 works. Each column of the matrix is searched in turn (called an original 
column) and either an entry in a row with no transversal entry presently in the row 
is found and this is made a transversal entry (a cheap assignment) or there is no 
such entry and so the search moves to a previous column whose transversal entry is 
in one of the rows with an entry in the original column. This new column is then 
checked for a cheap assignment. If one exists, then this cheap assignment and the 
entry in the original column in the row of the old transversal entry, replace that as 
transversal entries thereby extending the length of the transversal by 1. If there is 
no cheap assignment, then the search continues to other columns in a depth first 
search fashion until a chain or augmenting path of the form 

is found where there are no transversal entries in row i and every odd member of the 
path is a transversal entry. The assignment is made in column j and the transversal 
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extended by 1 by replacing all transversal entries in the augmenting path with the 
even members of this path. 

Transversal selection algorithms like MC21 do not take into account the numerical 
values of the nonzero entries. However, it is clear that the algorithm BT will 
converge faster if T is chosen so that the value of its minimum entry is large. We 
do this by noting that, when constructing an augmenting path, there are often 
several candidates for a cheap assignment or for extending the path. MC21 makes an 
arbitrary choice and we have modified it so the candidate with largest absolute value 
is chosen. Note that this is a local strategy and does not guarantee that augmenting 
paths with the highest values will be found. 

The second modification aims at exploiting information obtained from previous 
steps of algorithm BT. Algorithm BT repeatedly computes a maximum transversal 
T = MT(A,,T:). The implementation of MC21 in the Harwell Subroutine Library 
computes T from scratch, so we have modified it so that it can start with a partial 
transversal. This can easily be achieved by holding the set of columns which contain 
entries of the partial transversal and performing the depth search search through 
that set of columns. 

Of course, there are many ways to implement the choice of E .  One alternative 
is to maintain an array PTR (of length T )  of pointers, such that the entries in the 
first part of PTR point to those entries in A that form matrix A,,,r, the first two 
parts of PTR point to the entries that form A,,in, and the elements in the third 
part of PTR point to all the remaining (smaller) entries of A. A new vzlue for E 

can then be chosen directly (O(1) time) by picking the numerical value of an entry 
that is pointed to by an element of the second part of PTR. After the assignment 
in algorithm BT to either emin or ernas, the second part of PTR has to be permuted 
so that PTR again can be divided into three parts. An alternative is to do a global 
sort (using a fast sorting algorithm) on all the entries of A, such that the elements 
of PTR, point to the entries in order of decreasing absolute value. Then again PTR 
can be divided into three parts as described in the previous alternative. By choosing 
(in O(1) time) E equal to the numerical value of the entry pointed to by the median 
element of the second part of PTR, E will divide the interval (emin, E,,,) into parts 
of close-to-equal size. Both alternatives have the advantage of being able to choose 
the new E quickly, but require O(T) extra memory and (repeated) permutations of 
the pointers. 

We prefer an approach that is less expensive in memory and that matches our 
transversal algorithm better. Since MC21 always searches the columns in order, we 
facilitate the construction of the matrices A,, by first sorting the entries in. each 
column of the matrix A by decreasing absolute value. For a sparse matrix with 
a well bounded number of entries in each column, this can be done in O(n) time, 
The matrix A, is then implicitly defined by an array LEN of length n with LEN[j] 
pointing to the first entry in column j of matrix A whose value is smaller than E ,  

which is the position immediately after the end of column j of matrix A,. Since the 
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entries of a column of A, are contiguous, the repeated modification of E by algorithm 
BT, which redefines matrix A,, corresponds to simply changing the pointers in the 
array LEN. 

The actual choice of E at phase (*) in algorithm BT is done by selecting in 
matrix Aem,,, an entry that has an absolute value X such that Emin < X 5 emoz. 
The columns of Aem,,, are searched until such an entry is found and E is set to its 
absolute value. This search costs O(n) time since, for each column, we have direct 
access to the entries with absolute values between emin and E,,, through the pointer 
array LEN. 

As mentioned before, by choosing E carefully, we can speed up algorithm BT 
considerably. Therefore, instead of choosing an arbitrary entry from the -matr_ix to 
define E ,  we can choose a number ( k  say) of entries lying between €,,,in and E,, at 
random, sort them by absolute value, and then set e to the absolute value of the 
median element.2 In our implementation we used k = 10. 

The set of matrices that we used for our experiments are unsymmetric matrices 
taken from the sparse matrix collections Duff, Grimes and Lewis (1992) and Davis 
(1997). Table 3.1 shows the order, number of entries, and the time to  compute a 
bottleneck transversal for each matrix. All matrices are initially row and column 
scaled. By this we mean that the matrix is scaled so that the maximum entry in 
each row and in each column is one. 

The machine used for the experiments in this and the following sections is a 166 
MHz SUN ULTRA-2. The algorithms are implemented in Fortran 77. 

Matrix n 7 

MAHINDAS 
ORANI678 
RDISTl 
GEMATll 
GOODWIN 
ONETONEl 
ONETONE2 
TWOTONE 
LHR02 
LHR14C 
LHR71C 
AV41092 

1258 
2529 
4134 
4929 
7320 

36057 
36057 

120750 
2954 

14270 
70304 
41092 

7682 
901 58 
94408 
33185 

324784 
341088 
227628 

1224224 
37206 

307858 
1528092 
1683902 

Time in secs 
MC21 BT MPD 
0.01 0.01 0.02 
0.02 0.10 0.13 

~ 0.02 0.18 0.37 
0.01 0.03 0.04 
0.27 2.26 1.82 
2.67 0.70 0.61 
2.63 0.53 0.42 

60.10 6.95 2.17 
~ 0.04 0.14 0.17 

0.28 1.13 3.32 
1.86 9.00 37.73 

35.72 10.81 65.13 

Table 3.1: Times for transversal algorithms. Order of matrix is n and number of 
entries r. 

2This is a technique commonly used to speed up sorting algorithms like quicksort. 
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4 The solution of equations by direct methods 
MCSPARSE, a parallel direct unsymmetric linear system solver developed by 
Gallivan, Marsolf and Wijshoff (1996)) uses a reordering to identify a priori large and 
medium grain parallelism and to reorder the matrix to bordered block triangular 
form. Their ordering uses an initial nonsymmetric ordering that enhances the 
numerical properties of the factorization, and subsequent symmetric orderings 
are used to obtain a bordered block triangular matrix (Wijshoff 1989). The 
nonsymmetric ordering is effectively a modified version of MC21. During each search 
phase, for both a cheap assignment and an augmenting path, an entry aij is selected 
only if its absolute value is within a bound a, 0 5 a 5 1, of the largest entry in 
column j. Instead of taking the first entry that is found by the search that satisfies 
the threshold, the algorithm scans all of the column for the entry with the largest 
absolute value. 

The algorithm starts off with an initial bound a = 0.1. If a maximum transversal 
cannot be found, then the values in each column are examined to determine the 
maximum value of the bound that would have allowed an assignment to take place 
for that column. The new bound is then set to the minimum of the bound estimates 
from all the failed columns and the algorithm is restarted. If a bound less than a 
preset limit is tried and a transversal is still not found, then the bound is ignored 
and the code finds any transversal. In our terminology (assuming an initial column 
scaling of the matrix) this means that a maximum transversal of size n is computed 
for the matrix A,. 

In the multifrontal approach of Duff and Reid (1983), later developed by Amestoy 
and Duff (1989)) an analysis is performed on the structure of A + AT to obtain 
an ordering that reduces fill-in under the assumption that all diagonal entries will 
be numerically suitable for pivoting. The numerical factorization is guided by an 
assembly tree. At each node of the tree, some steps of Gaussian elimination are 
performed on a dense submatrix whose Schur complement is then passed to the 
parent node in the tree where it is assembled (or summed) with Schur complements 
from the other children and original entries of the matrix. If, however, numerical 
considerations prevent us from choosing a pivot then the algorithm can proceed, but 
now the Schur complement that is passed to the parent is larger and usually more 
work and storage will be needed to effect the factorization. 

The logic of first permuting the matrix so that there are large entries on the 
diagonal, before computing the ordering to reduce fill-in, is to try and reduce the 
number of pivots that are delayed in this way thereby reducing storage and work for 
the factorization. We show the effect of this in Table 4.1 where we can see that even 
using MC2I can be very beneficial although the BT algorithm can show significant 
further gains and sometimes the use of MPD can cause further significant reduction 
in the number of delayed pivots. We should add that the numerical accuracy of 
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the solution is sometimes slightly improved by these permutations and, in all cases, 
good solutions were found. 

Matrix 

GEMATll 

ONETONE2 
GOODWIN 
LHR02 

ONETONEl 

LHR14C 
LHR71C 
AV 4 1 092 

Matrix 

Transversal algorithm used 
None MC2 1 BT MPD 

- 127819 78589 78161 

14082683 2875603 2167523 2169903 
1263104 2673318 1791112 1282004 
2298550 333450 394724 235048 

- 10359161 6957229 4715085 

- 3111142 4596028 2164392 
- 18786982 - 11599556 
- 16226036 15140098 14110336 

GEMATll 
ONETONEl 
ONETONE2 
GOODWIN 
LHR02 
LHR14C 
LHR71C 
AV41092 

Transversal algorithm used 
None MC21 BT MPD 

76 0 
- 16261 255 

40916 8310 214 
536 1622 358 

3432 388 211 
- 7608 3689 

0 
00 
00 
53 
56 
69 

- 10151 2143 - 2643 1730 I - 35354 

Table 4.1: Number of delayed pivots in factorization from MA41. An "-" indicates 
that MA41 requires a real working space larger than 25 million words (of 8 bytes). 

In Table 4.2, we show the effect of this on the number of entries in the factors. 
Clearly this mirrors the results in Table 4.1 and shows the benefits of the transversal 
selection algorithms. This effect is seen in Table 4.3 where we can sometimes observe 
a dramatic reduction in time for solution when preceded by a permutation. 

In addition to being able to select the pivots chosen by the analysis phase, the 
multifrontal code MA41 will do better on matrices whose structure is symmetric 
or nearly so. The transversal orderings in some cases increase the symmetry of the 
resulting reordered matrix. This is particularly apparent when we have a very sparse 
system with many zeros on the diagonal. In that case, the reduction in number of off- 
diagonal entries in the reordered matrix has an influence on the symmetry. Notice 
that, in this respect, the more sophisticated transversal algorithms may actually 
cause problems since they could reorder a symmetrically structured matrix with a 
zero-free diagonal, whereas MC2 1 will leave it unchanged. 
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Matrix 

GEMATll 
ONETONEl 
ONETONE2 
GOODWIN 
LHR02 
LHR14C 
LHR71C 
AV41092 

Transversal algorithm used 
None MC21 BT MPD 

- 0.28 0.20 0.20 
- 225.71 83.11 44.22 

81.45 17.05 9.48 11.54 
3.64 14.63 6.00 3.56 

24.85 1.07 1.29 0.58 
- 12.66 29.17 5.88 
- 148.07 - 43.33 
- 226.20 184.68 155.70 

Table 4.3: Time (in seconds on Sun ULTRA-2) for MA41 for solution of system. 

5 The solution of equations by iterative methods 
A large family of iterative methods, the so-called stationary methods, has the 
iteration scheme 

(5.1) Mx(L+1) = Nx(~) + b 

where A = M - N is a splitting of A, and M is chosen such that a system of the 
form Mx = y is easy to solve. If M is invertible, (5.1) can be written as 

(5.2) #+l) = M-lNx(L) + M-lb = (I - M-lA)x(L) + M-lb . 

We have 

where p is the spectral radius, so that, if IIM-lII,IINII, < 1 ,  convergence of the 
iterates x ( ~ )  to the solution A-lb is guaranteed for arbitrary x(O). In general, the 
smaller I IM-l I loo I IN1 Ice, the faster the convergence. Thus an algorithm that makes 
entries in M large and those in N small should be beneficial. 

The most simple method of this type is the Jacobi method, corresponding to the 
splitting M = D and N = -(L + U), where D denotes the diagonal, L the strictly 
lower triangular part, and U the strictly upper triangular part of the matrix A. 
However, this is not a particularly current or powerful method so we conduct our 
experiments using the block Cimmino implementation of Arioli, Duff, Noailles and 
Ruiz (1992), which is equivalent to using a block Jacobi algorithm on the normal 
equations. In this implementation, the subproblems corresponding to blocks of rows 
from the matrix are solved by a direct method similar to that considered in the 
previous section. For similar reasons, it can be beneficial to increase the magnitude 
of the diagonal entries through unsymmetric permutations. 

We show the effect of this in Table 5.1, where we see that the number of iterations 
for the solution of the problem MAHINDAS (n = 1258, r = 7682). The convergence 
tolerance was set to  10-l2. The transversal selection algorithm was followed by a 
reverse Cuthill McKee algorithm to obtain a block tridiagonal form. The matrix 

p(M-lN) I IIM-lNIlcQ I IlM-'llcQllNIIm, 
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was partitioned in 2 ,  4, 8, and 16 block rows and the acceleration used was a block 
CG algorithm with block sizes of 1, 4, and 8. 

Acceleration + Transversal algorithm 
# block rows None MC21 BT MPD 

324 267 298 295 
489 383 438 438 
622 485 532 524 
660 572 574 574 

148 112 130 133 
212 190 199 194 
261 235 232 233 
281 245 253 253 

80 62 72 75 
117 105 109 108 
140 133 127 130 
151 142 137 136 

Table 5.1: Number of iterations of block Cimmino algorithm on MAHINDAS. 

In every case, the use of a transversal algorithm accelerates the convergence of 
the method, sometimes by a significant amount. However, the use of the algorithms 
to increase the size of the diagonal entries does not usually help convergence further. 
The convergence of block Cimmino depends on angles between subspaces which is 
not so strongly influenced by the diagonal entries. 

6 Preconditioning 
In this section, we consider the effect of using a permutation induced by our 
transversal algorithms prior to solving a system using a preconditioned iterative 
method. We consider preconditionings corresponding to incomplete factorizations 
of the form ILU(O), ILU(l),  and ILUT and study the convergence of the iterative 
methods GMRES(20)) BiCGSTAB, and QMR. We refer the reader to a standard 
text like that of Saad (1996) for a description and discussion of these methods. Since 
the diagonal of the permuted matrix is “more dominant” than the diagonal of the 
original matrix, we would hope that such permutations would enhance convergence. 

We show the results of some of our runs in Table 6.1. The maximum number 
of iterations was set to 1000 and the convergence tolerance to lO-’ .  It is quite 
clear that the reorderings can have a significant effect on the convergence of the 
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preconditioned iterative method. In some cases, the method will only converge after 
the permutation, in others it greatly improves the convergence. It would appear 
from the results in Table 6.1 and other experiments that we have performed, that 
the more sophisticated MPD transversal algorithm generally results in the greatest 
reduction in the number of iterations, although the best method will depend on the 
overall solution time including the transversal selection algorithm. 

7 Conclusions and future work 
We have described algorithms for obtaining transversals with large entries and have 
indicated how they can be implemented showing that resulting programmes can be 
written for efficient performance. 

While it is clear that reordering matrices so that the permuted matrix has a 
large diagonal can have a very significant effect on solving sparse systems by a wide 
range of techniques, it is somewhat less clear that there is a universal strategy that is 
best in all cases. We have thus started experimenting with combining the strategies 
mentioned in this paper and, particularly for the block Cimmino approach, with 
combining our unsymmetric ordering with a symmetric ordering. One example that 
we plan to study is a combination with the symmetric TPABLO ordering (Benzi, 
Choi and Szyld 1997). 

It is possible to  extend our techniques to orderings that try to increase the size 
of not just the diagonal but also the immediate sub and super diagonals and then 
use the resulting tridiagonal part of the matrix as a preconditioner. 

One can also build other criteria into the weighting for obtaining a bipartite 
matching, for example, to incorporate a Markowitz count so that sparsity would 
also be preserved by the choice of the resulting diagonal as a pivot. 

Finally, we noticed in our experiments with MA41 that one effect of transversal 
selection was to increase the structural symmetry of unsymmetric matrices. We are 
thus exploring further the use of ordering techniques that more directly attempt to 
increase structural symmetry. 
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Matrix and method 

[MPCOL E 

[LU(O) GMRES (20) 
BiCGSTAB 
QMR 

ILU(1) GMRES( 20) 
BiCGSTAB 
QMR 

ILUT GMRES( 20) 
BiCGSTAB 
QMR 

MAHINDAS 

ILU (0) GMRES(20) 
BiCGSTAB 
QMR 

ILU(1) GMRES (20) 
BiCGSTAB 
QMR 

ILUT GMRES (20) 
BiCGSTAB 
QMR 

WEST0497 

ILU (0) GMRES (20) 
BiCGSTAB 
QMR 

ILU(1) GMRES( 20) 
BiCGSTAB 
QMR 

ILUT GMRES( 20) 
BiCGSTAB 
QMR - 

Transversal algorithm 
MC21 BT MPD 

- 16 15 
123 21 11 
101 26 17 

59 15 11 
98 16 8 
72 19 12 

8 7  8 
9 5  5 

10 8 8 

179 
- - 39 

55 

69 
26 
34 

15 
11 
17 

- 60 19 
- 78 22 
- 63 23 

- 79 15 
- 82 15 
- 82 18 

- 15 10 
- 15 7 
- 17 12 

Table 6.1: Number of iterations required by some preconditioned iterative methods. 
- 

15 



References 
Amestoy, P. R. and Duff, I. S. (1989), ‘Vectorization of a multiprocessor multifrontal 

code’, Int. J. of Supercomputer Applics. 3,  41-59. 

Arioli, M., Duff, I. S., Noailles, J. and Ruiz, D. (1992), ‘A block projection method 
for sparse matrices’, SIAM J. Scientific and Statistical Computing 13, 47-70. 

Benzi, M., Choi, H. and Szyld, D. (1997), Threshold ordering for preconditioning 
nonsymmetric problems, Technical Report TR/PA/97/02, CERFACS, 
Toulouse, France. (Submitted to Hong Kong Workshop on Scientific Computing 
1997). 

Davis, T. A. (1997), ‘University of Florida sparse matrix collection’, Available at 
http://www.cise.ufl.edu/’davis and ftp://ftp.cise.ufl.edu/pub/faculty/davis. 

Duff, I. S. (1977), MA28 - A set of Fortran subroutines for sparse unsymmetric 
linear equations, Technical Report AERE R8730, Her Majesty’s Stationery 
Office, London. 

Duff, I. S. (1981), The design and use of a frontal scheme for solving sparse 
unsymmetric equations, in J. P. Hennart, ed., ‘Numerical Analysis, Proceedings 
of 3rd IIMAS Workshop. Lecture Notes in Mathematics 909’, Springer Verlag, 
Berlin, pp. 240-247. 

Duff, I. S. and Reid, J. K.  (1983), ‘The multifrontal solution of indefinite sparse 

Duff, I. S. and Wiberg, T. (1988), ‘Remarks on implementation of O ( n 1 / 2 ~ )  

symmetric linear systems’, ACM Duns. Math. Softw. 9, 302-325. 

assignment algorithms’, ACM Duns. Math. Softw. 14(3), 267-287. 

Duff, I. S., Grimes, R. G. and Lewis, J. G. (1989), ‘Sparse matrix test problems’, 

Duff, I. S., Grimes, R. G. and Lewis, J. G. (1992)) Users’ guide for the Harwell- 
Boeing sparse matrix collection (Release I), Technical Report RAL 92-086, 
Rutherford Appleton Laboratory. 

ACM Duns. Math. Softw. 15(1), 1-14. 

Fulkerson, D., Glicksberg, I. and Gross, 0. (1953), A production line assignment 
problem, Technical Report RM-1102, RAND Corporation. 

Gallivan, K. A., Marsolf, B. A. and Wijshoff, H. A. G. (1996), ‘Solving large 
nonsymmetric sparse linear systems using MCSPARSE’, Parallel Computing 

Hopcroft, J. E.  and Karp, R. M. (1973), ‘An n(5/2) algorithm for maximum matchings 

22, 1291-1333. 

in bipartite graphs’, SIAM J. Comput. 2 ,  225-231. 

16 



HSL (1996)) Hamuell Subroutine Library. A Catalogue of Subroutines (Release 12)) 
AEA Technology, Harwell Laboratory, Oxfordshire, England. For information 
concerning HSL contact: Dr Scott Roberts, AEA Technology, 552 Harwell, 
Didcot, Oxon OX1 1 ORA, England (tel: +44-1235-434988, fax: +44-1235- 
434136, email: Scott.Roberts@aeat.co.uk). 

Olschowka, M. and Neumaier, A. (1996)) ‘A new pivoting strategy for Gaussian 
elimination’, Linear Algebra and its Applications 240, 131-151. 

Pothen, A. and Fan, C. (1990), ‘Computing the block triangular form of a sparse 
matrix’, ACM Trans. Math. Softw. 16(4), 303-324. 

Saad, Y. (1996)) Iterative methods for sparse linear systems, P W S  Publishing, New 
York, NY. 

Wijshoff, H. A. G. (1989), Symmetric orderings for unsymmetric sparse matrices, 
Technical Report CSRD 901, Center for Supercomputing Research and 
Development, University of Illinois. 

17 


