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Abstract: A Prime number (or a Prime) is a natural number greater than 1 that has no positive
divisors other than 1 and itself.

The crucial importance of Prime numbers to number theory and mathematics in general stems
from the fundamental theorem of arithmetic, which states that every integer larger than 1 can
be written as a product of one or more Primes in a way that is unique except for the order of
the Prime factors. Primes can thus be considered the “basic building blocks”, the atoms, of the
natural numbers.

In this paper we present 30 ideas about Primes. Some are based on the fact that all Primes
greater than 3, are 1 unit away from a multiple of 1, 2, 3, 4, or 6, which is used to introduce
new methods to factorize, to count Primes less than a given number, and to add some ideas to
already famous Prime conjectures.

1. Prime sequence

A Prime number (or a Prime) is a natural number (a whole number) greater than 1 that has no positive divisors
other than 1 and itself. The sequence of Prime numbers is infinite, is composed only by odd numbers (and the
number 2) and there is no known close form formula to generate it.

The first 25 Prime numbers are given by:
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, 53,59,61,67,71, 73,79,83,89,97 ...}

The sequence of Prime numbers is usually described as random. This statement does not reflect the fact that
there are many known structures within the Prime sequence. There are infinitely many Primes, as demonstrated
by Euclid around 300 BC. There is no known simple formula that separates Prime numbers from composite
numbers.

However, the distribution of Primes, that is to say, the statistical behavior of Primes in the large, can be
modeled. The first result in that direction is the Prime number theorem, proven at the end of the 19th century,
which says that the probability that a given, randomly chosen number N is Prime is inversely proportional to its
number of digits, which is equivalent to the logarithm of N.

The way to build the sequence of Prime numbers uses sieves, an algorithm yielding all Primes up to a given
limit, or using trial division method which consists of dividing N by each integer M that is greater than 1 and less
than or equal to the square root of N. If the result of any of these divisions is an integer, then N is not a Prime,
otherwise it is a Prime.

Eratosthenes (276 BC — 194 BC) introduced a sieve to generate the Prime sequence: starting with 2, eliminate
every 2 numbers, then find the next number, which is 3 and eliminate every 3 numbers, and repeat it sequentially
with any P number that has not been eliminated previously and eliminate every P numbers. The remaining set are
the Prime numbers.
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Since Eratosthenes, there has been a continuous effort to find patterns, count the number of Primes, and efficiently
factor very large integers.

New ideas regarding Primes are difficult to prove and some widely accepted conjectures are still unproven, such
as Goldbach’s and Grimm'’s, just to name famous ones.

[IDEA #1] In this paper we use the fact that all Primes can be expressed using one of the two following formulas
for a = 1,2,3,4,6:

p=axkg +1 kan €N that we will call the P**series (1
p=axkg,—1 Kagm EN that we will call the P%~series (2)
We will call k,,, and k,,, Prime Generators.

All Prime numbers, except in some cases 2 and 3, belong to either P2* or P2~ series. We will call this kind of
intertwined sequences the DNA-Prime Sequences as it resembles the intertwined DNA helix.

Counting Primes less than a number N is equivalent to counting how many Prime generators k,,, and k,,,, are
less than floor (N /a) where floor(x) is the function that gives the greatest integer that is less than or equal
to x.

2. Prime Generator sequences P** = {k,,} and P*~ = {K_,}

The only values of a that generate the complete sequence of primes are a = 1, 2, 3,4, 6. For each one of them
different conditions apply, although all those conditions have a similar structure.

2.1. Case a=6.

When a=6, it is known that all primes, except 2 and 3, are 1 unit away of a multiple of 6. For p prime, the
following is true: p = 6k + 1

Not all values of k € N make 6k + 1 prime. The following conditions apply:

If ken #6xy+x+y
And ken # 6xy —x —y then p =6x* kg, + 1is prime
If kem # 6xy +x—y then p = 6x kg, —1is prime

The set of Prime numbers using kg, can be defined as [IDEA #2]:
{Primes} = {2,3} 3)

U{6+*ke, +1 | kg, #6xy+x+y and kg, # 6xy —x—y forall x,y € N}
U{6 kg, —1|keyn #6xy—x+yforallx,y € N}

Which is equivalent to say that any number that is not of the form 6*(6xy + x + y) + 1, forany x,y € N is a
Prime number because 6*(6xy + x +y) + 1 = (6x + 1)(6y + 1)

First elements of k¢, ={1,2,3,5,6,7,10,11,12,13,16,17,18, 21, 23,25, 26,27,30, 32,33, 35,37,38, ...}
First elements of k¢, ={1,2,3,4,5,7,8,9,10,12,14,15,17,18,19, 22, 23, 25, 28,29, 30, 32,33, 38,39, ...}

In theory, if we knew the sequences k,, and k., we would know all Primes as there is a bijective relationship
between k,, and k,,and the Primes that they generate, as we can see in the following table:
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P+ P-
6kn+1 6km-1 kn km

5 1

7 1
11 2

13 2
17 3

19 3
23 4

29 5
31 5

Table 1

It can be easily observed that there are values of k that do not generate Prime numbers:

k 6k+1 6k-1
1 7 5
2 13 11
3 19 17
4 25 23
5 31 29
6 37 35
7 43 41
Table 2

And there are other values of k that do not generate a Prime in either P®* and P°~series: (OEIS A060461
Beedassy)

{20, 24, 31, 34, 36, 41, 48, 50, 54, 57, 69, 71, 79, 86, 88, 89, 92, 97, 104, 106, 111, 116, 119,...}
As commented by the researcher in that sequence: “All terms can be expressed as (6ab+a+b OR 6cd-c-d) AND

(6xy+x-y) for a,b,c,d,x,y positive integers. Example: 20=6*2*2-2-2 AND 20=6*3*1+3-1))

2.2. Case a=1

When a=1 the prime sequence can be generated using condition:
Ifky, #xy+x+ythenp =k, +1 isprime

This is probably the simplest way to define a prime number. It is a powerful condition that can drive simple
factorization and primality methods as we will describe later in the paper.

The set of Prime numbers using k4, can be defined as [IDEA #3]:

{Primes}= {ky, +1 | ky, #xy+x+y} (4)
Which is equivalent to say that any number that is not of the form xy + x + y +, for any x,y € N is a Prime
number, which is obvious given that xy + x + y + 1 = (x + 1) * (y + 1). The following matrix shows numbers

of the form xy + x + y + 1 that are all composite. Each row x contains the multiples of (x + 1):

First elements of ky, ={1,2,4,6,10,12,16,18, 22,28, 30, 36,40,42,46,52,58, 60, 66,70,72,78,82 ...}
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The matrix {xy + x + y + 1} that we will call ¢;; or matrix of composite numbers:

1 | 2 | 3 | a4 | s | 6 Observation
1 4 6 8 10 12 14 Multiples of 2
2 6 9 12 15 18 21 Multiples of 3
3 8 12 16 20 24 28 Multiples of 4
4 10 15 20 25 30 35 Multiples of 5
5 12 18 24 30 36 42 Multiples of 6
6 14 21 28 35 42 49 Multiples of 7
7 16 24 32 40 48 56 Multiples of 8

Table 3

2.3. Case a=2

When a=2 the prime sequence, except the number 2 can be generated using one condition:
Ifk,, # 2xy + x + ythenp = 2k,, +1  is prime
The set of Prime numbers using k,,, can be defined as [IDEA #4]:
{Primes}= {2} U{2 xky, +1 | kyp, #2xy+x+y} (5)

First elements of k,, ={1,2,3,5,6,8,9,11,14,15,18, 20,21, 23, 26,29, 30,33, 35,36,39,41, 44, ...}

Which is equivalent to say that any number that is not of the form 2*(2xy + x + y) + 1, forany x,y e Nis a
Prime number because 2*(2xy + x +y)+1=2x+ 1)2y + 1)

2.4. Case a=3

When a=3 the prime sequence, except the number 3 can be generated using 3 conditions:

If ksn #3xy+x+y
And ksp #3xy—x—y then p = 3k3, + 1 is prime
If ksm # 3xy + x — y then p = 3ks,,, — 1 is prime

The set of Prime numbers using ks, can be defined as [IDEA #5]:
{Primes} = {3} (6)
U{3*ks,+1 | ks, #3xy+x+y and k3, # 3xy—x—y forall x,y € N}
U{3+*ksyu—1|ksy, #3xy—x+yforallx,y € N}
First elements of ks, = {2,4,6,10,12,14, 20,22, 24,26,32,34,36,42,46,50,52, 54, 60, 64, 66,70,74,, ... }
First elements of ks, = {1,2,4,6,8,10,14,16, 18,20, 24,28, 30, 34, 36, 38,44, 46,50, 56,58, 60, 64, 66, ...}

Which is equivalent to say that any number that is not of the form 3*(3xy + x + y) + 1, forany x,y € Nis a
Prime number because 3*(3xy + x +y) + 1 =Bx+ 1)(3y + 1)

2.5. Case a=4

When a=4 the prime sequence, except numbers 2 and 3, can be generated using 3 conditions:
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If kop #4xy +x+y
And Kyn #4xy —x—Yy then p = 4k,, + 1is prime
If kym #4xy+x—y  then p = 4k,, — 1is prime

The set of Prime numbers using ky4,, can be defined as [IDEA #6]:
{Primes} = {2} (7

U{4*ky,+1 | kyp, #4xy+x+y and ky, # 4xy —x—y forallx,y € N}
Uf{4d*kyy — 1| kg #4xy —x+y forall x,y € N}

First elements of k,, ={1,3,4,7,9,10,13,15,18,22,24,25,27,28,34,37,39,43,45,48,49,57,58, 60, ... }
First elements of k,,,, ={1,2,3,5,6,8,11,12,15,17,18, 20,21, 26,27,32,33,35,38,41,42,45,48,50, ...}

Which is equivalent to say that any number that is not of the form 4*(4xy + x +y) + 1, forany x,y € Nis a
Prime number because 4*(4xy + x +y) +1 = (4x + 1)(4y + 1)

2. Characteristics of the DNA-Prime Sequences P°* and P®~. Understanding k., and k., conditions.

The difference between two Primes in either sequence P®* and P®~ is a multiple of 6. In the following table we
show the two DNA-Prime series, the difference between two consecutive elements of the series, the difference
divided by 6 and the cumulative difference divided by 6.

One can observe that the cumulative difference from any element of the series and the first element, that we will
call R, for the P®* series, and R for the P®~ series, is equal to the (k — 1), where k is any generator

ken o7 ke, This key fact will help us formulate a way to generate the Prime sequence. For simplification we will
denominate P* = P%* and P~ = P®~ in this section.

P+ P-
Pn+ | Kn [P(n)-P(n-1)| (P(n)-P(n-1))/6| Rn | Pm-| Km |P(m)-P(m-1)|(P(m)-P(m-1))/6| Rm
7 1 5 1
13 2 6 1 1]l 2 6 1 1
19 3 1 2|17 3 6 1 2
31 5 12 2 4|23 a 6 1 3
37 6 6 1 5|2 s 6 1 4
a3 7 6 1 6| a1 7 12 2 6
61 10 18 3 9| a7 8 6 1 7
67 11 6 1 0|5 9 6 1 8
73 12 6 1 1] 59 10 6 1 9
79 13 6 1 2| n 12 12 2 1
Table 4
We can see in the chart that:
P* series P(m)—P(n—1)mod6 = 0
P~ series P(m)—P(m—1)mod 6 = 0

a. The difference between any two Primes in either series is given by:
P* series ifpl=6*k +1and p2=6+k,+1

P* series ifpl=6%k —land p2 =6+k, —1
Thenp, —py = 6 (ky —kq)
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b. The difference between any Prime in either sequence P* and P and the first one in the series is a multiple of
the generators R, and Rm:
P* series P* =7 4+ 6xR,
P~ series P~ =5+ 6*R,,
Where
R, =k,—1 and R,=k,—1

Let’s take a look at the R,, and R,,, sequences eliminating (in color) all those that don’t generate a Prime using
previous formulas:

Rn Rm
1 203 4 5 6 7 9 10 123456789.
1 12/ 13 14 15 16 17| 18 20 11/ 12 13 14 15 16 17 18 19
2 23 24 25 26 27 28 29| 30 21 2 24 250°26] 27 28 29 30
31 320 33 34035 36 37 38 o[ 31 32 35 36 37 38 39| 40
42 43 44 45 4647 48 49 50 41 42 43 45 46047 238 so

44
55 56 57 sl eo 51 52 5354 55 56 57 58 59 60
8 69 64

5 70 61. 63 65 66 67 68 69 70
71 79 80 71 73 74 76 77/ 78 79 80
gl 2 88 89 90 818 83 84 85 86 8788 8 90
91 92 93 9% 98 99 100 92 93 94 9588 97 98 99100

101 102 103 104 105 106

108 109[110] 102/03 104 105 106 107 108 109 [0l

111 112 113 114/ 11580 117 118 119 120 111 112 11308 115 116417 118 119 120

121 122/123 124 125 126 127 130 121122 123[124 125 126420 128-%

131132 133] 134 |88 136 137 138 131 132133 134 135 136 137|138 139

141 142 143 144 145 146 147 148 149 150 141 142 143 1441145 146 147 148 149 150
152 153|FB] 155[ 156] 157 158[159] 160 151/152Jf883] 154 155 156 157 158159 160

163 164 165|166 167 168 169 170 161 162 163 164 165188 167 168 169 170
174 175 176 177 178 171 172[478 174 175 176 177 1780 180
185 186 187 188 189 181 182 183 184 185 186 187 188 189 190

Table 5 Table 6

171
181 182 183

3. Reasoning for the formulation of the Prime sequence using P* and P~

3.1. A definition of Primes using the sequences P* and P~

From the tables above and testing many potential combinations, we conclude that the sequence of DNA-Primes
and their generators Rn and Rm can be formulated algebraically as follows:

P* series Pt =T7+6*R,
R,#x+(6x+1)*xy—1 x>0y>1€N
R,#—x+6x—1)*xy—1 x>1,y>1€eN
P~ series P~ =5+6*Rn
Rp#x+(6x—-1)*xy—1 x>0y>1€N
Rp#—-(x+1D+(6x+1)xy x>0,y>1€N

We defined Kn = Rn + 1 and Km = Rm + 1, so, these conditions can be simplified as follows:

P* series Pt=6+xKn+1
Where K,+#A,=6xy+x+Yy x>0y>0€eN
K,#B,=6xy—x—Yy x>0,y>0€eN
P~ series P =6+Km-1
Where K, #C,=6xy—x+Yy x>0y>0€eN
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The tables showing the values of A

, B,, , and C,, are the following:

Some observations regarding matrices 4,,, B,, and C,;:

- A, and B, have a symmetry over the main diagonal
- There are duplicates within A,,, B,, and C,, and between 4,, and B,

From tables [5],[6],[7], we can list the elements of K, and Kn, as:

Where {N} is the set of Natural numbers.

{Kn}:{N} - {An u Bn}
{Km}={N} - {C}

And the set of Prime numbers can be expressed as:

{Primes} = {2,3}

Anf1/2]3(/4|5|6|7|8|9|10|11|12| 13 |14 |15 Bn|1|2(3|4|5|[6|7|8[9]|10|11[12] 13|14 15
1 [8[15(22|29[36[43[50[57[64[71[78[85[ 92 [ 99 |106| 1 (4| 9|14| 19| 24| 29|34|39|44|49|54|59| 64 | 69 | 74
2 28|41| 54| 67| 80| 93 |106(119]132|145[{158| 171 | 184 | 197 || 2 20(31| 42| 53| 64| 75| 86| 97 |108]|119(130( 141 | 152 | 163
3 60| 79 | 98 [117(136(155(174[193(212(231| 250 | 269 | 288 || 3 48| 65| 82 | 99 |116/133|150|167(184|201| 218 | 235 | 252
4 104)129)154|179|204(229|254|279|304| 329 | 354 [ 379 || 4 88 |111[134|157|180(203[226|249|272| 295 | 318 | 341
5 160]191)222)253|284(315(346|377) 408 [ 439 | 470 || 5 140]169(198(227|256(285(314|343| 372 | 401 [ 430
6 228|265(302|339(376|413|450( 487 | 524 | 561 |[ 6 204|239|274|309|344|379|414| 449 | 484 | 519
7 308)351(394|437|480(523) 566 | 609 | 652 || 7 280(321|362|403|444|485| 526 | 567 | 608
8 400(449[498|547[596| 645 | 694 | 743 || 8 368(415|462|509(556| 603 | 650 | 697
9 504|559(614|669| 724 | 779 | 834 || 9 468|521|574|627| 680 | 733 | 786
10 620(681|742| 803 | 864 | 925 |f 10 580(639|698| 757 | 816 | 875
11 748(815| 882 | 949 (1016 11 704|769| 834 | 899 | 964
12 888| 961 | 1034|1107 12 840| 911 | 982 | 1053
13 1040(1119]1198|| 13 988 | 1065|1142
14 1204|1289 14 1148(1231
15 1380( 15 1320

Cnf1]2)3(4|5)6[7[8]9|10{11]12 )| 13| 14| 15

1|6 ]11|16[21]26|31(36|41|46[(51|56]| 61 | 66| 71 [ 76

2[13]24|35[46|57|68|79]|90|101(112]123] 134 | 145 | 156 | 167

3[20]37|54|71]88|105(122|139]|156(173]|190| 207 | 224 | 241 | 258

4|27|50|73]96|119(142]165|188(211]|234|257| 280 | 303 | 326 | 349

5[ 34]63|92[121|150|179(208|237|266(295|324| 353 | 382 | 411 | 440

6| 41] 76 |111|146|181|216|251[286(321|356|391| 426 | 461 | 496 | 531

7 | 48] 89(130{171]212|253[294|335|376(417]458| 499 | 540 | 581 | 622

8 | 55102[149]196|243(290|337|384(431|478|525| 572 | 619 | 666 | 713

9 | 62 |115[168)221|274(327)380|433[486|539|592| 645 | 698 | 751 | 804

10| 69 |128]187(246(305|364|423[482]|541|600({659| 718 | 777 | 836 | 895

11| 76 |141]|206(271{336|401|466(531|596|661(726| 791 | 856 | 921 | 986

12| 83 |154]|225[296|367|438(509(580|651(722|793| 864 | 935 | 1006|1077

13| 90 |167]|244(321|398|475(552(629]|706(783|860| 937 | 1014|1091{1168

14| 97 |180|263[346|429|512(595(678|761|844|927]|1010|1093| 11761259

15|104|193|282(371|460|549(638|727|816(905|994|1083| 1172|1261 {1350

Table 7

u{6k,+1 |k, #6xy+x+yandk, # 6xy —x—y forallx,y € N}
uf{6k,, —1|k, #6xy—x+yforallx,y€ N}

The generation of Primes using this algorithm is complete based on the following observation:

1) With k = 6xy + x + y, we have:
6k+1 = 36xy+6x+6y+1 = (6x+1)(6y+1),
i.e. all products of two factors both equivalent to +1 (mod 6)
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2) With k = 6xy —x — y, we have:
6k+1 = 36xy—6x—6y+1 = (6x —1)(6y — 1),
i.e. all products of two factors both equivalent to —1 (mod 6)
2) With k = 6xy — x + y, we have:
6k —1 = 36xy—6x+6y—1 = (6x +1)(6y — 1),
i.e. all products of two factors, one equivalent to +1 (mod 6) and the other equivalent to
—1 (mod 6).
Starting with the integers equivalent to +1 (mod 6) and excluding these three sets leaves those
integers equivalent to +1 (mod 6) which cannot be represented as a product of two factors
equivalent to +1 (mod 6), i.e. the Primes p > 5.
The first numbers in the generator series kg;,:
ken = 1,2,3,5,7,10,11,12,13,16,17,18, 21, ...
Generating Primes P®* = 6 x k,, + 1
P%*t = 7,13,19,31,43,61,67,73,79,97,103,109,127, ...
The first numbers in the generator series kn:
kem = 1,2,3,5,7,8,9,10,12,14,15,17,18,19, 22 ...
Generating Primes P®~ = 6 * kg, — 1:

P% = 5,11,17,29,41,47,53,59,71,83,89,101,107,113,131 ...

For any given number N, the number of unique values in P~and P~are almost the same as can be seen in the
following chart:

Unique Values in P+ and P-

6000
— P+

—r

5000

3000

2000

1000

o 10000 20000 30000 40000 50000

Fig 1
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The difference in counts between (P~) and (P™) for Primes less than N is plotted in the next chart for values
Prime values < 107:
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The following chart shows (P~) and (P*) as a percentage of N:
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n(P)-n(Pt) _
———t=

[IDEA #7] With lim 0

There are countless sequences that can be built based on the sequences of Prime Generators P+ and P°~.
These are a few examples:

a. Numbers n such that (6k-1) for k=n, n+1, n+2, n+3 are all primes with no primes of the form (6k+1) in

between. This sequence of numbers is formed by positive integers k that make 6k-1, 6k+5, 6k+11 and
6k+17 prime numbers with no primes of the form 6k+1 in between. (OEIS A296011 Caceres):
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{42,897,1052,2107,2242,2457,2632,2912,3887,4362,9347,10367,12587,13132,13797, ...}

b. Numbers n such that 6k+1 is prime for k=n, n+1, n+2, n+3 with no primes of the form 6k-1 in between.
This sequence of numbers is formed by positive integers k that make 6k+1, 6k+7, 6k+13 and 6k+19
prime numbers with no primes of the form 6k-1 in between. (OEIS A296055 Caceres):

{290,550,850,1060, 2650, 3035, 3245,5015,5105,8935,10615, 11890, 12925, 13485, 13905, ...}

4. Differences between consecutive Primes
The differences between two of these consecutive Primes is calculated to be:

Prime (2|3|5(7(11|13(17|19(23|29|31|37|41|43|47|53|59|61|67|71|73|79|83|89|97
Gap 11212 4| 2| 4| 2| 4| 6| 2| 6| 4] 2| 4] 6| 6| 2| 6| 4| 2| 6| 4] 6| 8
Table 8

The next figure shows the Prime gaps for Primes up to 10000 [5][6]:

Prime Gaps
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Fig 4
The Prime gap function is defined as [2]:
In = Pn — Pn-1

Verifying that the gap can get infinitely large with:

lim g, = o
n—-oo

But it grows slower than the sequence of Primes, therefore:

lim 2% = o
n—-oo pn

The differences between Primes are increasing and the Prime number theorem proves that these gaps grow
with log(n). The function is neither multiplicative nor additive. The Merit of a gap is defined by:

In
In (pn)

Merit(g(n)) =
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The race to find larger Prime gaps as well as Prime numbers never stops. The maximal prime gap G(N) is the
length of the largest prime gap that begins with a prime p; less than some maximum value N.

The following chart represents the gaps between elements of P*and P~ for Primes less than 1,000,000. It
shows again the similar behavior of both Prime sequences P*and P~:

9000

Statistical distribution of 6x Differences with N=1000000.0

8000
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Fig 5

5. Ratios between consecutive Primes

The ratios between two consecutive Primes is given by:

- . .
6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180186192198204210216222228234240246252

Prime |2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Jump 1.500|1.667|1.400|1.571|1.182|1.308|1.118(1.211|1.261(1.069(1.194|1.108|1.049| 1.093
Table 9
The next figure plots the function pp—” for the Primes <1000:

n-1
These ratios are decreasing with: lim pp" =1
n—oo Pn—-1

The gaps are not consistently decreasing, and important research has been done on the limits of those gaps.
This research is related to the counting of the number of Primes less than a given number.
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6. Twin Primes

Twin Primes are Primes that are two units apart. We will use Szn to refer to the set of twin Primes. The first few
twin Prime pairs are:

Son ={(3,5),(5,7),(11,13),(17,19), (29,31), (41,43),(59,61),(71,73),(101,103), ... }
It is easily observable that every twin pair, other than (3, 5) is of the form (6k — 1,6k + 1) for some value of k.
The sequence of Twin Primes generators is: (OEIS A002822 Sloane):
{1,2,3,5,7,10,12,17,18, 23, 25, 30, 32, 33, 38, 40, 45,47,52,58,70,72,77,87 ... }

[IDEA #8] We have previously formulated that if k is a twin pair generator, k cannot be represented by any of
these three equations with x, y positive integers:

k=6xy+x+y

k=6xy—x—y

k=6xy+x—y
6.1. Brun’s Theorem
It is conjectured that there are an infinite number of twin Primes (this is one form of the twin Prime conjecture)
but proving this remains one of the most elusive open problems in number theory. An important result for twin

Primes is Brun's theorem, which states that the number obtained by adding the reciprocals of the odd twin
Primes,

By = (ot o)+ (o) (o) + (e 4 )t
z—(§ g) (g 7) (H ﬁ) (ﬁ E)

converges to a definite number ("Brun's constant" B_2), a value that gets updated based on the larger number
of twin Primes available for the calculation. The number of terms has since been calculated using twin Primes up
to 10%° [11], giving the result

B, = 1902160583104

[IDEA #9] Let (L) be the lesser of a twin Prime pair and (G) the greater. We know that every L is of the form
6k — 1 and every G is of the form 6k + 1, so

(1) <1) _ 1 1 _ 2
L G)] 6k—1 6k+1 (36k2—1)
And:

Z‘” 2 —1 T
1 G6E—1) 243

Therefore:

! zl<_ 1 L 0.09310032 D
L G - Zﬁ_ . e 2

We know that the Brun's constant is:
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DIty g=b

PRIt

21—099763
-= 0.

1
Z == 090453

Zl Zl<—110296
L/ G

1 B
Z_SLDZ
L= 2

1 BZ_DZ
ZE T2

SO:

and:

Also, the theorem can be expressed:

6.2. Twin Pair Centers

If we call Twin Prime Center the composite number in the middle of a Twin pair. The sequence of Twin Centers
is (OEIS A014574 Guy, Sloane, Weisstein):

{4,6,12,18,30,42,60,72,102,108,138,150, 180,192,198, 228, 240,270 ...}

Twin Centers greater than 18 can be written as the sum of two smaller twin centers. The result is the sequence
(OEIS A305825 Caceres):

{0,0,0,1,1,1,1,2,2,1,1,2,3,2,3,1,4,3,3,3,2,6,3,5,3,3...}

plotted in the following figure:

# Representations as SUM of two previous Twin Centers

] 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Twin Centers
Fig7
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6.3. [IDEA #10] An equation with solutions that are twin Primes:

If k is a Twin Prime generator, then:

36k? — 12kx +x* —1 =0

for any k, has two solutions that are twin Primes.

Examples:
k
(Twin Prime Generator) solution 1 solution 2
1 5 7
2 11 13
3 17 19
5 29 31
7 41 43
10 59 61
12 71 73
17 101 103
18 107 109
Table 10

6.4. [IDEA #11] Infinite roots with twin Primes

Let's define a seed (s) and a recurrence z = r(n, m, x) to build infinite roots of the form:

for instance, if:

z=r(n,mx)=n+m+j)*Vz

z=Vs+Vz

seed = n

then we have a Ramanujan infinite root. For example, for n=1, m=2:

z=V(A+2V1+3V(1 +4V...

We can build an infinite root using n and m Prime numbers:

Example: forn =3,m=7 - z=vV(3+7V(3+8V(3 +9V(3 + 10V...

And calculate the infinite roots that provide an integer solution:

n= 107 &m = 101
n= 113 &m = 107
n= 197 &m = 191
n= 233 &m= 227
n= 317 &m = 311
n= 353 &m = 347

It can be observed that (m, z) are twin Primes and (m, z, n) are three consecutive Primes.
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7. Prime factorization

In number theory, the Prime factors of a positive integer are the Prime numbers that divide that integer with no
remainder. The crucial importance of Prime numbers to number theory and mathematics in general stems from
the Fundamental Theorem of Arithmetic, which states that every integer larger than 1 can be written as a product
of one or more Primes in a way that is unique except for the order of the Prime factors. Primes can thus be
considered the “basic building blocks”, the atoms, of the natural numbers.

If nis divided by p, there is a k,r € Z such that:
n=kp+r
p is a Prime factor of n, if and only if r = 0, which can also be expressed using the mod(ulo) function by:
nmodp =0

Where the function mod (modulo) is defined as follows:
r=p-—nsx trunc(B)
n

The Prime factorization of a positive integer is a list of the integer's Prime factors, together with their
multiplicities; the process of determining these factors is called integer factorization. The fundamental theorem
of arithmetic says that every positive integer has a single unique Prime factorization.[7]

One useful fact is that any composite number has at least one factor that is less or equal than the square root of
the number.

The test to verify if a number is prime is called primality test. According to [13]: “A primality test is a test to
determine whether or not a given number is prime, as opposed to actually decomposing the number into its
constituent prime factors (which is known as prime factorization). Primality tests come in two varieties:
deterministic and probabilistic. Deterministic tests determine with absolute certainty whether a number is prime.
Examples of deterministic tests include the Lucas-Lehmer test and elliptic curve primality proving. Probabilistic
tests can potentially (although with very small probability) falsely identify a composite number as prime
(although not vice versa). However, they are in general much faster than deterministic tests. Numbers that have
passed a probabilistic prime test are therefore properly referred to as probable primes until their primality can
be demonstrated deterministically.”

Among other fields of mathematics, prime factorization is used extensively in asymmetric public key
cryptography. Our inability to factorize large numbers with current methods and computing power is the basis of
internet security and most security protocols in networks and information systems in general. One of the
methods used in cryptography are the RSA codes which consist of very large composite numbers that have
exactly two known Prime factors. These numbers are called Semiprimes. Finding those two factors require very
complex algorithms as the numbers are composed by two Prime numbers of more than one hundred digits. As
an example:

RSA-220 = {200 digits long}
260138526203405784941654048610197513508038915719776718321197768109445641817
966676608593 121306582577250631562886676970448070001811149711863002112487928
199487482066070131066586646083327982803560379205391980139946496955261

Has the following two factors:

FACTOR 1 of RSA-220 =
686365641226756627438237149928843780013084223997916484462124499332154106144
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14642667938213644208420192054999687

FACTOR 2 of RSA-220 =
329290743948634981204930154921293529191645519653623395246268605116929034930
94652463337824866390738191765712603

The simple factorization method is the trial division method which consists in dividing sequentially by all known
Primes until we find a factor. Then we reduce the number by the factor and start again. This method is
unpractical for large Primes.

The fastest-known fully proven deterministic algorithm is the Pollard-Strassen method (Pomerance 1982;
Hardy et al. 1990). [8]

Wolfram Math World mentions the following list of factorization methods: [7][10]:

- Brent's Factorization Method,

- Class Group Factorization Method,
- Continued Fraction Factorization Algorithm,
- Direct Search Factorization,

- Dixon's Factorization Method,

- Elliptic Curve Factorization Method,
- Euler's Factorization Method,

- Excludent Factorization Method,

- Fermat's Factorization Method,

- Legendre's Factorization Method,

- Number Field Sieve,

- Pollard p-1 Factorization Method,

- Pollard rho Factorization Algorithm,
- Quadratic Sieve,

- Trial Division,

- Williams p+1 Factorization Method

7.1. [IDEA #12] Primality test using DNA-Prime sequences P®* and P~

We are going to formulate a new factorization method base on the P* and P~seres. We know that for a
number N to be Prime, the following conditions must be met:

a) If (N-1) mod 60 and (N+1) mod 60 the number is not Prime

b) If (N-1) mod 6=0then N = 6 * k¢, + 1
CONDITION C1 (K¢, —s) mod (6s +1) =0 for s € N<kn
CONDITION C2 (K¢, +s)mod (6s —1) =0 for s € N<kn

If s=1 or s=kn then N is Prime.

c) If (N+1) mod 6=0then N = 6 * k¢, — 1
CONDITION C3 (K¢, +s) mod (6s+1) =0 for s € N<km
CONDITION C4  (Kg, —S) mod (6s —1) =0 for s € N<km

If s=1 or s=km then N is Prime.
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N kn=(N+1)/6 | kn=(N-1)/6 s Primality? Factors
4489 748.33 748.00 11 No 67x67
6839 1140.00 1139.67 1 Mo Ix977
9973 1662.33 1662.00 - Yes -

100001 16667.00 16666.67 2 Mo 11x9091
Table 11

7.2. A practical factorization method using DNA-Prime sequences

The algorithm to factorize N using DNA-Primes logic would be as follows:

While N>1
If (N-1)=0 mod 6 then
MNe p*
K=(N-1)/6
S=2
While S<K:
If (K-S)=0 mod (65+1) then add factor (65+1) [Condition C1]
If (K+S)=0 mod (6S-1) then add factor (6S-1) [Condition C2]
If S=K then N is Prime
N=N/tactor
Else if (N+1)=0 mod 6 then
Ne P~
K=(N+1)/6
While S<K:
If (K-S8)=0 mod (6S-1) then add factor (6S-1) [Condition C3]
If (K+S)=0 mod (6S+1) then add factor (65+1) [Condition C4]
If S=K then N is Prime
N=N/tactor
Else N is Prime

Some examples of factorization with code FACTORIZA7.SIX (using Python 3.7.):

Time
N Factors (FACTORIZA7.5IX) Elapsed

(sec)
10410+1 101 * 3541 * 27961 0.0123
10A20+1 73 * 137 * 1676321 * 5964848081 0.0469
10A30+1 61 *101 * 3541 * 9901 * 27961 * 4188901 * 39526741 0.1406
10840+1 17 * 5070721 * 5882353 * 19721061166646717498359681 0.0625
10A50+1 101 * 3541 * 27961 * 50101 * 7019801 * 14103673319201 * 1680588011350901 339.8750
10M60+1 73 *137 * 1676321 * 99990001 * 5964848081 * 100009999999899989939000000010001 1.2031
10A70+1 29%101 * 281 *421 * 3541 * 27961 * 3471301 * 13489841 * 121499449 * 60368344121 * 848654483879497562821 88.8906
1078041 | 353 #4249 %641 * 1409 * 69857 * 1634881 * 18453761 * 947147262401 * 349954396040122577928041596214187605761 8.4375

Table 12

The algorithm checks the remainders of (k + s)/(6s + 1). When these remainders hit zero, a factor is found.
The algorithm performs a sequential search. One important component of any optimized strategies has to do
with the remainders of (k + s)/(6s + 1). These remainders have very interesting behaviors. The following chart
plots the value of the remainders obtain for the search of the first factor of a composite number 693949:
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And the following chart plots the remainder when the number to factor is prime:
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Fig 9

[IDEA #13] One can observe that the plot of remainders for a Prime number when verifying conditions C1, C2,
C3, C4 has a linear structure for s greater than a certain s,.

Using the fact that, at some time in the sequence, the remainders of prime numbers are part of straight lines
with slopes that are one away from a multiple of six, one can build a code to perform primality tests.

Running the code created based on the shape of the remainder curves (FACTORIZA10 in Python 3.7) we can
check the primality of the integer plotted in the previous chart N=664579 with the following result:

-->N =664579 (6) is in Series: P+
>k =110763(6)

C1: 110764 -> New s= 200 slope -553
C2: 110764 -> New s= 199 slope -557
N= 664579 --> PRIME

Time Elapsed = 0.001 seconds
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It can be observed that:

a. 664579 is in the series P*, which means that (N-1) = 0 mod 6 so we will check conditions C1 and C2.

k= (N-1)/6 = 110763
Remainder when testing for Condition 1 (C1) gives at some point (s=200) a straight line
e The slope of the line verifies (slope+1) = 0 mod 6 (-553+1 = 0 mod 6)
So, there are no divisors of the form C1 (6s+1)
Remainder when testing for Condition 2 (C2) gives at some point (s=199) a straight line
e The slope of the line verifies (slope-1) = 0 mod 6 (-557-1 = 0 mod 6)
f.  So, there are no divisors of the form C2 (6s-1)
g. Therefore 664579 is prime

7.3. [IDEA #14] Factorization and Primality test using DNA-Prime sequences P* and P~

We are going to formulate a new factorization method base on the P1* and P~ series. We know that for a

number N to be Prime, the following conditions must be met:
d) If (N) mod 20 the number is not Prime

e) If (N-1) mod 2=0 then N = kn + 1

CONDITIONC1 (K,—s)mod (s+1)#0 for s € N<kn
If s=1 or s=k, then N is Prime.
Examples:
N kn=(N-1) s Primality? Factors
4489 4488.00 66 No 67x67
6839 6838.00 6 No 7x977
9973 9972.00 - Yes -
100001 100000.00 10 No 11x9091
Table 13

We can compare the speed of FACTORIZA7.UNO code using P1* and P*~with the previous results of
FACTORIZA7.SIX in table 12:

Time
N Factors (FACTORIZA7.UNO) Elapsed

(sec)
10010+1 101 * 3541 * 27961 0.1719
10A20+1 73 %137 * 1676321 * 5964848081 0.1719
10A30+1 61 * 101 * 3541 * 9901 * 27961 * 4188901 * 39526741 0.2656
107040+1 17 *5070721 * 5882353 * 10721061166646717498350681 0.1875
10750+1 101 * 3541 * 27961 * 60101 * 7019801 * 14103673319201 * 1680588011350901 209.4844
10060+1 73 *137 * 1676321 * 99990001 * 5964848081 * 100009999399893989933000000010001 1.2188
10070+1 29 %101 * 281 * 421 * 3541 * 27961 * 3471301 * 13489841 * 121499449 * 60368344121 * 848654483879497562821 68.0938
107A80+1 | 353 * 449 * 541 * 1409 * 69857 * 1634881 * 18453761 * 947147262401 * 349954396040122577928041596214187605761 5.3594

Table 14

Comparing Table 14 to Table 12, one can see that FACTORIZA7.UNO is faster that FACTORIZA7 for larger N.
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The algorithm checks the remainders of (k — s)/(s + 1). When the remainder hits zero, a factor is found. The
algorithm performs a sequential search. The following chart plots the value of the remainders obtain for the
search of the first factor of a composite number 877193 =2* 3 * 19 * 739 * 1187, until the code finds factor
739:

Remainders for k1n for N= 877193
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Fig 10

Again, we can see the different structure of the remainder plot when N is prime:

Remainders for k1n for N= 1187
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As done before, we will test primality and processing time for larger primes optimizing the code using the
characteristics of the straight lines in the plot of remainders of Primes using (K — s) mod (s + 1):

Code: Factoriza10.UNO v. 04/26/2020 PJC

->N =100000003319
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JUMP C1:
JUMP C1:
JUMP C1:
JUMP C1:

2 ->New s= 175 ->resto1[-3]= 131 ->resto11[-1]=-62

4 -> New s=1000 ->resto1[-3]=422 ->resto11[-1]=-103

3 ->New s=2924 ->resto1[-3]=2198 ->resto11[-1]=-627

100000003319 -> New s= 447809 -> resto1[-3]= 446647 ->resto11[-1]=-223309

N= 100000003319 --> PRIME

Time Elapsed = 1.3125 seconds

The code found at s=4447809 a straight that verifies the conditions for primality.

7.4. Some other interesting (and impractical) factorization methods or primality tests
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a. [IDEA #15] Recurrence to check Primality

The following recurrence that will generate a positive integer only if m is Prime:
b(1) =1 (8)
b(n) = (n—1?/n) »(b(n—1) +n-3)/(n-1)
Also, the integer values for b(m) when m is Prime are the elements of the OEIS A091330
sequence [13]. This has been added as a comment to that sequence.
The values of b(n) are:

3 115 5033 40312 362871
b(n) = [1;010;2 ’4;T;102;T; ) 10

329890, ...]

b. Wilson’s theorem.

First stated by Ibn al-Haytham (c. 1000 AD),and, in the 18th century, by John Wilson. Edward
Waring announced the theorem in 1770, although neither he nor his student Wilson could
prove it. Lagrange gave the first proof in 1771. There is evidence that Leibniz was also aware
of the result a century earlier, but he never published it.

In essence, it says that: A natural number n > 1 is a Prime number if and only if the product of
all the positive integers less than n is one less than a multiple of n. That is (using the notations
of modular arithmetic), one has that the factorial (n—1)!=1x2x3x..-x(n—1) satisfies (n—1)! =
-1 (mod n) exactly when n is a Prime number.

We can rewrite Wilson’s theorem saying that if:

LT

K=~ +-2 -1 (9)

is integer, then n is Prime. (I'(n) = (n — 1)! Is the gamma function. It is not a very efficient
algorithm for primality as gamma(n) can get very large very quickly. The values of K(n) are:

115 5033 40312 362871

3
K(n) = {1’ 0’ 0:_;4;

e 102, 5 "9 10 ,329890, ...}
One can observe the equivalence of K(n) with b(n) from 7.3.a.
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c. [IDEA #16] Using combinations to check primality

p is Prime if C(p,n) = 0 mod p for all positive integer n such that n<p.

Example:
7 is Prime because C(7,1)/7=1, C(7,2)/7=3, C(7,3)/7=5, are integers, and obviously
C(7,4)/7, C(7,5)/7, and C(7,6)/7 as well.

8 is not Prime because: C(8,2)/8=3.5 is not integer.

as factorials grow fast, the best way to code this is by simplifying:

-n+1 -1
C(p,n)zp*(p—l)*...*p n' =p*pn *..x (p—n+1)
And:
C(p,n) 1 1 p—k
pn p— p—
= —n+)=| | ——— 1
p no *(p-n+l) n+1-—k (10)

d. [IDEA #17] Primality test using powers of 2 and 3;

For n>3:
ged(2™n + n,3™n +n,n+1) = n+1 ifandonly if (n+ 1) is Prime

Using WolframAlpha for n=1..100

M,1,1,5171,1,1,11,1,13,1,1,1,17,1,19,1,1,1,23,1,1,1,1,1,29,1, 31, 1,1, 1,
1,1,37,1,1,1,41,1,43,1,1,1,47,1,1,1,1,1,53,1,1,1,1, 1,59, 1,61, 1, 1, 1, 1, 1, 67,
1,1,1,71,1,73,1,1,1,1,1,79,1,1,1,83,1,1,1,1,1,89,1,1,1,1,1,1,1,97,1, 1, 1]
(Checked to n=1,000,000)

The condition implies that if (n + 1) is Prime then:

2" + n) = 0mod(n+1)
and

B* 4+ n) = 0mod(n+1)

which can be proved using Fermat's Little Theorem (p Prime and n=p-1):

(2P — 2) = 0mod (p)

and
2P — 2
[ P +2]_2"+"
2 T on+1
3 — 3
[ p +3]_3”+n
3 T on+1

which proves that:
2"+n)= 0mod (n+ 1)
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B"+n)= 0mod (n+ 1)

this will be true for any n = p — 1 with p Prime.

e. [IDEA #18] Primality test using the Lambert W-function: :

As a corollary, the following formula has integer solutions only if (p + 1) is Prime:

LambertW <—1, — 10‘97(2)1)

k+1 2k * 2k an

k log(2)

where LambertW is the Lambert W function. The formula provides the following integer
solutions:

{(k,p} = {(1,2),(3,4),(9,6),(93,10), (315,12), (3855,16),...}

which makes {p + 1} = {3,5,7,11,13,17,...} Prime

7.5. Other interesting conjectures on Primes and divisions:

a. Grimm’s Conjecture

In number theory, Grimm's conjecture (named after Carl Albert Grimm) states that to each
element of a set of consecutive composite numbers one can assign a distinct Prime that
divides it. [4]

Formal statement: ifn+1,n+2, ..., n+k are all composite numbers, then there are k
distinct Primes p; such that p; divides n +jfor 1 <j<k.

Weaker version: A weaker, though still unproven, version of this conjecture goes: If there is no
Prime in the interval [n + 1,n + k], then:

[Le<k(n + x) has at least k distinct Prime divisors.

[IDEA #19] We propose the following proof for this conjecture:

Vi.
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Lemma 1: There is a Prime between n and 2n (Bertrand's Theorem)
Corollary: There is a Prime in [n, 3n], [n,5n], ... [n, p*n] for every Prime

Lemma 2: There are no ODD composites with same Prime factors without a Prime
number in between.

If c1 = [[{p primes}p**? and c2 = [[{p primes}p*?? with same Prime factors p,
then, from Lemma 1, there is a Prime in the interval [c1,c2].

Theorem 1: For a sequence of ODD composite numbers (2k + 1), (2k + 3), 2k +
5),..(2k + n), there are, from Lemma 2, at least (n+2) Prime factors to factor these
composites.

To prove Grimm’s conjecture, we can separate the sequence of composites on evens
and odds. The odds are proved through theorem 1, the evens can be reduced to
odds dividing by 2 and using Theorem 1.
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b. [IDEA #20] Maximum Common Divisors of multiple of Primes

If P =6p+ 1isPrime and Q = 6 — 1 is Prime, then the following sequence a(n) gives the
greatest common divisors for (P™ — 1) and (Q™ + 1):

{6,24,18,240,6,72,6,480,54,264,6,720, 6,24,18,16320, 6,216, 6,13200, 18,552, 6, 1440, 6, ...

Examples:

- All Primes squared are 1 away from a multiple of 24

- All Primes to the 8" power are 1 away from a multiple of 480

c. [IDEA #21] Divisibility criteria

We define a Digit Vector for any integer N from its expanded form using power of 10:
15263 = 1 = 10° + 5% 10* + 2x10% + 6 10" + 3 % 10°
Then the Digit Vector is :
D(15263)=[1,5,2,6,3]
We define the following Key vectors:
Key03= [1]
Key07= [2,3,1,5,4,6]
Key11=[1,10]
Key13=[1,4,3,12,9,10]
Key17=[1,12,8,11,13,3,2,7,16,5,9,6,4,14,15,10]
Key19=[1,2,4,8,16,13,7,14,9,18,17,15,11,3,6,12,5,10]
Key23=[1,7,3,21,9,17,4,5,12,15,13,22,16,20,2,14,6,19,18,11,8,10]
Key29=[1,3,9,27,23,11,4,12,7,21,5,15,16,19,28,26,20,2,6,18,25,17,22,8,24,14,13,10]
These keys can be extended repeating the sequence, for example:
Key07=[2,3,1,5,4,6,2,3,1,5,4,6,2,3,1,5,4,6,...]
The divisibility criteria we propose says that an integer N with Digit Ventor D of length L(D) is
divisible by a factor X if the scalar product of the vectors D and KeyX (extended to length L(D)) is
divisible by X, or formulated, D°KeyX =0 mod X.
The proof is based on the fact that the Key vectors are residuals of mod(10”k, X) with keN.
For example:
2,900,519,955 is divisible by 19 because (extend digits in KeyX if necessary):
[2,9,0,0,5,1,9,9,5,5] ° [1,2,4,8,16,13,7,14,9,18,17(,15,11,3,6,12,5,10)] = 437

[4,3,7]1°[1,2,4] =38
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[3,8]"[1,2]1 =19

The most astonishing property of the Key vectors is that if a number N is divisible by X, this will be
true for any permutation of the elements of KeyX containing complete replications of the initial
core sequence where order is maintained. For example:

[1,0,6,8,5,4,0,1,6,5] ° [2,3,1,5,4,6,2,3,1,5,4,6] =126 =18 * 7
[1,0,6,8,54,0,1,6,5] ° [6,2,3,1,5,4,6,2,3,1,54] = 98=14*7
[1,0,6,8,5,4,0,1,6,5] ° [4,6 2,3,1,5,4,6,2,3,1,6] = 98=14*7

As a larger example, the following number N with 79 digits is divisible by 17:

N=1068540165654659843210003216540065687987946512103468798415498798746513216873038

[N] ° key17 = 3060
[3,0,6,0] ° key17 = 51
[5,1] ° key17 = 17

d. PrimeFactorial and Primorial functions.
If p(n) is the n'" prime, Primorial(p(n)) or n# is the multiplication of all primes up to p(n) :
n
nt = [0
k=1
[IDEA #22] We define PrimeFactorial or n; as the product of all primes less than n:
n
ni=| Jow <w
k=1
Examples for n=5:
5! = 5%4x3x2x1= 120 (Factorial function)
5# = 2x3 %5711 = 2310 (Primorial Function)
5;= 2 % 3 = 6 (PrimeFactorial function)
From the definitions, one can also obtain:
o 1
—=e= 2.7181828184590455 ..
] n.
<
Z — = 1.70523017171801...
n
k=1
-1
— = 3.9200509773161327...
nj
k=1
Also:

a(n) = n*/n;is always integer (OEIS A301600 Caceres) with offset 0,2:

{1,2,6,15,35,385,1001,17017,46189,1062347,30808063,955049953,3212440751 ...}
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a(n) = n!/n# is always integer (OEIS A300902 Caceres) with offset 0,3:

{1,1,2,3,4,20,24,168,192,1728,17280,190080, 207360, 2695680, 2903040, ... }

8. Number of Primes less than a given number. Function r(x)
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Let’s call =(n) the number of Primes less than n. The Prime number theorem says that:

lim 7(n)/(n/Inn)) =1 (12)
n—-oo
A better approximation given by Riemann is [3]:
lim w(n)/li(n) =1 (13)
n—oo
Where li(n) is the logarithmic integral function:
. n dt
lim) = [+ o (14)
In 1899, de la Vallee Poussin proved that:
m(x) = li(x) + O(x e_(avln(x)))
For some positive constant ‘a’ and 0() being the big O notation.
The following table shows the results of these approximations [6]:
X m(Xx) 7(x)=x /Inx li(x) = m(x) m(x) / li(x)
1E+01 4 -0.34 2.200 0.645161290
1E+02 25 3.29 5.100 0.830564784
1E+03 168 23.24 10.000 0.943820225
1E+04 1,229 143.26 17.000 0.986356340
1E+05 9,592 906.11 38.000 0.996053998
1E+06 78,498 6115.59 130.000 0.998346645
1E+07 664,579 44158.31 339.000 0.999490163
1E+08 5,761,455 332773.98 754.000 0.999869147
1E+09 50,847,534 2592591.57 1701.000 0.999966548
1E+10 455,052,511 20758029.10 3104.000 0.999993179
1E+11 4,118,054,813 169923159.33 11588.000 0.999997186
Table 15

The effort in this direction is to find more accurate approximations to 7 (n). All these expressions

involve complex algebraic expressions of In(n), or the Riemann Zeta function, and li(x).

As an example, the Riemann hypothesis is equivalent to a much tighter bound on the error in the estimate

for (n). and hence to a more regular distribution of Prime numbers, Specifically, [9]

lT(n) — li(x)| < é\/? Inx for all x>2657
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https://en.wikipedia.org/wiki/Prime-counting_function#cite_note-23

9. [IDEA #23] Counting Primes less than a given number N using Prime generators Ke: and Kem

9.1. Based on:
{Primes} = {2,3}
uf{6k,+1 |k, #6xy+x+yandk, +# 6xy—x—yforallx,y € N}
u{6k,—1|k,, +#6xy—x+yforallxyeE N}

The total number of Primes less than a given number N can be calculated following this algorithm:

a. Calculate the total number of elements in A, = Da

b.  Calculate the fotal number of duplicates in A,,= Daa

¢. Calculate the fotal number of elements in B, = Db

d. Calculate the fotal number of duplicates in B,, = Dbb

e. Calculate the total number of duplicates between A and B, = Dab
f. Calculate the total number of Primes<N of the form (6K.,+1)

N
n(P*) = e (Da — Daa) — (Db — Dbb) + Dab

g. Calculate the total number of elements in C,,= Dc
h.  Calculate the fotal number of duplicates in C,,= Dcc
i.  Calculate the total number of Primes<N of the form (6Kun-1)

N
n(P7) = i (Dc — Dcc)

/. Calculate the fotal number of Primes<N:
a(N) = n(P*) + t(P7) + 2

Where the additional (+2) comes from the fact that Primes {2,3} cannot be generated by either (P*) or (P7).

9.2 Calculation of the number of elements in sequences A4,,, B,, and C,
Condition1: 4, =6xy+x+y x>0,y>0€N
For every x, the maximum value of y that makes the Prime 64,, + 1 < niis:
6(6xy+x+y)+1<n
6xy+x+y)<(n—1)/6
yéx+1)+x<(n—1)/6

n—1
y(6x+1)ST—x

y < (55— x) [(Bx+1)

For y=1, we obtain the maximum value of x (number of rows):
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n—7
42

xmax =

A,, is symmetric therefore ymax = xmax.

And the total number of non-generators for a given x, that we will call Da(x) can be calculated by:

xmax (u _ X)

Dazz 6

xr1 &
x=1

(15)

Using the same logic to calculate the total number of elements in B, and C,, that we will call respectively Db
and Dc:

xmax (TL -1

pp=» 5 +x)

6x—1
x=1

(x—1) (16)
With:
n+5
30

xmax =

ymax = xmax because of the symmetry of B,

And:

xmax (T'l +1 _ X)

Dc=z 6

6x—1
x=1

(17)

With:
n+7
42
n—>5
30

xmax =

Ymax =

Using these expressions, the calculated values of Da, Db, Dc, for different values of N are:

N Da Db Dc
1.00E+02 2 3 4
1.00E+03 44 59 97
1.00E+04 743 896 1,626
1.00E+05 10,572 12,121 22,649
1.00E+06 137,523 153,049 290,411
1.00E+07| 1,694,547 1,849,728| 3,543,726

Table 16

9.3. Calculation of the number of duplicates Daa, Dbb, Dab, and Dab

It can easily be observed that non-generators An, Bn, Cn matrices have duplicates. If we set N=1000 as an
example, the duplicates in these matrices (Daa, Dbb, Dab, Dcc) are shown in bold in the following print out:

N =1000
N//6 =166
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Da =44
Daa =2 -—-> [106, 155]

Na =42
Db =59
Dbb =4 ---> [64, 99, 119, 134]
Nb =55

Dab =11 ---> [29, 54, 64, 79, 99, 104, 119, 129, 134, 141, 154]

Nab =86 ->Pi(P+)=80

Dc =97
Dcc =17 ---> [#1, 46, 71, 76, 76, 90, 96, 101, 111, 111, 121, 139, 141, 146, 146, 156, 156]

Nc =80 ->Pi(P-)=86

Number of Primes less than 1000 CPI(X)= 168 mn(X)= 168

The main problem is to find a close form expression to calculate the duplicates for a certain N, and to that end,
we are going to use numeric analysis to calculate the number of duplicates as a function of N. In the following
table we show a limited number of rows of the dataset built to analyze the number of duplicates computed for
different values of N and values from [8]:

N Da Daa Db Dbb Dab Dc Dcc (P+) m(P-) n(N)
100 2 0 3 0 0 4 0 11 12 25
500 18 0 25 1 4 40 5 45 48 95
1000 44 2 59 4 11 97 17 80 86 168
5000 324 40 400 77 104 717 221 330 337 669
10000 743 119 896 214 251 1626 576 611 616 1229
25000 2170 440 2557 737 755 4695 1918 1371 1389 2762
50000 4811 1141 5585 1792 1686 10363 4605 2556 2575 5133
75000 7634 1941 8796 2985 2686| 16386 7596 3682 3710 7394
100000 10572 2810 12121 4268 3733| 22649| 10789 4784 4806 9592
Table 17

We have decided to use as the independent variable nmax:

xmax int(N /42)

ymax int(N/5) — 1

nmax = ymax — xmax

The main reason to use nmax is that provides a method to obtain all correlations in a linear or quadratic form
using the logarithm of N in base 10 (log (N, 10)) as an input. We can now express the previous table
introducing the independent variable nmax:
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nmax Da Daa Db Dbb Dab Dc Dcc
17 2 0 3 0 0 4 0
88 18 0 25 1 4 40 5
176 44 2 59 4 11 97 17
880 324 40 400 77 104 717 221
1761 743 119 896 214 251 1626 576
4404 2170 440 2557 737 755 4695 1918
8809 4811 1141 5585 1792 1686| 10363 4605
13214 7634 1941 8796 2985 2686| 16386 7596
17619 10572 2810 12121 4268 3733 22649 10789
22023 13599 3744 15539 5612 4791 29080 14137
26428 16699 4722 19026 7024 5886| 35656 17596
Table 18
Then we can chart:
Daa vs. nmax
8000
7000
6000 -
..
5000 :
A
4000 .
3000 o
2000
1000
.
0
0 2 5 6 7 8 10
-1000
Fig 12
Where we can see that Daa can be expressed as a linear regression over nmax.
9.4. The computation of all data vectors {Da}, ..., {Dcc} as function of nmax

9.4.1.  Computation of D¢, Dcc to obtain (P ™)
We define
logx2 = log(N,10) — 2 where log(N, 10) is the logarithm in base 10 of N

then the computation of all regressions for R? > 0.999 gives:

¢[1] = 0.633480 - 26/1000000
c[2] = 0.193065 + 2/1000000
¢[3] = 0.340500 - 34/1000000
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9.4.2.
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c[4] = -(0.39520 + 4/1000000)
¢[5] = -(0.01860 + 5/1000000)
c[6] = 0.260600 - 55/1000000
c[7] = 0.450000 + 50/1000000
c[8] = 0.997381368

sx c[1] * logx2 + c[2]
tx = c[3] * logx2 + c[4]
fx = (c[5] * logx2? + c[6] xlogx2 + c[7])/c[8]

and:
Dc = int(nmax * sx)

Dcc = nmax * tx

n(P™) = int((int(N/6) — (Dc — Dcc)) * 1/fx)
The error of calculated w(P~) compared to actuals:

Error i(P-) for Primes less than N

0.0%
o 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 10,000,000

-0.2%

-0.4%

-0.6%

-0.8%

-1.0%

-1.2%
Fig 13
Computation of Da, Daa, Db, Dbb, Dab to obtain = (P*)

We define:
logx = log(N, 10)

then the computation of all regressions for R? > 0.9999 gives:
Da = int(nmax * sx)
Daa = nmax * tx
Db = int(nmax * ux)
Dbb = nmax * vx
Dab = nmax * wx

Where:
SX
tx

b[0] = logx + b[1]
b[2] * logx* + b[3] * logx + b[4]
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ux = b[5] *logx + b[6]
vx = b[7]*logx® + b[8] xlogx + b[9]
wx = b[10] * logx? + b[11] *logx + b[12]

that can be simplified into one quadratic model:
D = c[0] + c[1] *logx + c[2] * logx ** 2

Where:
¢ = 0.47956,0.112818,1/(—8.827 * logx — 39.927) for
logx=14
c = [0.47956,0.112818,1/(—2.0238logx> + 41.114 logx? — 290.891logx + 620.2) for
logx<14

And:

n(P*) = int((int(x/6) — D * nmax))

The error of calculated w(P*) compared to actuals:

Error m(P+) for Primes less than N
2.5%

2.0%
1.5%
1.0%
0.5%

0.0%
0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6000000 7,000,000 8000,000 9,000,000 10,000,000

Fig 14

9.4.3. [IDEA #] METHOD CPIX1: Calculate values of CPIX using only counts over the series P~

The sequences P~ and P*have similar number of elements. We have plotted these numbers in Fig. 1
and based on Fig. 3 we can say that:

_n(P7) —m(P")
lim —— =0
N—-oo N

This can be used to simplify the algorithm described in 9.1:
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Calculate the total number of elements in C,,= Dc
b. Calculate the total number of duplicates in C,,= Dcc
c. Calculate the total number of Primes<N of the form (6Kn-1)
n(P7) = %— (Dc — Dcc)

d. Calculate the total number of Primes<N:
CPIX1 = 2 m(P7)

The error of the calculations obtained using this method are compared to the errors using Li(x) and
x/In(x) in the following table:

b's n(x) li{x) error x / Inx % Error CPIX1 Error
1072 25 20.40000000000000% 13.200% 4.000000000000%
1013 168 5.95238095238095% 13.690% 0.000000000000%
o004 1,229 1.38323840520749% 11.640% -0.732302685110%
1005 9,592 0.39616346955798% 9.450% -0.625521267723%
10n6 78,498 0.16560931488701% 7.790% -0.405105862570%
1007 664,579 0.05100973699139% 6.640% -0.307412662753%
1008 5,761,455 0.01308697195412% 5.780% -0.226314359828%
10n9 50,847,534 0.00334529497537% 5.100% -0.162411022725%
10010 455,052,511 0.00068211907966% 4.560% -0.116388106251%
10n11 4,118,054,813 0.00028139499171% 4.130% -0.082868372447%
10012 37,607,912,018 0.00010174188874% 3.770% -0.058232969673%
10013 346,065,536,839 0.00003148854433% 3.470% -0.039101919895%
10714 3,204,941,750,802 0.00000982513957% 3.210% -0.022973864527%
10015 29,844,570,422,669 0.00000352700336% 2.990% -0.007120543713%
10016 279,238,341,033,925 0.00000115121441% 2.790% 0.014604542693%
10717 2,623,557,157,654,230 0.00000030327485% 2.630% 0.086124038326%
ion18 24,739,954,287,740,860 0.00000008872107% 2.480% -0.141772447230%
10/n19 234,057,667,276,344,607 0.00000004267229% 2.340% -0.048090380881%
10120 2,220,819,602,560,918,840 0.00000001002984% 2.220% -0.028947325069%
10021 21,127,269,486,018,731,928 0.00000000282760% 2.110% -0.019832875445%
10n22 201,467,286,689,315,906,290 0.00000000095914% 2.020% -0.014235299182%
10023 1,925,320,391,606,803,968,923 0.00000000037657% 1.930% -0.010370932566%
10124 18,435,599,767,349,200,867,866 0.00000000009301% 1.840% -0.007528339373%
10125 176,846,309,399,143,769,411,680 0.00000000003120% 1.770% -0.005356412793%
10n26 | 1,699,246,750,872,437,141,327,603 [EuK«lolelelolalilo e[ [1l: 5 b 1.700% -0.003656237399%
101027 (16,352,460,426,841,680,446,427,399 REGLOLLGIG G ESRES 1.640% -0.002303853847%

Table 19

And plotting the differences graphically:
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9.4.4.

—li(x) error

—x /Inx % Error

Error over 1t(x)

- =CPIX1 Error

Fig 15

10717

Using 8.4.1 and 8.4.2. we can calculate CPIX2(N) = n(P*) + n(P™) + 2

X m(x)
1002 25
1013 168
100 1,229
1015 9,592
10n6 78,498
1007 664,579
1018 5,761,455
109 50,847,534
10710 455,052,511
10011 4,118,054,813
10012 37,607,912,018
10413 346,065,536,839
10114 3,204,941,750,802
10015 29,844,570,422,669
10116 279,238,341,033,925
10017 2,623,557,157,654,230
10118 24,739,954,287,740,860
10419 234,057,667,276,344,607
10120 2,220,819,602,560,918,840

li(x) error

20.40000000000000%

5.95238095238095%
1.38323840520749%
0.39616346955798%
0.16560931488701%
0.05100973699139%
0.01308697195412%
0.00334529497537%
0.00068211907966%
0.00028139499171%
0.00010174188874%
0.00003148854433%
0.00000982513957%
0.00000352700336%
0.00000115121441%
0.00000030327485%
0.00000008872107%
0.00000004267229%
0.00000001002984%

Table 20

% [ In x % Error
13.200%
13.690%
11.640%

9.450%
7.790%
6.640%
5.780%
5.100%
4.560%
4.130%
3.770%
3.470%
3.210%
2.990%
2.790%
2.630%
2.480%
2.340%
2.220%

10018
10719
10720

[IDEA #24] METHOD CPIX2: Calculate values of CPIX2 using counts from the series P~ and P*

CPIX2 Error
0.000000000000%
0.595238095238%
4.963384865745%
9.288990825688%
0.016560931489%
0.000000000000%
0.004356538409%
0.000000000000%
0.000005713626%
0.000000000000%
0.000000109020%
0.000000169332%
0.000000222500%
0.000000266394%
0.000000385323%
0.000000386950%
0.000000350235%
0.000000564029%
0.000000774968%

CPIX2 method is more precise than CPIX1. The comparison is shown in the following chart:
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Errors for CPIX1 and CPIX2 (vs. rt(x))
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Fig 16

10. [IDEA #25] Counting Primes less than a given number N using Prime generators Kin

10.1.  Based on:
{Primes}= {k;, +1 |k, #xy+x+y forallx,y € N}
The total number of Primes less than a given number N can be calculated following this algorithm:

a. Calculate the total number of elements in A, = Da
b.  Calculate the fotal number of duplicates in A,,= Daa
¢.  Calculate the fotal number of Primes<N of the form (Kin+1)
n(P*) = N — (Da — Daa)
10.2.  Calculation of Dathe number of elements in sequence 4, = xy +x +y
Condition 1: 44, =xy+x+y x>0,y>0€N

For every x, the maximum value of y that makes the Prime 4,,, + 1 < nis:

< n 1
= x+1
For x=1, we obtain:
n
Ymax = E -1

A,, is symmetric therefore ymax = xmax.

And the total number of non-generators for a given x, that we will call Da(x) can be calculated by:

xmax
n
Da = -1 1
a Z x+1 (18)
x=1
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With values:

N Da Da-odds
100 283 56
1,000 5,070 1,111
10,000 73,669 16,377
100,000 966,751 226,337
1,000,000 11,970,035 2,839,095
10,000,000 142,725,365 34,147,078
100,000,000 1,657,511,569 399,035,115

Table 21

Computing a polynomial regression, Da can be defined as a function of n:

10.3.

8.0000000
7.0000000
6.0000000
5.0000000
4.0000000
3.0000000
2.0000000
1.0000000
0.0000000

2.5 3

Da(n)

y =-0.0261x%+1.3619x- 0.1608

3.5 4
log(n)
Fig 17

RZ =1

4.5

Calculation of Daa, the repeated numbers in sequence 4,, = xy +x +y

5.5 6

The number of duplicated elements Daa and its behavior can be observed in the following table:

The calculation of the duplicate composite numbers less than N in the previous table correspond to the following

Calculated
N Daa Total Daa Unique Daa computed Error
100 276 203 208 -0.0240384615
400 2211 1339 1347 -0.0059391240
Q00 6833 3723 3731 -0.0021441973
1600 14785 7507 7520 -0.0017287234
2500 26582 12815 12828 -0.0010134082
3600 42779 19766 19764 0.0001011941
4900 63475 28366 28369 -0.0001057492
6400 89171 38724 38733 -0.0002323600
8100 120146 50902 50897 0.0000982376
10000 156489 64891 64898 -0.0001078616
12100 198705 80806 80804 0.0000247512
14400 246772 98627 98627 0.0000000000
16900 300797 118376 118405 -0.0002449221
Table 22

formula [IDEA #26], which gives the approximations shown in the Error column in Table 22:
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xmax

xmax

xmax

N N fIN) N
baa= D 2+ ) tigay 2 2 19
k=3 k=4 j>3prime k=j+1
Where f(N) is an algebraic function.
And the calculated values for CPIX1(n) = N - Da(n) + Daa(n) are:

N Da Daa CPIX1(N) m(N) Error
100 283 203 20 25 -20.000%
400 1669 1339 70 78 -10.256%
900 4477 3723 146 154 -5.195%
1600 3869 7507 238 251 -5.179%
2500 14961 12815 354 367 -3.542%
3600 22861 19766 505 503 0.398%
4900 32615 28366 651 654 -0.459%
6400 44299 38724 825 834 -1.079%
8100 57979 50902 1023 1018 0.491%
10000 73669 64891 1222 1229 -0.570%
12100 91457 80806 1449 1447 0.138%
14400 111341 98627 1686 1686 0.000%
16900 133357 118376 1919 1948 -1.489%
25000 207037 184710 2673 2762 -3.222%
30000 253926 227051 3125 3245 -3.698%

Table 23

The error with this method is larger than the methods developed using series Pé*and P°~.

11. Ideas on Legendre’s Conjecture

11.1.  Legendre’s Conjecture states that there is always a prime number between n? and (n + 1)? provided
that n= —1 or 0.

The following chart shows the number of Primes between n? and (n + 1)2.

37| Page

1000 1

400

2004

Legendre Conjecture -> Primes between n™2 and (n+1)"2

2000 4000

6000

Fig 18

30 Ideas About Prime Numbers

Y
N

8000

10000

May3" 2020


https://oeis.org/wiki/Prime_number

The prime number theorem suggests that the actual number of primes between n? and (n +
1)2 is asymptotic to n/in(n).

Legendre Conjecture -> 1/n * (Primes between n”2 and (n+1)"2)

020

0 2000 6000 8000 10000

Fig 19
A way to understand this conjecture can be based on the definition of Primes in series P1*:

{Primes}= {ky, +1 | kip #xy+x+y}

Based on this definition, all composite numbers are of the form ¢ = xy + x + y+1.

In this case, we can observe that:

n2 = (n-1) * (n-1) + (n-1) + (n-1) +1

and (n+ 1)2=n*n+n +n +1

Any number between n? and (n + 1) that can’t be represented by c =xy + x +y+ 1= (x+ 1) * (x — 1)

x=y=(m-1)
X=y=n

would be Prime. Between n? and (n + 1)? there are 2n + 1 numbers:

2

n? - {n?+1,n%+2, ..., n%? + 2n}

> (n+1)?

We can see those numbers (in orange) in the following matrix with each element ¢;; = xy + x +y + 1:

2[5+ s [s]7 e [w]ulu]n]

14‘

15|1G‘17‘18‘19

180
190
200

1 6 8 10 12 14 18 20 22 24 26 28 30 32 34 36 38 40

2 15 18 21 27 30 33 36 39 42 45 48 51 54 57 60
T 8 20 24 28 36 44 48 52 56 60 64 68 80
T 10 15 30 35 45 55 60 65 70 75 80 100
T 12 18 24 42 54 66 84 120
T 14 21 28 35 63 77 119 126 133 140
T 16 24 32 40 48 72 120 128 136 144 152 160
T 18 27 36 45 54 63 117 126 135 144 153 162 171 180
T 20 30 40 50 60 70 120 130 140 150 160 170 180 190 200
? 22 33 44 55 66 143 154 165 176 187 198 209 220
: 24 36 48 60 72 120 168 180 192 204 216 228 240
? 26 39 52 65 130 195 208 221 234 247 260
1_3 28 42 56 70 140 224 238 252 266 280
j 30 45 60 75 150 255 270 285 300
? 32 48 64 160 288 304 320
? 34 51 68 170 323 340
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For example, if n = 9, withn? =81, x =y = (n—1) = 8with8+8 + 8 + 8 +1 =181
The matrix is symmetric, with the upper area values calculated between:

n® —2
2

x=1 and y =

and:
x=n—1 and y=n-1

We can observe that for every row x in the chart, the values are the multiples of (x + 1).
If we prove that the set of values between n? and (n + 1)? in the matrix does not contain all the (2n + 1)
elements between n? and (n + 1)2 {n?+1,n% + 3, n? + 5..., n? + 2n — 1}, then Legendre’s conjecture will be

true.

Based on (18) the number of composite numbers ¢(x) less than n? is:

n?-2
2y — 2y 2\ — S n2 _ _ 2
c(n®*) = Da(n*) — Daa(n*) = XZ; (x+ T 1) Daa(n®)
And:
(n+1)?%-2
c((n+ 1?) = Da((n + 1)?) — Daa((n + 1)?) = z (% - 1) — Daa((n+ 1)?)

x=1
We are trying to prove that :

c((n+ 1)?) — c(n?) < 2n + 1 linearly increasing as it can be observed in the next chart:

Which can easily be observed graphically:

# Primes between (n”2) and (n+1)"2
45
40
35
30
25

2n+l

20 C({(n+1)"2)-C(n"2)

15
10

Fig 20
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And numerically:

N|NA2| Da|Daa Unique|Daa Total| Calc #Primes ActuaI#Primes| Actual Primes between N/A2 and (N+1)"2

9] 81|110 42 52 3 3 [83, 89, 97]

10| 100( 146 56 72 5 5 [101, 103, 107, 109, 113]

11( 121|187 73 97 4 4 [127, 131, 137, 139]

12| 144(235 91 126 5 5 [149, 151, 157, 163, 167]

13| 169|286 114 157 5 5 [173, 179, 181, 191, 193]

14| 196|346 142 195 4 4 [197, 199, 211, 223]

15( 225|413 171 237 6 6 [227, 229, 233, 239, 241, 251]

16| 256|485 201 284 7 7 [257, 263, 269, 271, 277, 281, 283]
17| 289|564 234 337 5 5 [293, 307, 311, 313, 317]

18| 324|651 270 394 6 6 [331, 337, 347, 349, 353, 359]

19| 361|743 311 455 6 6 [367, 373, 379, 383, 389, 397]

20| 400|844 355 523 [401, 409, 419, 421, 431, 433, 439]

Table 25
With the number of primes between n? and (n + 1)? calculated following:
Cal#Primes = (2n+ 1) - Delta(Da) + Delta(Daa)

The analytical prove of Legendre’s conjecture will have to show that, for every n, there are more elements in
(2n + 1) than in the set {c((n + 1) — c(n)?}.

[IDEA #27] At the core of the prove, we need to formulate Daa(n) and demonstrate that for every n:

Condition 1: Daa(n) < Da(n)

which is obvious because Da(n) contains all elements of the c-matrix and Daa is a subset of c-matrix
and
Condition 2: Daa((n + 1)?) > Daa(n?)

Numerically, a good regression for Daa(n) for n < 108 is shown in the next picture. Algebraic approximations
for Prime related functions only work on limited intervals. Logarithmic approximations always work better for
general purposes:

Daa (n)

16

14

y = -0.0313x%+ 1,4305x - 0.4091

12 R*=1

0 2 4 6 8 10 12 14 16 18

log(n)
Fig 21
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From (17), and for (n) the Prime Counting function:
n(n) = N — Da(n) + Daa(n)

With:
Daa(n) = n(n) — N + Da(n)

And:

Daa(n+ 1) —Daa(n) =n(n+1)—n(n) —=N+1—-N+Da(n+1)—Da =
7n+1)—n(n)+Da(n+1)—Da+1

And we know that for n>1:
m((n + 1)?) > n(n?)

And:
Da((n + 1%)) > Da(n?)

Therefore:
Daa((n + 12)) > Daa(n?) and Daa(n) is strictly increasing which proves Legendre’s conjecture.

11.2.  What is the minimum value of x such that there is always, at least, one prime between n* and
(n+ 1)*?

Let’s observe the problem numerically and let’s define c(n) = floor(n*) where floor(a) is the highest integer
less than a.

For x=1 the calculation rapidly shows that there are no new primes between n=3 and n=4.

N NAL Da Daa| m(x)=N-Da+Daa

1 1 0 0 0

2 2 0 0 1

3 3 0 0 2

4 4 1 0 2
Table 26

The lowest x that verifies that the count of primes increases at least by one with an increase in n is 1.60:

m(n*x) forx= 1.00 ---> Repeats at N=4"1 = 4
m(n*x) forx= 1.01 ---> Repeats at N=41.01 = 4
m(n*x) forx= 1.02 ---> Repeats at N=41.02 = 4
m(n*x) forx= 1.58 ---> Repeats at N=2171.58 = 122
n(n*x) forx= 1.59 ---> Repeats at N=2171.59 = 126
n(n*x) forx= 1.60  --> NO REPEATS

m(n*x) forx= 1.61 ---> Repeats at N=20"1.61 = 124

So, we can conclude that there is a Prime p between n'¢ and (n + 1),
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12. [IDEA #28] Ideas on the Prime Conjecture that there is infinite Primes of the form n? + 1

We are looking for odd values of n? + 1 that only happens when = is even. If n is odd, then n? is odd, and n? +
1 is even and never prime.

If we use n = 2k for k € N, then using generators ky,:
n? = xy + x + y + 1 which is true for all composite numbers.
Then, if n%2 + 1 to be prime, cannot be expressed, for any a,b € N, as:
n*+1=ab+a+b+1
Or:

4k? =ab+a+b
Or, if we call k,,, the values of k that make (anp)2 + 1 no prime, then:
1
Knp = E\/(ab +a+b)

If we plot the values of k,,, for a < 1000 and b < 1000:

Values of K | 4K~2 = ab+a+b for a<=1000 and b<=1000

400 4

300

Values of K

N
=]
3

100 4

0 20 40 60 80 100 120

Fig 22

Of the a * b = 1,000,000 possible combinations of a & b, only 116 of those combinations make (ka[,)2 +1
no Prime. The first elements of this sequence are:

{4,6,9,11,14,15,16,17,19, 21, 22, 23, 24, 25, 26, 29,30, 31, 32, 34, 35, 36, 38,40, 41,43, 48,49, ... }
For example, the element {23} is in the sequence because:
4 %23% = 2116 = 28 * 72 + 28 + 72 with a=28 and b=72

and n = 2kp, = 46
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The following histogram shows that the number of k,,,, decreases as a, b grow

140 +

120

100

80 H

50

40

20 A

o] 1000 2000 3000 4000 5000
Fig 23
And the following chart shows how the histogram of values of n such that n? + 1 is prime increases:

n such that n~2 +1 is prime
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Fig 24

13. [IDEA #29] Ideas on Goldbach’s Conjecture using P®* and P%~

Golbach’s conjecture says that every even integer greater than 2 can be expressed as the sum of two Primes.
[12] From the definition of the two DNA-Prime sequences we know that any Prime can be expressed as:

pt =6k, +1 k, €N
p~ =6k, —1 ko, EN

The addition of two odd Prime numbers will always be even.
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If N=2q is any even number, for it to be the addition of two Primes, the following needs to be true:
N=2q=p+ p;

To illustrate the problem, we can build a simple table for N = 18

N p1 p2

18 1 17
3 15
5 13
7 1
9 9
1 7
13 5
15 3
17 1

We can observe that:

- there are N/2 combinations of two odd numbers that add up to N.
- there are 2 combinations involving 1 and 1 is not a Prime.

- the option N/2 + N/2 = N does not involve addition of Primes and we can disregard it.

Of the remaining combinations, they repeat themselves due to the commutative property of the addition in N.
So, the net number of potential valid combinations of two odd numbers with one of them at least being Prime is:
(N/2—=3)/2

If p is Prime, based on the Prime number theorem, we can see that for N>76 the number of combinations is
larger than the number of Primes <N as:

(N/2—=13)/2 >N/InN for N>76

So, the number of Primes that meet Golbach’s conjecture for any even number N are proportionally less than
the number of combinations of odd numbers as N grows.

It is easily observable that any even number N belongs to one of the following sets:
{N == 0 (mod 6)}
{(N + 2) == 0 (mod 6)}
{(N — 2) == 0 (mod 6)}

Let’s chart the number of potential representations of even integers as the sum of two Primes separating these
three sets of even numbers which let’s us propose a conjecture: In any combination of three consecutive even
numbers >= 48, the one of the form N == 0 (mod 6) will have the largest number of decompositions into 2
Prime numbers. This sequence contains those local maxima for every set of three consecutive even numbers.
This sequence forms the upper envelope of Goldbach's comet chart.
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—_ Number of Prime pairs adding up to N=even number
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Fig 25
The first terms of this sequence (OEIS A322921 Caceres) are:
{1,1,2,3,3,4,4,5,5,6,6,6,7,8,9,7,8,8,10,12,10,9,8,11,12,11,10,13 ... }
We know that if p1 and p2 are Primes, we can use the DNA-Prime series to say:
Pr=6%k +1
Pr=6%k,+1
And there are three possibilities:
N=p +p,=6x* (k;+ k;)—2
N=p +p,=6%* (ky+ k)
N=p +p,=6x (ki + ky)+2

Based on this, and assuming that p; and p, exist, we can affirm that:

If N mod 6=0 N is the addition of a p, € P*and p, € P~
If (N-2) mod 6=0 N is the addition of a p, € P*and p, € P*
If (N+2) mod 6=0 N is the addition of a p, € P~and p, € P~

given that for any even number, there is a ¢ € N such that N=2q and the previous expressions are equivalent to:
g mod 3=0
or (g-1) mod 3 =0
or (g+1) mod 3=0

Which is obviously true as for any 3 consecutive numbers (g-1), g, (q+1), one of them must necessarily be
divisible by 3. The three possible combinations of Primes mentioned earlier can be also reformulated as follows:
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If (q+1) mod 3 =0 = =ki+ k, py=06k —1landp, =6k, —1

As examples of these expressions:

Potential Primes ki k2
N=54 =27  q=3' 9/3=9 2Pt 7P~ 13 41
N=64 =32 g=3*11-1 (g+1)/3=11 3p- 8P~ 17 47
N=68 =34 g=3*11+1 (g-1)/3=11 5p* 6Pt 31 37

To prove Golbach’s conjecture we must prove that for any n € N we can find combinations of 4, and 4 in the
DNA-Prime generator series such that:

q=ky,+ky=RL+R%-2
orq=kpy +ky =RL+R2-2
orq=kp, +kn, =R +R2% -2
where R, =k, +1and R, =k, +1

In other words, that for any g € N, we can find two elements of Rn, or two elements of Rm, or one element of R,
and one element of R, that add up to g, as all even numbers are of the form: N=2q, with ¢ € N

To prove it, we are going to use an induction proof.

We will define a condition that is observable and met for a certain k=k*, we will assume that the condition is met
at k=n-1 and then we will prove that this means the condition is also true at k=n for any element n of the
generator series.

Let’s observe that in the following chart of (Rm + Rm), the square Rm * Rm contains at least all naturals up to
Rm.

Rm x Rm table
1 2

7 8 9 11113 14 16 17 18
8 9 10 12| 14 15 17 18 19
9 10 11 13|15 16 18 19 20
10 11 12 14} 16 17 19 20 21
10 11 12 13 15/ 17 18 20 21 22
10 12 13 14 15 171 19 20 22 23 24
10 11 13 14 15 16 18| 20 21 23 24 25
10 11 12 14 15 16 17 19| 21 22 24 25 26
10 11 12 13 15 16 17 18 20| 22 23 25 26 27
12 13 14 15 17 18 19 20 22| 24 25 27 28 29
14 15 16 17 19 20 21 22 24 26 27 29 30 31
15 16 17 18 20 21 22 23 25 27 28 30 31 32
17 18 19 20 22 23 24 25 27 29 30 32 33 34
18 19 20 21 23 24 25 26 28 30 31 33 34 35
19 20 21 22 24 25 26 27 29 31 32 34 35 36
Table 27
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For example, the square for (R, x Ry1) of dimension (11x11) contains up to the natural number up to 11, i.e.
contains [1],2,3,4,5,6,7,8,9,10,11 We could use any other cardinal to observe that this true.

Let’s assume now that the condition is true for Rm-1, which means that the square Rm.1 x Rm-1 contains all naturals
up to Rm-1 generated by the addition of two given R, and RZ, both < Rm-1and let’s prove that the condition is
met for the square Rmx Rm, which means that the square Rmx Rm must contain all naturals up to Rm.

The set of natural numbers between Rn-1and Rm are, by definition of the matrix
RmX Rm:
Dn={ Rm‘ Rm-1}= {Rm-1+1, Rm-1+2, Rm-1+3 aay Rm-1+(Rm‘ Rm-1)}

We assumed that all naturals up to Rm-1 exist and for each even number n < R,_; there are two R/,_, and
RE_, such that n=R/ _ +RK _,

We can express this as:
(RI_ +RE_}={2345,..Rpn_1}
with R/ | = {1,2,3,4,5,6,8,9, .. Ryy_1}
If we add R,,,_; to any of the two R,jn_1 + R _, we can say that:

{Rin-1*Ry, 1} {Rin—1 + 1L, Ry + 2 e, Ryp_1+Rpp 1}

{2 * R,,,_,}is the last diagonal term of the defined and known matrix R,,_;xR,,_; which is contained in R,,xR,,

We can use Bertrand’s postulate [13] to affirm that R,,- R,,_1< 2 * R,,,_; therefore D, is contained in the matrix
R, xR,,. [QED ]

Same proof works for (Ra+Rn) and (Ra+Rm), which proves Golbach’s conjecture.
As an example, to find the Primes that add up to 180:
N=180 N mod 6=0 so one Prime belongs to P* and the other to P~

and the addition of the two Prime generators is kn + km = 30. That give all these potential combinations:

Kn Km P+ P- P+ + P-
2 28 13 167 180
5 25 31 149 180
7 23 43 137 180
11 19 67 113 180
12 18 73 107 180
13 17 79 101 180
16 14 97 83 180
18 12 109 71 180
21 9 127 53 180
23 7 139 41 180
25 5 151 29 180
26 4 157 23 180
27 3 163 17 180
Table 28
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14. Conclusion

The sequence of Prime numbers can be defined using the fact that Primes are one away from a multiple of a =
1,2,3,4,and 6. In general, we can say that a Prime p = a * k(a) + 1 forsome k(a) #a*x*xy+xty.

In the case of a=1:
{Primes} = {kin+1 |ky, #xy+x+y forx,y€ N}

ki, =1{1,2,4,6,10,12,16,18,22, 28,30, 36,40,42,46,52,58,60,66,70,72 ...}

In the case of a=2:
{Primes} = {2} U{2ky, +1 | ky, #2xy+x+y forx,y € N}

k., =1{1,2,3,5,6,8,9,11,14,15, 18, 20, 21, 23, 26, 29, 30, 33, 35,36, 39,41, ...}

In case of a=3:
{Primes} = {3} U{3ks, +1 | k3, #3xy+x+yandks, #3xy—x—yforx,y €N}
U{3k3n,—1| k3, #3xy—x+7yfor x,y € N}
ksn = {2,4,6,10,12,14,20, 22,24, 26,32,34,36,42,46,50,52,54,60, ..}
ks = {1,2,4,6,8,10,14, 16, 18, 20, 24, 28,30, 34, 36, 38, 44, 46, 50, 56, 58, ... }
In case of a=4:
{Primes} = {2} Uf{dky, +1 | kyy, #4xy+x+yandk,, +#+4xy—x—yforx,y € N}
Uf{4kyy — 1| kg, # 4xy —x +y for x,y € N}
kyn = {1,3,4,7,9,10,13,15, 18,22, 24, 25,27, 28,34, 37,39, 43, 45,48, 49, ...}
kym = {1,2,3,5,6,8,11,12,15,17,18,20, 21, 26,27, 32,33,35,38,41,42, ...}
In case of a=6:
{Primes} = {2,3} U{6ke, +1 | kg, # 6xy+x+yandkg, # 6xy—x—yforx,y € N}

U{6ken, — 1| k¢ # 6xy —x+y for x,y € N}
ken ={1,2,3,5,6,7,10,11,12,13,16,17, 18, 21,23, 25, 26,27,30,32,33, ...}

kem =1{1,2,3,4,5,7,8,9,10,12,14,15,17,18, 19, 22, 23, 25, 28, 29,30, 32, ... }

These expressions have been used to formulate factorization methods, primality tests, methods to count Primes
less than a number (CPIX), and different ideas about some open conjectures regarding Prime numbers. In the
process, several conjectures are proposed as well as new numerical and computational methods.
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