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Ce	cours	permet	de	faire	connaître	les	différentes	parties	de	la	construction	dans	son	aspect	constitutif,	mais	aussi	les	fonctions	que	remplissent	ces	différents	composants	qui	peuvent	être	structurelles,	fonctionnelles,	esthétiques,	etc.	L’étude	des	principaux	éléments	constitutifs	d’un	bâtiment	est	examinée	sous	trois	angles	:-	L’aspect	Structurel
compte	tenu	des	exigences,	de	la	statique	ainsi	que	de	la	configuration	Volumétrique	pour	la	stabilité	du	bâtiment	;-	Les	matériaux	utilisés	selon	leur	origine	et	leur	nature	;-	Les	modes	de	mise	en	œuvre	selon	les	règles	de	l’art	ainsi	que	les	techniques	d’exécution.Dans	ce	cours	de	technologie	de	construction	pdf,	l’accent	sera	mis	sur	la	connaissance
du	langage	technique	utilisé,	sur	l’acquisition	de	la	géométrie	des	éléments	ainsi	que	de	leur	représentation	graphique.	Un	bâtiment	comporte	plusieurs	éléments	qui	ont	des	fonctions	différentes	mais	complémentaires	pour	une	parfaite	cohérence	d’ensemble.	Un	élément	pris	dans	son	ensemble	peut	avoir	des	fonctions	différentes	si	cet	élément
appartient	à	un	bâtiment	à	un	niveau	ou	de	plusieurs	niveaux.	Par	exemple,	la	valeur	d’un	mur	dans	un	bâtiment	à	un	niveau	est	différente	de	celle	de	plusieurs	niveaux	:	Pour	un	R.D.C	les	murs	ont	surtout	une	fonction	de	structure,	alors	que	dans	un	bâtiment	à	plusieurs	étages	ces	murs	ont	une	fonction	esthétique.	Un	projet	d’architecture	ou	de
construction	peut	être	appréhendé	sous	son	aspect,	sa	forme,	ses	fonctions,	ses	espaces	et	sa	construction.	Pour	cette	raison	on	ne	se	limitera	pas	uniquement	à	son	aspect	constructif.	construction	bâtiment	de	a	à	z	pdf,	technologie	de	construction	-	cours	pdf,	travaux	de	construction	technologie	du	bâtiment	gros-oeuvre	pdf,	technologie	de
construction	en	génie	civil	pdf,	technologie	des	matériaux	de	construction	-	pdf,	cours	de	technologie	de	construction	en	génie	civil,	télécharger	cours	de	technologie	de	construction,	cours	gratuit	de	technologie	de	bâtiment	Cette	version	est	la	vieille	version	du	cours	où	nous	étudiions	la	chute	d'un	parachutiste.	Nous	avons	décidé	de	faire	un	étude
expérimentale	"en	direct"	avec	les	étudiants	en	traitant	le	cas	de	la	chute	du	volant	de	Badminton	:	la	nouvelle	version	est	disponible	ici.	Nous	avons	modélisé	au	chapitre	précédent	le	corps	qui	chute	dans	le	champ	de	pesanteur	en	considérant	que	les	frottements	de	l’air	étaient	négligeables.	Cette	supposition	n’ayant	qu’une	utilité	théorique,	nous
complexifions	ici	notre	modèle	en	tenant	compte	de	ces	frottements	:	comment	ceux-ci	vont	modifier	la	trajectoire	du	corps	qui	chute?	Ce	sera	l’occasion	de	voir	que	ces	frottements	peuvent	être	de	deux	types,	linéaires	ou	quadratiques,	nous	avons	alors	rencontré	deux	types	d’équations	différentielles:	la	résolution	de	la	première	ne	nous	posera	pas
de	problème;	mais	la	résolution	de	la	seconde	est	moins	aisée:	nous	en	profiterons	pour	voir	une	méthode	numérique	itérative	permettant	d’approcher	la	forme	de	la	solution:	la	méthode	d’Euler.Enfin	parmi	les	deux	modèles	de	forces	de	frottement,	lequel	se	révèle	le	plus	juste	pour	étudier	le	parachutisme?	Nous	tenterons	une	réponse	à	l’aide	de	la
mécanique	des	fluides	Problème	3	Un	parachutiste	de	masse	\(80\,\mathrm{kg}\)	réalise	un	saut	depuis	un	hélicoptère.	La	première	partie	du	saut,	celle	qui	nous	intéresse	ici,	est	réalisée	sans	parachute.	Quelles	sont	les	caractéristiques	de	celle-ci	sachant	que	les	frottements	de	l’air	ne	sont	pas	négligeables?	Système	Le	système	étudié	est	le	sauteur
considéré	ponctuel.	Référentiel	et	base	On	étudie	son	mouvement	dans	un	référentiel	terrestre	lié	au	sol	(à	son	point	de	chute),	ce	référentiel	est	considéré	galiléen	pendant	la	durée	de	la	chute.	On	utilisera	une	base	cartésienne	à	une	dimension	pour	suivre	l’évolution	du	sauteur	:	un	axe	Oz	vertical	ascendant	avec	origine	au	point	de	chute
constituera	le	repère	d’étude.	On	considère	en	effet	que	le	mouvement	du	parachutiste	est	strictement	vertical.	Forces	Bilan	des	forces	Le	sauteur	est	soumis	à	son	poids	noté	\(\overrightarrow{P}\),	force	à	distance	exercée	par	la	Terre	sur	lui.	Il	est	soumis	aux	forces	de	frottements	de	l’air,	modélisées	par	une	force	de	contact	notée	\
(\overrightarrow{f}\).	Cette	force	peut	aussi	être	nommée	résistance	de	l’air.	Deux	types	de	forces	de	frottements	La	force	de	frottements	de	l’air	peut	prendre	deux	formes:	Frottements	linéaires	Dans	le	cas	d’une	vitesse	faible,	la	force	de	frottement	est	proportionnelle	à	la	vitesse:	\begin{equation}\overrightarrow{f}	=	-
k\,\overrightarrow{v}\end{equation}	On	parle	de	frottements	linéaires.	\(k\)	est	une	constante	qui	dépend	de	la	nature	du	fluide	et	des	caractéristiques	de	l’objet.	Par	exemple	pour	une	sphère	de	rayon	\(r\),	on	a	\(k	=	6\,\pi\,\eta\,r\)	où	\(\eta\)	est	la	viscosité	du	fluide.	Frottements	quadratiques	Dans	le	cas	d’une	vitesse	importante,	la	force	de
frottement	est	proportionnelle	au	carré	de	la	vitesse	:	\begin{equation}\overrightarrow{f}	=	-k'\,v\,\overrightarrow{v}\end{equation}	On	parle	de	frottements	quadratiques.	\(k'\)	est	aussi	une	constante	qui	dépend	du	fluide	et	des	caractéristiques	de	l’objet	mais	elle	prend	une	autre	forme	que	par	rapport	à	\(k\)	:	son	expression	est	du	type	\(k'	=
\frac{1}{2}\,\rho\,C_x\,S\)	avec	\(\rho\)	la	masse	volumique	du	fluide,	\(S\)	la	surface	frontale	de	l’objet	et	\(C_x\)	le	coefficient	de	trainée	qui	dépend	de	la	géométrie	du	corps.	
Par	exemple,	voici	trois	géométries	et	trois	valeurs	de	$C_x$:	Valeur	du	$C_\mathrm{x}$	en	fonction	de	la	géométrie	du	corps	Ce	coefficient	de	trainée	peut	se	calculer	pour	une	sphère	lisse	(sans	rugosité)	dans	le	cas	d'écoulement	à	faible	vitesse	(à	faible	nombre	de	Reynolds),	il	dépend	alors	du	nombre	de	Reynolds.	Pour	des	écoulements	turbulents
(à	grand	nombre	de	Reynolds	$>	10^3$),	on	mesure	le	$C_\mathrm{x}$	en	soufflerie.	En	sachant	qu'il	est	constant	pour	un	corps	donné.	Utilisation	de	la	2ème	loi	de	Newton	\begin{equation}\sum	\overrightarrow{F}	=	m\,\overrightarrow{a}	\Longleftrightarrow	\overrightarrow{P}	+	\overrightarrow{f}	=	m\,\overrightarrow{a}\end{equation}
Résolution	du	problème	dans	le	cas	de	frottements	linéaires	Equation	différentielle	Le	PFD	donne	:	\(m\,\overrightarrow{g}	-	k\,\overrightarrow{v}=	m\,\overrightarrow{a}\).	On	projette	maintenant	cette	relation	sur	l’axe	Oz	vertical	ascendant.	

\begin{equation}\begin{aligned}	-m\,g	-	k\,v_z	=	m\,a	&\Longleftrightarrow	m\,\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	+	k\,v_z	=	-m\,g	\\	&\Longleftrightarrow	\boxed{\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	+	\dfrac{k}{m}\,v_z	=	-g}	\label{equadiff1}\end{aligned}\end{equation}	On	obtient	donc	une	équation	différentielle	en	\(v_z\),	linéaire	du
premier	ordre	à	coefficients	constants.	
On	sait	résoudre	cette	équation	mathématiquement.	Une	fois	l’expression	de	la	vitesse	\(v_z\)	obtenue,	on	en	déduira	la	position	par	intégration.	Une	notation	particulière	Souvent	ce	type	d’équation	sera	écrite	ainsi:	\begin{equation}\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	+	\dfrac{v_z}{\tau}	=	-g	\quad	\text{	avec	}	\quad	\tau	=	\dfrac{m}
{k}\end{equation}	La	notation	\(\tau\)	fait	référence	à	un	temps.	En	effet,	la	grandeur	\(\tau	=	\dfrac{m}{k}\)	est	un	temps	caractéristique	de	la	fonction	\(v=f(t)\),	comme	nous	allons	le	voir	par	la	suite.	Solution	de	l’équation	différentielle	Principe	Une	équation	différentielle	linéaire	avec	second	membre	se	résout	en	deux	temps:	On	cherche	d’abord
la	solution	\(s_h\)	de	l’équation	homogène,	c’est	à	dire	l’équation	sans	second	membre;	On	cherche	une	solution	particulière	\(s_p\),	c’est	à	dire	une	solution	qui	a	même	forme	que	le	second	membre	(si	le	second	membre	est	constant,	la	solution	particulière	recherchée	sera	une	constante).	La	solution	de	l’équation	différentielle	avec	second	membre
est	la	somme	de	la	solution	homogène	et	de	la	solution	particulière:	\(s	=	s_h	+	s_p\).	Attention,	dans	la	solution	de	l’équation	homogène	apparaissent	souvent	des	constantes	(une	si	l’équation	est	du	premier	ordre,	deux	si	elle	est	du	deuxième	ordre).	La	détermination	de	ces	constantes	à	l’aide	des	conditions	initiales	doit	être	menée	en	tenant	compte
de	la	solution	particulière.	Pour	notre	problème	On	recherche	la	solution	de	l’équation	complète	,	qui	est	une	vitesse.	Solution	de	l’équation	homogène	Equation	homogène	:	\(\dfrac{\mathrm{d}v}{\mathrm{d}t}+\dfrac{v}{\tau}	=	0	\quad\)	\(\Longrightarrow	\)	Solution:	\(v_h	=	A\,	e^\left(-\dfrac{t}{\tau}\right)\)	avec	\(A\)	une	constante.	On	peut
vérifier	en	dérivant	une	fois	\(v_h\)	que	cette	solution	vérifie	l’équation	homogène.	Solution	particulière	Le	second	membre	étant	constant	(égal	à	\(-g\)),	on	cherche	une	solution	particulière	\(v_p	=	\mathrm{cste}\).	Alors	\(\dfrac{\mathrm{d}v_p}{\mathrm{d}t}	=	0\)	et	on	obtient	\(v_p	=	-g\,\tau\).	Solution	globale	On	a	donc:	\begin{equation}v_z	=
A\,	e^\left(-\dfrac{t}{\tau}\right)	+	-g\,\tau\end{equation}	On	peut	maintenant	déterminer	\(A\)	à	l’aide	des	conditions	initiales:	\begin{equation}\text{A	}t=0	\text{	:	}	v(t=0)	=	0	=	A	-	g\,\tau	\Longleftrightarrow	A	=	g\,\tau\end{equation}	Et	finalement:	\begin{equation}\boxed{	v_z	=	g\,\tau\,	\left(	e^\left(-\dfrac{t}
{\tau}\right)-1\right)}\end{equation}	Attention,	rappelons	que	cette	vitesse	est	négative	puisque	le	corps	qui	chute	se	dirige	vers	le	bas	alors	que	l’axe	Oz	est	vertical	ascendant.	
Courbe	\(|v_z|=f(t)\)	et	caractéristiques	Courbe	On	souhaite	visualiser	la	norme	de	la	vitesse	en	fonction	du	temps.	Son	expression	est	donc:	\begin{equation}|v_z|	=	g\,\tau	\left(1	-	e^\left(-\dfrac{t}{\tau}\right)\right)\end{equation}	Voici	la	courbe	obtenue	:	Chute	dans	le	cas	de	frottements	linéaires	La	vitesse	augmente	d’abord	fortement,	puis	de
plus	en	plus	faiblement	pour	atteindre	une	valeur	limite.	Vitesse	limite	La	valeur	de	la	vitesse	limite	peut	être	obtenue	en	calculant	la	limite	de	\(|v_z(t)|\)	quand	le	temps	tend	vers	l’infini:	\begin{equation}\lim_{t\rightarrow	\infty}	|v_z(t)|	=	\lim_{t\rightarrow	\infty}	g\,\tau	\left(1	-	e^\left(-\dfrac{t}{\tau}\right)\right)	=	g\,\tau\end{equation}	On	peut
également	la	trouver	à	partir	de	l’équation	différentielle	.	En	effet,	la	vitesse	limite	est	constante,	on	a	ainsi:	\begin{equation}\begin{aligned}	\dfrac{\mathrm{d}v_{z\,\mathrm{lim}}}{\mathrm{d}t}	+	\dfrac{v_{z\,\mathrm{lim}}}{\tau}	=	-g	\Longleftrightarrow	0	+	\dfrac{v_{z\,\mathrm{lim}}}{\tau}	=	-g	\\	\Longleftrightarrow
v_{z\,\mathrm{lim}}	=	-g\,\tau	\\	\Longleftrightarrow	\boxed{|v_{z\,\mathrm{lim}}|	=	g\,\tau}\end{aligned}\end{equation}	Temps	caractéristique	La	grandeur	\(\tau	=	\dfrac{m}{k}\)	est	caractéristique	de	l’évolution	de	la	vitesse	dans	le	temps.	Dans	ce	type	d’évolution,	on	parle	de	régime	transitoire	et	de	régime	permanent:	le	régime	est
transitoire	tant	que	la	vitesse	évolue;	le	régime	est	permanent	lorsque	la	vitesse	limite	est	atteinte.	

Le	temps	\(\tau\)	est	un	bon	indicateur	pour	savoir	quand	on	passe	d’un	régime	à	l’autre	:	on	considère	qu’au	bout	de	\(5\tau\),	le	régime	permanent	est	atteint.	Détermination	de	\(\tau\)	On	peut	obtenir	la	valeur	de	\(\tau\)	graphiquement	:	on	cherche	l’abscisse	du	point	d’intersection	entre	la	tangente	à	la	courbe	en	\(t=0\)	et	l’asymptote	quand	\(t
\rightarrow	\infty\)	de	la	courbe	\(|v_z|=f(t)\).On	obtient	ainsi	la	limite	entre	régime	transitoire	et	régime	permanent	:	Chute,	frottements	linéaires	et	temps	caractéristique	Obtention	de	la	position	La	fonction	\(z=f(t)\)	s’obtient	en	intégrant	la	fonction	\(v_z=f(t)\):	\begin{equation}\begin{aligned}	&v_z	=	g\,\tau	\left(e^\left(-\dfrac{t}
{\tau}\right)-1\right)	=	g\,\tau\,e^	\left(-\dfrac{t}{\tau}\right)	-	g\,\tau	\\	\Longrightarrow	&	z(t)	=	-g\,\tau^2\,e^	\left(-\dfrac{t}{\tau}\right)	-	g\,\tau\,t	+	\mathrm{cste}	\end{aligned}\end{equation}	La	constante	est	obtenue	à	l’aide	de	la	condition	initiale	de	position:A	\(t=0\),	\(z=h\)	donc	\(-g\,\tau^2	+	\mathrm{cste}	=	h	\Longleftrightarrow
\mathrm{cste}	=	h	+	g\,\tau^2\)	On	a	finalement:	\begin{equation}\boxed{z(t)	=	g\,\tau^2	\left(1	-	e^	\left(-\dfrac{t}{\tau}\right)\right)	-g\,\tau\,t	+	h}	\label{zt}\end{equation}	On	prend	comme	altitude	de	départ	\(h	=	4000\,\mathrm{m}\).	Position	en	fonction	du	temps	dans	le	cas	de	frottements	linéaires	La	forme	de	la	courbe	\(z=f(t)\)	montre	que
la	position	varie	quasi	linéairement	par	rapport	au	temps,	c’est-à-dire	qu’on	a	pratiquement	\(z	=	a\,t+b\)	avec	\(a\)	la	pente	négative.En	effet,	nous	pouvons	voir	que	l’expression	\(1-e^	\left(-\dfrac{t}{\tau}\right)\)	est	très	petite	et	que	l’expression	de	\(z(t)\)	écrite	à	l’équation	tend	vers	:	\begin{equation}z(t)	=	-g\,\tau\,t	+	h\end{equation}	Il	s’agit
bien	d’une	droite	de	pente	\(-g\,\tau\)	négative.	Résolution	dans	le	cas	de	frottements	quadratiques	Equation	différentielle	Le	PFD	donne:	\(m\,\overrightarrow{g}	-	k'\,v\,\overrightarrow{v}=	m\,\overrightarrow{a}\).	Dans	l’optique	d’utiliser	la	méthode	d’Euler,	nous	allons	utiliser	un	axe	Oz	vertical	descendant	afin	de	travailler	avec	une	vitesse
positive.	\begin{equation}\begin{aligned}	m\,g	-	k\,v_z^2	=	m\,a	&\Longleftrightarrow	m\,\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	+	k'\,v_z^2	=	m\,g	\\	&\Longleftrightarrow	\boxed{\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	+	\dfrac{k'}{m}\,v_z^2	=	g}	\label{equadiff}\end{aligned}\end{equation}	Cette	équation	différentielle	n’est	pas	linéaire,	nous
ne	pouvons	pas	la	résoudre	facilement.	Vitesse	limite	Par	contre,	nous	pouvons	d’ores	et	déjà	connaître	la	vitesse	limite	:	Lorsque	\(\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	=	0\)	alors	\(v_{z\,\mathrm{lim}}	=	\sqrt{\dfrac{g\,m}{k'}}	=	\sqrt{g\,\tau'}\).	Cette	équation	différentielle,	complexe	à	résoudre,	va	être	l’occasion	d’utiliser	une	méthode	de
résolution	numérique	itérative:	la	méthode	d’Euler.	Résolution	par	la	méthode	d’Euler	Qu’est	ce	que	la	méthode	d’Euler	La	méthode	d’Euler	est	une	méthode	numérique	itérative	qui	permet	d’obtenir	une	solution	approchée	d’une	équation	différentielle	à	partir	des	conditions	initiales.	C'est	une	des	méthodes	numériques	simple	à	comprendre	et	à
mettre	en	oeuvre.	Pour	plus	de	détails	sur	ces	méthodes	numériques	(il	existe	une	autre	méthode	très	utilisée,	la	méthode	de	Runge-Kutta	d'ordre	4)	ainsi	que	leur	mise	en	oeuvre	avec	un	tableur	ou	un	programme	python,	rendez-vous	dans	le	cours	sur	les	méthodes	numériques.	Dérivée	=	coefficient	directeur	de	la	tangente	à	la	courbe.	Calcul	d’une
dérivée	en	un	point	aisée:	Calcul	de	la	dérivée	d'une	courbe	en	un	point	D’après	la	définition	mathématique	de	la	dérivée:	\begin{equation}\left(\dfrac{\mathrm{d}v}{\mathrm{d}t}\right)_{t=10\,\mathrm{s}}	=	\dfrac{\Delta	v}{\Delta	t}\end{equation}	Si	on	réalise	un	zoom	sur	la	courbe:	Dérivée	et	temps	infinitésimal	On	peut	alors	écrire,	en
considérant	un	intervalle	de	temps	\(\delta	t\)	suffisamment	petit:	\begin{equation}\left(\dfrac{\mathrm{d}v}{\mathrm{d}t}\right)_t	=	\dfrac{\delta	v}{\delta	t}\end{equation}	On	peut	alors	exprimer	la	petite	variation	de	vitesse	\(\delta	v\)	qui	se	produit	pendant	le	petit	intervalle	de	temps	\(\delta	t\)	grâce	à	l’équation	différentielle:
\begin{equation}\text{Si	}	\dfrac{\mathrm{d}v}{\mathrm{d}t}	=	A\,v^2	+	B	\quad	\text{alors	}	\quad	\boxed{\delta	v	=	(A\,v^2	+	B)	\times	\delta	t}	\quad	\text{lorsque	}	\delta	t	\rightarrow	0\end{equation}	Mise	en	oeuvre	On	part	de	la	condition	initiale,	la	valeur	de	\(v(t=0)=v_0\)	;	On	choisit	le	pas	de	calcul,	soit	la	valeur	de	\(\delta	t\)	;	On
calcule:	\begin{equation}v_1	=	v_0	+	\delta	v	=	v_0	+	(A\,v_0^2	+	B)	\times	\delta	t\end{equation}	Et	ainsi	de	suite:	\begin{equation}v_{i+1}	=	v_i	+	(A\,v_i^2	+	B)	\times	\delta	t\end{equation}	Un	tableur	viendra	nous	assister	dans	la	répétition	des	calculs.	Le	choix	du	pas	de	calcul	\(\delta	t\)	doit	être	judicieux	:	il	faut	prendre	un	intervalle
suffisamment	petit	pour	que	l’approximation	soit	valable,	mais	pas	trop	petit	afin	que	les	calculs	ne	soient	pas	trop	longs.	Utilisation	de	cette	méthode	dans	notre	cas	Obtention	de	la	vitesse	en	fonction	du	temps	Pour	utiliser	cette	méthode,	il	nous	faut	la	valeur	des	cfficients	\(A\)	et	\(B\)	qui	apparaissent	dans	l’équation	différentielle:
\begin{equation}\begin{aligned}	&\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	+	\dfrac{k'}{m}\,v_z^2	=	g	\\	\Longleftrightarrow	&\dfrac{\mathrm{d}v_z}{\mathrm{d}t}	=	-\dfrac{k'}{m}	v_z^2	+g	=	A\,v_z^2	+	B	\qquad	\text{avec}	\;	A	=	-\dfrac{k'}{m}	\;	\text{et}	\;	B	=	g\end{aligned}\end{equation}	La	valeur	de	\(B\)	est	donc	connu,	on	peut
évaluer	la	valeur	de	\(A\)	à	partir	de	la	vitesse	limite	atteinte	par	un	parachutiste.	Celle-ci,	qui	dépend	de	la	position	du	sauteur	lors	de	la	chute,	est	de	\(69,5\,\mathrm{m.s^{-1}}\).	Donc:	\begin{equation}v_{z_{\mathrm{lim}}}	=	\sqrt{\dfrac{g\,m}{k'}}	=	\sqrt{\dfrac{g}{-A}}	\Longrightarrow	A	=	-\dfrac{g}{|v_{z_{\mathrm{lim}}}|^2}	=	-
\dfrac{9,81}{69,5^2}	=	-2,0\times	10^{-2}\,\mathrm{SI}\end{equation}	On	connaît	également	la	vitesse	initiale	:	\(v_z(t=0)	=	0\).	On	peut	donc	appliquer	la	méthode	en	choisissant	un	pas	\(\delta	t\)	judicieux.	On	prendra	par	exemple	\(\delta	t=	0,3\,\mathrm{s}\).	Alors:	\(v_1	=	v_0	+	(A\,v_0^2	+	B)\times	\delta	t	=	B\,\delta	t	=
2,94\,\mathrm{m.s^{-1}}\)\(v_2	=	v_1	+	(A\,v_1^2	+	B)\times	\delta	t	=	5,87\,\mathrm{m.s^{-1}}\)	A	l’aide	d’un	tableur,	on	répète	les	calculs	jusqu’au	temps	voulu.	On	peut	ensuite	tracer	la	courbe	\(v_z=f(t)\).	Ci-dessous,	on	a	tracé	les	courbes	pour	des	pas	de	calculs	différents.	On	remarque	qu’il	n’y	a	pas	de	différences	entre	nos	trois	tests.
Méthode	d'Euler	appliquée	au	cas	de	frottements	quadratiques	Qu’en	est-il	de	la	position	en	fonction	du	temps?	Pour	obtenir	la	courbe	de	position	en	fonction	du	temps,	on	part	de	la	donnée	de	vitesse	et	on	calcule	la	distance	parcourue	par	la	formule	classique	\(v	=	\dfrac{d}{t}\).	On	utilise	cette	formule	pour	chaque	ligne	du	tableur	dans	lequel	on
a	exploité	la	méthode	d’Euler.	On	a	ensuite	changé	l’origine	pour	prendre	le	point	de	départ	du	parachutiste	à	\(4000\,\mathrm{m}\).	Position	en	fonction	du	temps	dans	le	cas	de	frottements	quadratiques	Quel	type	de	frottements	est	le	plus	approprié	pour	l’étude	du	mouvement	d’un	parachutiste?	Il	faut	faire	appel	à	la	mécanique	des	fluides	pour
répondre	à	cette	question.	En	effet,	on	peut	changer	de	point	de	vue,	et	plutôt	que	de	considérer	la	chute	du	parachutiste	dans	l’air,	on	étudie	l’écoulement	de	l’air	autour	du	parachutiste	fixe.	C’est	écoulement	est	souvent	complexe,	il	n’est	pas	seulement	caractérisé	par	la	vitesse	relative	\(v\)	du	fluide,	mais	par	un	nombre	sans	dimension	appelé
nombre	de	Reynolds:	\begin{equation}R_e	=	\dfrac{v\,d\,\rho}{\eta}\end{equation}	\(\left\{\begin{array}{l}	\text{$Re$	:	nombre	de	Reynolds	sans	dimension.}\\	\text{$v$	:	vitesse	relative	de	fluide	en	$\mathrm{m.s^{-1}}$}\\	\text{$d$	:	taille	caractéristique	de	l'écoulement	en	m}	\\	\text{$\rho$	:	masse	volumique	du	fluide	en
$\mathrm{kg.m^{-3}}$}\\	\text{$\eta$	:	viscosité	du	fluide	en	$\mathrm{Pa.s}$}\\	\end{array}\right.\)	On	distingue	alors	plusieurs	types	d’écoulement:	si	\(R_e	<	1\),	l’écoulement	est	dit	laminaire.	Dans	ce	cas,	la	force	de	frottements	fluides	est	proportionnel	à	la	vitesse:	frottements	linéaires,	\(\overrightarrow{f}	=	-k\,\overrightarrow{v}\);	si	\(R_e
>	10^3\),	l’écoulement	est	dit	turbulent.	Alors	la	force	de	frottements	fluides	est	quadratique:	\(\overrightarrow{f}	=	-k\,v\,\overrightarrow{v}\).	Dans	le	cas	de	la	chute	du	parachutiste,	le	fluide	est	l’air,	sa	viscosité	est	d’environ	\(\eta	=	1,7	\times	10^{-5}\mathrm{Pa.s}\)	;	le	nombre	de	Reynolds	a	de	grande	chance	d’être	supérieur	à	\(10^3\):
l’écoulement	est	turbulent	et	les	frottements	quadratiques.	Références	Alors	que	la	rentrée	bas	son	plein	c'est	aussi	le	moment	de	se	rappeler	les	projets	achevés	avant	l'été	2022.	Suite	à	un	premier	prototype	d'orthèse	réalisé	en	2021,	les	étudiants	de	la	spécialité	génie	mécanique	de	l'INSA	Strasbourg,	fort…Lire	l'article	Dans	le	cadre	du	partenariat
entre	Emmaüs	Mundolsheim	et	l'INSA	Strasbourg	les	étudiants	en	génie	mécanique	ont	réfléchi	à	une	solution	permettant	de	valoriser	des	journaux	invendus.	
Un	beau	projet	où	se	retrouvent	la	technologie	et	l'innovation	au	service	d'un…Lire	l'article	Les	étudiants	de	3e	année	en	génie	mécanique	conçoivent	et	réalisent	un	système	mécanique	durant	leurs	projets	métier.	Cette	année	il	s’agit	de	lancer	une	balle	de	golf…	Chaque	année	la	promotion	de	3e	année	en	génie	mécanique	est…Lire	l'article	A
l’occasion	de	leur	module	de	projet	de	2e	année	au	Fablab	de	l’INSA,	les	étudiants	de	génie	mécanique	et	plasturgie	explorent,	au	travers	d’un	premier	projet	d’objet	simple,	les	machines	d’impression	3D	du	FabLab.	
L’objectif	d’un	tel	projet	est	…Lire	l'article	Les	projets	métier	sont	au	cœur	de	la	formation	en	spécialité	de	l'INSA	Strasbourg.	
En	4e	année	de	génie	mécanique	les	étudiant·e·s	sont	amené·e·s	à	concevoir	un	système	automatisé.	Une	des	étape	consiste	à	évaluer	la	faisabilité	des	solutions	proposées.…Lire	l'article	L’INSA	Strasbourg	a	eu	la	chance	d’inaugurer	la	tournée	européenne	du	camion	d’exposition	de	matériel	hydraulique	du	fabriquant	Bosch-Rexroth	le	9	octobre
dernier.	Rapide	retour	sur	cette	première	qui	a	tenue	ses	promesses…	Comme	annoncé	dans	un	article	précédent,	une	…Lire	l'article	A	l’occasion	de	sa	tournée	européenne	le	camion	d’exposition	de	matériel	hydraulique	du	fabriquant	Bosch-Rexroth	fait	une	halte	à	l’INSA	Strasbourg	le	9	octobre.	Ce	mardi	9	octobre	un	camion	du	fabriquant	de
matériel	hydraulique	Bosch-Rexroth	stationnera	à	l’arrière	de	l’INSA,	derrière	…Lire	l'article	Cette	année	les	étudiants	de	3e	année	en	génie	mécanique	ont	travaillé	sur	la	conception	et	la	réalisation	d'une	machine	à	écraser	du	raisin	vert.	Ce	projet	a	été	porté	par	l'INRA	(Institut	de	recherche	agronomique)	de	Colmar	dont	la…Lire	l'article
L’enseignement	de	la	construction	mécanique	nécessite	une	part	de	montée	en	compétence	individuelle	au	travers	de	l’acquisition	d’une	culture	technique.	Pour	atteindre	cet	objectif	et	impliquer	les	étudiants	au	plus	près	de	leur	formation	les	enseignants	de	ce	module	ont	…Lire	l'article


