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Cours de technologie de construction mecanique pdf.

Ce cours permet de faire connaitre les différentes parties de la construction dans son aspect constitutif, mais aussi les fonctions que remplissent ces différents composants qui peuvent étre structurelles, fonctionnelles, esthétiques, etc. L’étude des principaux éléments constitutifs d’'un batiment est examinée sous trois angles :- L’aspect Structurel
compte tenu des exigences, de la statique ainsi que de la configuration Volumétrique pour la stabilité du batiment ;- Les matériaux utilisés selon leur origine et leur nature ;- Les modes de mise en ceuvre selon les regles de I’art ainsi que les techniques d’exécution.Dans ce cours de technologie de construction pdf, 1’accent sera mis sur la connaissance
du langage technique utilisé, sur I’acquisition de la géométrie des éléments ainsi que de leur représentation graphique. Un batiment comporte plusieurs éléments qui ont des fonctions différentes mais complémentaires pour une parfaite cohérence d’ensemble. Un élément pris dans son ensemble peut avoir des fonctions différentes si cet élément
appartient a un batiment a un niveau ou de plusieurs niveaux. Par exemple, la valeur d’un mur dans un batiment a un niveau est différente de celle de plusieurs niveaux : Pour un R.D.C les murs ont surtout une fonction de structure, alors que dans un batiment a plusieurs étages ces murs ont une fonction esthétique. Un projet d’architecture ou de
construction peut étre appréhendé sous son aspect, sa forme, ses fonctions, ses espaces et sa construction. Pour cette raison on ne se limitera pas uniquement a son aspect constructif. construction batiment de a a z pdf, technologie de construction - cours pdf, travaux de construction technologie du batiment gros-oeuvre pdf, technologie de
construction en génie civil pdf, technologie des matériaux de construction - pdf, cours de technologie de construction en génie civil, télécharger cours de technologie de construction, cours gratuit de technologie de batiment Cette version est la vieille version du cours ou nous étudiions la chute d'un parachutiste. Nous avons décidé de faire un étude
expérimentale "en direct" avec les étudiants en traitant le cas de la chute du volant de Badminton : la nouvelle version est disponible ici. Nous avons modélisé au chapitre précédent le corps qui chute dans le champ de pesanteur en considérant que les frottements de 1’air étaient négligeables. Cette supposition n’ayant qu’une utilité théorique, nous
complexifions ici notre modéle en tenant compte de ces frottements : comment ceux-ci vont modifier la trajectoire du corps qui chute? Ce sera 1’occasion de voir que ces frottements peuvent étre de deux types, linéaires ou quadratiques, nous avons alors rencontré deux types d’équations différentielles: la résolution de la premiére ne nous posera pas
de probleme; mais la résolution de la seconde est moins aisée: nous en profiterons pour voir une méthode numérique itérative permettant d’approcher la forme de la solution: la méthode d’Euler.Enfin parmi les deux modeles de forces de frottement, lequel se révele le plus juste pour étudier le parachutisme? Nous tenterons une réponse a l'aide de la
mécanique des fluides Probleme 3 Un parachutiste de masse \(80\,\mathrm{kg}\) réalise un saut depuis un hélicoptere. La premiere partie du saut, celle qui nous intéresse ici, est réalisée sans parachute. Quelles sont les caractéristiques de celle-ci sachant que les frottements de l’air ne sont pas négligeables? Systeme Le systéeme étudié est le sauteur
considéré ponctuel. Référentiel et base On étudie son mouvement dans un référentiel terrestre lié au sol (a son point de chute), ce référentiel est considéré galiléen pendant la durée de la chute. On utilisera une base cartésienne a une dimension pour suivre 1’évolution du sauteur : un axe Oz vertical ascendant avec origine au point de chute
constituera le repere d’étude. On considére en effet que le mouvement du parachutiste est strictement vertical. Forces Bilan des forces Le sauteur est soumis a son poids noté \(\overrightarrow{P}\), force a distance exercée par la Terre sur lui. Il est soumis aux forces de frottements de ’air, modélisées par une force de contact notée \
(\overrightarrow{f}\). Cette force peut aussi étre nommée résistance de 1'air. Deux types de forces de frottements La force de frottements de I’air peut prendre deux formes: Frottements linéaires Dans le cas d’une vitesse faible, la force de frottement est proportionnelle a la vitesse: \begin{equation }\overrightarrow{f} = -
k\\overrightarrow{v}\end{equation} On parle de frottements linéaires. \(k\) est une constante qui dépend de la nature du fluide et des caractéristiques de I’objet. Par exemple pour une sphére de rayon \(r\), on a \(k = 6\,\pi\,\eta\,r\) ot \(\eta\) est la viscosité du fluide. Frottements quadratiques Dans le cas d’une vitesse importante, la force de
frottement est proportionnelle au carré de la vitesse : \begin{equation}\overrightarrow{f} = -k'\,v\,\\overrightarrow{v}\end{equation} On parle de frottements quadratiques. \(k'\) est aussi une constante qui dépend du fluide et des caractéristiques de I'objet mais elle prend une autre forme que par rapport a \(k\) : son expression est du type \(k' =
\frac{1}{2}\,\rho\,C x\,S\) avec \(\rho\) la masse volumique du fluide, \(S\) la surface frontale de I’objet et \(C_x\) le coefficient de trainée qui dépend de la géométrie du corps.

Par exemple, voici trois géométries et trois valeurs de $C x$: Valeur du $C \mathrm{x}$ en fonction de la géométrie du corps Ce coefficient de trainée peut se calculer pour une sphére lisse (sans rugosité) dans le cas d'écoulement a faible vitesse (a faible nombre de Reynolds), il dépend alors du nombre de Reynolds. Pour des écoulements turbulents
(a grand nombre de Reynolds $> 1073$), on mesure le $C \mathrm{x}$ en soufflerie. En sachant qu'il est constant pour un corps donné. Utilisation de la 2éme loi de Newton \begin{equation}\sum \overrightarrow{F} = m\,\overrightarrow{a} \Longleftrightarrow \overrightarrow{P} + \overrightarrow{f} = m\,\overrightarrow{a}\end{equation}
Résolution du probléme dans le cas de frottements linéaires Equation différentielle Le PFD donne : \(m\,\overrightarrow{g} - k\,\overrightarrow{v}= m\,\overrightarrow{a}\). On projette maintenant cette relation sur I’axe Oz vertical ascendant.
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\begin{equation}\begin{aligned} -m\,g - k\,v_z = m\,a &\Longleftrightarrow m\,\dfrac{\mathrm{d}v z}{\mathrm{d}t} + k\,v_z = -m\,g \\ &\Longleftrightarrow \boxed{\dfrac{\mathrm{d}v z}{\mathrm{d}t} + \dfrac{k}{m}\,v_z = -g} \label{equadiff1 }\end{aligned }\end{equation} On obtient donc une équation différentielle en \(v_z\), linéaire du
premier ordre a coefficients constants.

On sait résoudre cette équation mathématiquement. Une fois ’expression de la vitesse \(v_z\) obtenue, on en déduira la position par intégration. Une notation particuliere Souvent ce type d’équation sera écrite ainsi: \begin{equation}\dfrac{\mathrm{d}v z}{\mathrm{d}t} + \dfrac{v z}{\tau} = -g \quad \text{ avec } \quad \tau = \dfrac{m}
{k}\end{equation} La notation \(\tau\) fait référence a un temps. En effet, la grandeur \(\tau = \dfrac{m}{k}\) est un temps caractéristique de la fonction \(v=£(t)\), comme nous allons le voir par la suite. Solution de 1’équation différentielle Principe Une équation différentielle linéaire avec second membre se résout en deux temps: On cherche d’abord
la solution \(s_h\) de ’équation homogene, c’est a dire 1’équation sans second membre; On cherche une solution particuliere \(s_p\), c’est a dire une solution qui a méme forme que le second membre (si le second membre est constant, la solution particuliere recherchée sera une constante). La solution de 1’équation différentielle avec second membre
est la somme de la solution homogeéne et de la solution particuliere: \(s = s_h + s_p\). Attention, dans la solution de 1’équation homogéene apparaissent souvent des constantes (une si I’équation est du premier ordre, deux si elle est du deuxiéme ordre). La détermination de ces constantes a I’aide des conditions initiales doit étre menée en tenant compte
de la solution particuliére. Pour notre probleme On recherche la solution de I’équation complete , qui est une vitesse. Solution de 1’équation homogene Equation homogene : \(\dfrac{\mathrm{d}v}{\mathrm{d}t}+\dfrac{v} {\tau} = 0 \quad\) \(\Longrightarrow \) Solution: \(v_h = A\, e™\left(-\dfrac{t} {\tau}\right)\) avec \(A\) une constante. On peut
vérifier en dérivant une fois \(v_h\) que cette solution vérifie I’équation homogéne. Solution particuliere Le second membre étant constant (égal a \(-g\)), on cherche une solution particuliere \(v_p = \mathrm{cste}\). Alors \(\dfrac{\mathrm{d}v p}{\mathrm{d}t} = 0\) et on obtient \(v_p = -g\,\tau\). Solution globale On a donc: \begin{equation}v z =
A\, em\left(-\dfrac{t} {\tau}\right) + -g\,\tau\end {equation} On peut maintenant déterminer \(A\) a I’aide des conditions initiales: \begin{equation}\text{A }t=0 \text{ : } v(t=0) = 0 = A - g\,\tau \Longleftrightarrow A = g\,\tau\end{equation} Et finalement: \begin{equation}\boxed{ v_z = g\,\tau\, \left( e ~\left(-\dfrac{t}

{\tau}right)-1\right) }\end{equation} Attention, rappelons que cette vitesse est négative puisque le corps qui chute se dirige vers le bas alors que 1’axe Oz est vertical ascendant.

Courbe \(Jv_z|=f(t)\) et caractéristiques Courbe On souhaite visualiser la norme de la vitesse en fonction du temps. Son expression est donc: \begin{equation}|v_z| = g\,\tau \left(1 - e™\left(-\dfrac{t} {\tau}\right)\right)\end{equation} Voici la courbe obtenue : Chute dans le cas de frottements linéaires La vitesse augmente d’abord fortement, puis de
plus en plus faiblement pour atteindre une valeur limite. Vitesse limite La valeur de la vitesse limite peut étre obtenue en calculant la limite de \(Jv_z(t)|\) quand le temps tend vers l'infini: \begin{equation}\lim_{t\rightarrow \infty} |v_z(t)| = \lim_{t\rightarrow \infty} g\ \tau \left(1 - e™\left(-\dfrac{t} {\tau}\right)\right) = g\, \tau\end{equation} On peut
également la trouver a partir de 1’équation différentielle . En effet, la vitesse limite est constante, on a ainsi: \begin{equation}\begin{aligned} \dfrac{\mathrm{d}v {z\\mathrm{lim}}}{\mathrm{d}t} + \dfrac{v {z\\\mathrm{lim}}}{\tau} = -g \Longleftrightarrow 0 + \dfrac{v_{z\,\mathrm{lim}}}{\tau} = -g \\ \Longleftrightarrow
v_{z\\\mathrm{lim}} = -g\,\tau \\ \Longleftrightarrow \boxed{|v_{z\,\mathrm{lim}}| = g\,\tau}\end{aligned}\end{equation} Temps caractéristique La grandeur \(\tau = \dfrac{m} {k}\) est caractéristique de 1’évolution de la vitesse dans le temps. Dans ce type d’évolution, on parle de régime transitoire et de régime permanent: le régime est
transitoire tant que la vitesse évolue; le régime est permanent lorsque la vitesse limite est atteinte.
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Le temps \(\tau\) est un bon indicateur pour savoir quand on passe d’'un régime a l’autre : on considere qu’au bout de \(5\tau\), le régime permanent est atteint. Détermination de \(\tau\) On peut obtenir la valeur de \(\tau\) graphiquement : on cherche 1’abscisse du point d’intersection entre la tangente a la courbe en \(t=0\) et I’asymptote quand \(t
\rightarrow \infty\) de la courbe \(|v_z|=£(t)\).On obtient ainsi la limite entre régime transitoire et régime permanent : Chute, frottements linéaires et temps caractéristique Obtention de la position La fonction \(z=f(t)\) s’obtient en intégrant la fonction \(v_z=f£(t)\): \begin{equation}\begin{aligned} &v z = g\ \tau \left(e ~\left(-\dfrac{t}

{\tau }\right)-1\right) = g\, \tau\,e” \left(-\dfrac{t} {\tau}\right) - g\,\tau \\ \Longrightarrow & z(t) = -g\,\tau"2\,e”™ \left(-\dfrac{t} {\tau}\right) - g\,\tau\,t + \mathrm{cste} \end{aligned}\end{equation} La constante est obtenue a l’aide de la condition initiale de position:A \(t=0\), \(z=h\) donc \(-g\,\tau”2 + \mathrm{cste} = h \Longleftrightarrow
\mathrm{cste} = h + g\,\tau”2\) On a finalement: \begin{equation}\boxed{z(t) = g\ \tau”™2 \left(1 - e”™ \left(-\dfrac{t} {\tau}\right)\right) -g\,\tau\,t + h} \label{zt}\end{equation} On prend comme altitude de départ \(h = 4000\,\mathrm{m}\). Position en fonction du temps dans le cas de frottements linéaires La forme de la courbe \(z=f(t)\) montre que
la position varie quasi linéairement par rapport au temps, c’est-a-dire qu’on a pratiquement \(z = a\,t+b\) avec \(a\) la pente négative.En effet, nous pouvons voir que ’expression \(1-e”™ \left(-\dfrac{t} {\tau}\right)\) est trés petite et que I’expression de \(z(t)\) écrite a I’équation tend vers : \begin{equation}z(t) = -g\,\tau\,t + h\end{equation} Il s’agit
bien d’une droite de pente \(-g\,\tau\) négative. Résolution dans le cas de frottements quadratiques Equation différentielle Le PFD donne: \(m\\overrightarrow{g} - k'\,v\,\overrightarrow{v}= m\\overrightarrow{a}\). Dans I'optique d’utiliser la méthode d’Euler, nous allons utiliser un axe Oz vertical descendant afin de travailler avec une vitesse
positive. \begin{equation}\begin{aligned} m\,g - k\,v_z"2 = m\,a &\Longleftrightarrow m\\dfrac{\mathrm{d}v z} {\mathrm{d}t} + k'\,v_z"2 = m\,g \\ &\Longleftrightarrow \boxed{\dfrac{\mathrm{d}v z}{\mathrm{d}t} + \dfrac{k'}{m}\,;v_z"2 = g} \label{equadiff}\end{aligned}\end{equation} Cette équation différentielle n’est pas linéaire, nous
ne pouvons pas la résoudre facilement. Vitesse limite Par contre, nous pouvons d’ores et déja connaitre la vitesse limite : Lorsque \(\dfrac{\mathrm{d}v z} {\mathrm{d}t} = 0\) alors \(v_{z\,\mathrm{lim}} = \sqrt{\dfrac{g\,m}{k'}} = \sqrt{g\\tau'}\). Cette équation différentielle, complexe a résoudre, va étre 1’'occasion d’utiliser une méthode de
résolution numérique itérative: la méthode d’Euler. Résolution par la méthode d’Euler Qu’est ce que la méthode d’Euler La méthode d’Euler est une méthode numérique itérative qui permet d’obtenir une solution approchée d’une équation différentielle a partir des conditions initiales. C'est une des méthodes numériques simple a comprendre et a
mettre en oeuvre. Pour plus de détails sur ces méthodes numériques (il existe une autre méthode tres utilisée, la méthode de Runge-Kutta d'ordre 4) ainsi que leur mise en oeuvre avec un tableur ou un programme python, rendez-vous dans le cours sur les méthodes numériques. Dérivée = coefficient directeur de la tangente a la courbe. Calcul d'une
dérivée en un point aisée: Calcul de la dérivée d'une courbe en un point D’apres la définition mathématique de la dérivée: \begin{equation}\left(\dfrac{\mathrm{d}v} {\mathrm{d}t}\right) {t=10\,\mathrm{s}} = \dfrac{\Delta v} {\Delta t}\end{equation} Si on réalise un zoom sur la courbe: Dérivée et temps infinitésimal On peut alors écrire, en
considérant un intervalle de temps \(\delta t\) suffisamment petit: \begin{equation}\left(\dfrac{\mathrm{d}v}{\mathrm{d}t}\right) t = \dfrac{\delta v} {\delta t}\end{equation} On peut alors exprimer la petite variation de vitesse \(\delta v\) qui se produit pendant le petit intervalle de temps \(\delta t\) grace a 1’équation différentielle:
\begin{equation}\text{Si } \dfrac{\mathrm{d}v}{\mathrm{d}t} = A\,v"2 + B \quad \text{alors } \quad \boxed{\delta v = (A\,v"2 + B) \times \delta t} \quad \text{lorsque } \delta t \rightarrow O\end{equation} Mise en oeuvre On part de la condition initiale, la valeur de \(v(t=0)=v_0\) ; On choisit le pas de calcul, soit la valeur de \(\delta t\) ; On
calcule: \begin{equation}v 1 =v 0 + \deltav =v 0 + (A\,v_ 0”2 + B) \times \delta t\end{equation} Et ainsi de suite: \begin{equation}v {i+1} = v i + (A\,v_i"2 + B) \times \delta t\end{equation} Un tableur viendra nous assister dans la répétition des calculs. Le choix du pas de calcul \(\delta t\) doit étre judicieux : il faut prendre un intervalle
suffisamment petit pour que I’approximation soit valable, mais pas trop petit afin que les calculs ne soient pas trop longs. Utilisation de cette méthode dans notre cas Obtention de la vitesse en fonction du temps Pour utiliser cette méthode, il nous faut la valeur des cfficients \(A\) et \(B\) qui apparaissent dans 1’équation différentielle:
\begin{equation}\begin{aligned} &\dfrac{\mathrm{d}v z}{\mathrm{d}t} + \dfrac{k'}{m}\,v z~2 = g \\ \Longleftrightarrow &\dfrac{\mathrm{d}v z}{\mathrm{d}t} = -\dfrac{k'}{m} v z~2 +g = A\,v 2”2 + B \qquad \text{avec} \; A = -\dfrac{k'} {m} \; \text{et} \; B = g\end{aligned}\end{equation} La valeur de \(B\) est donc connu, on peut
évaluer la valeur de \(A\) a partir de la vitesse limite atteinte par un parachutiste. Celle-ci, qui dépend de la position du sauteur lors de la chute, est de \(69,5\,\mathrm{m.s” {-1}}\). Donc: \begin{equation}v {z {\mathrm{lim}}} = \sqrt{\dfrac{g\,m}{k'}} = \sqrt{\dfrac{g}{-A}} \Longrightarrow A = -\dfrac{g}{|v_{z_{\mathrm{lim}}}|~2} = -
\dfrac{9,81}{69,5°2} = -2,0\times 10" {-2}\,\mathrm{SI}\end{equation} On connait également la vitesse initiale : \(v_z(t=0) = 0\). On peut donc appliquer la méthode en choisissant un pas \(\delta t\) judicieux. On prendra par exemple \(\delta t= 0,3\,\mathrm{s}\). Alors: \(v.1 =v 0 + (A\,v_0"2 + B)\times \delta t = B\ ,\delta t =

2,94\, \mathrm{m.s™~ {-1}}\W\(v 2 = v 1 + (A\,v_1"2 + B)\times \delta t = 5,87\,\mathrm{m.s™{-1}}\) A I’aide d’un tableur, on répete les calculs jusqu’au temps voulu. On peut ensuite tracer la courbe \(v_z=f(t)\). Ci-dessous, on a tracé les courbes pour des pas de calculs différents. On remarque qu’il n’y a pas de différences entre nos trois tests.
Méthode d'Euler appliquée au cas de frottements quadratiques Qu’en est-il de la position en fonction du temps? Pour obtenir la courbe de position en fonction du temps, on part de la donnée de vitesse et on calcule la distance parcourue par la formule classique \(v = \dfrac{d}{t}\). On utilise cette formule pour chaque ligne du tableur dans lequel on
a exploité la méthode d’Euler. On a ensuite changé I’origine pour prendre le point de départ du parachutiste a \(4000\,\mathrm{m}\). Position en fonction du temps dans le cas de frottements quadratiques Quel type de frottements est le plus approprié pour I’étude du mouvement d’un parachutiste? Il faut faire appel a la mécanique des fluides pour
répondre a cette question. En effet, on peut changer de point de vue, et plutét que de considérer la chute du parachutiste dans I’air, on étudie I’écoulement de 1’air autour du parachutiste fixe. C’est écoulement est souvent complexe, il n’est pas seulement caractérisé par la vitesse relative \(v\) du fluide, mais par un nombre sans dimension appelé
nombre de Reynolds: \begin{equation}R e = \dfrac{v\,d\,\rho}{\eta}\end{equation} \(\left\{\begin{array} {1} \text{$Re$ : nombre de Reynolds sans dimension. }\\ \text{$v$ : vitesse relative de fluide en $\mathrm{m.s”~{-1}}$}\\ \text{$d$ : taille caractéristique de 1'écoulement en m} \\ \text{$\rho$ : masse volumique du fluide en
$\mathrm{kg.m~{-3}}$}\\ \text{$\eta$ : viscosité du fluide en $\mathrm{Pa.s}$}\\ \end{array}\right.\) On distingue alors plusieurs types d’écoulement: si \(R e < 1\), I'’écoulement est dit laminaire. Dans ce cas, la force de frottements fluides est proportionnel a la vitesse: frottements linéaires, \(\overrightarrow{f} = -k\,\overrightarrow{v}\); si \(R e
> 1073\), I’écoulement est dit turbulent. Alors la force de frottements fluides est quadratique: \(\overrightarrow{f} = -k\,v\,\overrightarrow{v}\). Dans le cas de la chute du parachutiste, le fluide est 1’air, sa viscosité est d’environ \(\eta = 1,7 \times 10" {-5}\mathrm{Pa.s}\) ; le nombre de Reynolds a de grande chance d’'étre supérieur a \(10"3\):
I’écoulement est turbulent et les frottements quadratiques. Références Alors que la rentrée bas son plein c'est aussi le moment de se rappeler les projets achevés avant 1'été 2022. Suite a un premier prototype d'orthése réalisé en 2021, les étudiants de la spécialité génie mécanique de I'INSA Strasbourg, fort...Lire l'article Dans le cadre du partenariat
entre Emmaiis Mundolsheim et I'INSA Strasbourg les étudiants en génie mécanique ont réfléchi a une solution permettant de valoriser des journaux invendus.

Un beau projet ol se retrouvent la technologie et l'innovation au service d'un...Lire l'article Les étudiants de 3e année en génie mécanique congoivent et réalisent un systeme mécanique durant leurs projets métier. Cette année il s’agit de lancer une balle de golf... Chaque année la promotion de 3e année en génie mécanique est...Lire l'article A
I’occasion de leur module de projet de 2e année au Fablab de I'INSA, les étudiants de génie mécanique et plasturgie explorent, au travers d’un premier projet d’objet simple, les machines d’impression 3D du FabLab.

L’objectif d’un tel projet est ...Lire l'article Les projets métier sont au cceur de la formation en spécialité de I'INSA Strasbourg.

En 4e année de génie mécanique les étudiant-e's sont amené-e-s a concevoir un systéme automatisé. Une des étape consiste a évaluer la faisabilité des solutions proposées....Lire l'article L'INSA Strasbourg a eu la chance d’inaugurer la tournée européenne du camion d’exposition de matériel hydraulique du fabriquant Bosch-Rexroth le 9 octobre
dernier. Rapide retour sur cette premiere qui a tenue ses promesses... Comme annoncé dans un article précédent, une ...Lire l'article A I’occasion de sa tournée européenne le camion d’exposition de matériel hydraulique du fabriquant Bosch-Rexroth fait une halte a I'INSA Strasbourg le 9 octobre. Ce mardi 9 octobre un camion du fabriquant de
matériel hydraulique Bosch-Rexroth stationnera a I’arriere de 'INSA, derriére ...Lire l'article Cette année les étudiants de 3e année en génie mécanique ont travaillé sur la conception et la réalisation d'une machine a écraser du raisin vert. Ce projet a été porté par I'INRA (Institut de recherche agronomique) de Colmar dont la...Lire 1'article
L’enseignement de la construction mécanique nécessite une part de montée en compétence individuelle au travers de ’acquisition d’une culture technique. Pour atteindre cet objectif et impliquer les étudiants au plus prés de leur formation les enseignants de ce module ont ...Lire l'article



