

Allis Electric Co., Ltd.

Installation Manual

Three-Phase Grid-Connected Photovoltaic Inverter

TOUGH-3P - Series

All specifications are subject to change without prior notice. Ver. 1.1

These applied symbols are important for human safety. Violation of warnings may result in injury to persons or cause death.

THIS MANUAL IS COPYRIGHT PROTECTED.

Copyright©2017 TOUGH-3P-series Products. All rights reserved by ALLIS Electronic Co., Ltd. Unless otherwise specified, no part of this manual may be reproduced or utilized in any form or by any means, including electronic, mechanical or photocopying, without permission in writing from either Allis or Allis's legal representative.

General Cautions

Read and follow all instructions in this manual. Failure to comply with the warnings in this manual may violate safety standards. The manufacturer assumes no liability for the customer's failure to comply with these requirements.

Installation of the device must be in accordance with the relevant safety regulations. Correct grounding and over-current protection must be provided to ensure operational safety.

Pay attention to the high temperature components and sharp edges. The temperature of the heat sinks on the outside of the device can reach over 70° C in normal operation. There is the risk of burn injury when these parts are touched.

Warning, Risk of electric shock

Personnel must remove all conductive jewelry or personal equipment prior to installation or service of the device, parts, connectors, and/or wiring.

Only the licensed and qualified electricians are allowed to perform the installation, wiring, maintenance or modification on the device.

Switch off the circuit breakers before installation and wirings. Never stand on a wet location when working on installation and wirings.

Even when no external voltage is presented; the inverter can still contain high voltages and the risk of electrical shock. Allow 5 minutes for the inverter to discharge completely after disconnecting the AC and DC sources from the inverter.

The inverter must be provided with an equipment-grounding conductor connected to the AC ground.

Maintenance and Clean

Each inverter is well calibrated before shipment and needs no additional maintenance during normal operation.

Alterations are not to be made and no tampering with the assembly in the inverter without the manufacturer's authorization unless specified elsewhere in this manual. They may result in injury, electric shock, or fire and void the warranty.

The inverter contains no user serviceable parts inside. Only trained staff is authorized to repair the unit. Please contact the specialized dealer or system technician for further examination.

Wipe the enclosure and display lens with a soft cloth. Do not use aggressive detergent or cleaning solvents.

Switch the DC disconnect on and off at least once per month in order to clean the contacts of switch.

Contents

<u>1</u>	INTRODUCTION1
1.1	General1
1.2	SPECIFICATIONS
1.3	Functions and Features6
1.4	Accessories7
<u>2</u>	INSTALLATION
2.1	PLACEMENT
2.2	Mounting9
2.2.	1 SAFETY NOTES
2.2.	2 INSTALL INVERTER ON WALL10
2.2.	3 CHECK INSTALLATION STATUS13
2.3	WIRING THE INVERTER 14
2.3.	1 SAFETY NOTES
2.3.	2 INTRODUCTION14
2.3.	3 DC INPUT WIRING15
2.3.	4 COM Line Connection
2.3.	5 AC OUTPUT WIRING23
<u>3</u>	OPERATION
3.1	Overview
3.2	LCD DISPLAY 27
3.3	BUTTONS ON PANEL
3.4	L ED INDICATION

3.4.1	OPERATIONAL STATUS	29
3.4.2	Check Error Message	31
3.4.3	Setting before Operation	32
3.4.4	Information	34
3.5	DESCRIPTIONS OF ERROR MESSAGES	
3.6	TROUBLESHOOTING	41
<u>4 T</u>	ECHNICAL DOCUMENTATION	4 <u>6</u>
4.1	OUTLINE DRAWING	46
4.2	MPP EFFICIENCY	

List of Figures

Fig 1: Grid connected solar system overview	1
Fig 2: Accessories in the package	7
Fig 3: Hanging surface	9
Fig 4: Clearances required for installation	
Fig 5: Fasten the mounting bracket	
Fig 6: Hook the inverter on the mounting bracket	
Fig 7: Fasten the screws	
Fig 8: Enclosure bottom view	
Fig 9: Assemble your DC terminals (solar panel) - step 1	
Fig 10: Assemble your DC terminals (solar panel) - step 2	
Fig 11: Complete your DC terminals (solar panel)	
Fig 12: Communication interface assignment	
Fig 13: Communication interface RJ45 pins assignment	
Fig 14: Remove the RS485 port housing	
Fig 15: Assemble the communication cable gland	20
Fig 16: Assemble the communication cable	21
Fig 17: Lock the RS485 port housing	21
Fig 18: Fasten the waterproof cable gland nut	21
Fig 19: Multi-inverter wiring by RS485	
Fig 20: Assemble your AC contacts terminals - step 1	23
Fig 21: Assemble your AC connector cable clamp - step 2	24
Fig 22: Assemble your AC connector cable - step 3	24
Fig 23: Push the connector until the latch is positioned	25
Fig 24: Complete your AC wire connection	25
Fig 25: Overview front panel of the inverter	26
Fig 26: LCD display overview	27
Fig 27: Outline drawing	
Fig 28: MPP Efficiency of the TOUGH-3P-SERIES	47

1 Introduction

1.1 General

The TOUGH-3P series is a three phase grid-connected inverter solution from AEC. The grid-connected inverter converts DC power yielded from solar array into AC power for household consumption. The inverter operates intelligently under normal conditions and provides no backup power in case of power cut. The configuration is straightforward as shown below. Connect the PV wires from floating (ungrounded) PV array to the DC input of the inverter; also, connect the AC output to the service entrance. Please consult with your installer for PV array ratings and external protective devices if the electrical codes are stipulated locally.

Fig 1: Grid connected solar system overview

1.2 Specifications

Model	Tough-20K-3P	Tough-25K-3P	Tough-30K-3P
Output Data (AC)			
Maximum AC Output Power	20,000VA	25,000VA	30,000VA
Maximum AC Output Current	32 a.c.A	40 a.c.A	48 a.c.A
Nominal AC Voltage	3x2	30 a.c.V/400 a	a.c.V
Grid AC Frequency	50/6	0Hz, auto-sele	ection
Power Factor	> (0.99 @ 20% lo	ad
Reactive Power Factor	1 or adjusta	ble from 0.8in	d to 0.8cap*
Total Harmonic Distortion		< 5%	
Max. output fault current (Inrush)	92.4 A _{peak} / 200 μs		
Max. output overcurrent protection	80 A		
AC connection / Grid forms	3P4W+PE / TN-C, TN-S, TN-C-S		
Input Data (Solar)			
Maximum DC Power	21,000W	27,000W	31,600W
Maximum DC Input Current(IscPV)	2 x 30 d.c.A	2 x 30 d.c.A	2 x 35 d.c.A
Max. backfeed current to the array		0 d.c.A	
Max. number of MPP Trackers	2		
Maximum DC Voltage	1000 d.c.V		
MPP Tracking Voltage Range 300-900 d.c.V		·	
Operating Voltage Range 250-1000 d.c.V			V

Efficiency			
MPPT Efficiency		>99.9%	
Maximum Efficiency	98.1%	98.2%	98.3%
Euro. Efficiency	97.3%	97.4%	97.5%
Consumption:		<20W / <1V	٨
Operating (standby) / Night		<2010 / <11	/ /
General Specification			
Dimensions (W x H x D) in mm	50	05 x 666 x 1	.85
Weight		37kg	
Cooling Concept	Foi	ced Air Coo	oling
Acoustic Noise Level		< 45dB(A)	1
Maximum Operating Temperature			
Range without derating @ normal	+50 °	°C	+45 °C
voltage			
Ambient Temperature Range		-25 to +60 °	
Storage / Transportation Condition		-25 10 +00	L
Relative Humidity		0/	donaina
Storage / Transportation Condition	4 to 95%, non-condensing		luensing
Operating Altitude		2000 m	
Pollution Degree		PD3	
Protection Class of Enclosure		IP65	
Protection Class		Class I	
Overvoltage Category	0VC II (PV) / OVCI	I (Mains)
Topology	Тт	ansformer	ess

Features	
DC Connection	PV4, Tyco, MC4
DC Disconnect	Option
AC Connection	AC connectors
Display	Large Iconic LCD screen
Communication Interface	RS485 , Ethernet/WiFi (Option)
EMC & Low Voltage Directives	2004/108/EC & 2006/95/EC
Standards	IEC/EN 62109-1/-2,
Stantiands	VDE-AR-N 4105
Warranty	5 years

* Adjustable from 0.9 overexcited to 0.9 underexcited with VDE-AR-N 4105.

Non-isolated inverters shall be provided with installation instructions that require PV modules that have an IEC 61730 Class A rating.

Setting	VDE-AR-N 4105		
Setting	Range	Default	
Over-frequency (Hz)	50.05~51.50 (60.05~61.50)*	51.5 (61.5)*	
Over-frequency disconnection time (cycle)	1~10	8	
Under-frequency (Hz)	47.50~49.95 (57.50~59.95)*	47.50 (57.50)*	
Under-frequency disconnection time (cycle)	1~10	8	
Over-voltage (Vac)	235~264.5	264.5	
Over-voltage disconnection time (cycle)	1~10	8	
Under-voltage (Vac)	184~225	184	
Under-voltage disconnection time (cycle)	1~10	8	
DC injection tripping current (A)	0.1~1.0	1.0	
DC injection disconnection time (cycle)	1~150	8	
Insulation resistance trip setting (M Ω)	0.5~10	0.5	
PV start voltage (Vdc)	150~500	150	
Reconnect delay** (s)	5~300	60	

Adjustable voltage, Frequency and Reconnection Settings

* This inverter product is compatible on the frequency of 50Hz or 60Hz.

** Once a grid failure occurs, the inverter waits 5~300 seconds before the next connection to the utility grid. The default setting is 60 seconds for VDE-AR-N 4105.

1.3 Functions and Features

- DSP (Digital Signal Processor) makes use of the advanced digital control technology to enhance the conversion efficiency and the added functions.
- Conformity to the EMC, Low Voltage Directives and Standards, e.g. 2004/108/EC, 2006/95/EC, IEC/EN 62040-1, IEC/EN 62109-1/-2 and VDE-AR-N 4105.
- Single/Dual MPPT (Maximum power point tracking), the range of MPPT: 300~900Vdc.
- Maximum efficiency: higher than 98.3%.
- Solution Iconic display easy to monitor energy flow.
- Special external capacitor modular design for long life span.
- IP65 design / up to 45°C without derating.
- Low loss SVPWM configuration with high-frequency switching IGBT.
- Waterproof and quickly-installed connectors used.
- Monitor the power information and the system settings via a computer, the monitoring software and RS485 / WiFi (optional) / Ethernet (optional) interfaces (please refer to the Installation Manual).
- The power generation system is interactive and complementary to the utility's power. When the power generation is insufficient, it can be supplied by the local utility's power; when power cut happens, disconnect the power automatically to maintain the personnel safety.

1.4 Accessories

Please check the inverter and accessories in the package. If there is some part incomplete or any pages missing from the manual, please contact the authorized agent. Please check the following items in the box:

- A. Photovoltaic Inverter x 1
- B. Mounting Bracket x 2
- C. Female Cable Coupler Plus Key x 6 and Minus Key x 6
- D. AC Female Connector x 1
- E. Connector cover x 1
- F. Operation Manual (incl. warranty page) x 1
- G. Fixing Screws (bet. the inverter and bracket) x 2

Fig 2: Accessories in the package

2 Installation

2.1 Placement

Please take the following points into consideration when installing the inverter and selecting the installation location:

- A solid and vertical wall is essential; not to hand it on a forward-tilting surface. The backward-tilting angle must be less than 10°.
- The installation location of the inverter must conform to the size and weight specifications (See the technical information on section 1.2.).
- The inverter installation location must have the appropriate amount of space and be kept clear, and the inverter can be safely operated without the assistance of auxiliary tools (such as ladder or lift).
- The installation location of the inverter must have at least 20 cm of space. The environmental temperature must be kept at -25 °C ~ 60 °C.
- To obtain the best conversion efficiency, the DC and AC power connection prefer the shortest distance. If the distance exceeds 20m, it's recommended that the diameter is increased (according to the specifications of this inverter, the standard diameter of DC and AC power wires are 6 AWG).
- In order to select the appropriate installation location for the inverter, please see the outline drawing.
- The inverters with IP65 rating can be installed outdoors. However, it's recommended to avoid direct sunlight and rain. If it can't be avoided, please install a rain shield to extend the lifetime of the inverter.

In theory this IP65 unit can be used in pollution degree 4. However, it is suggested to provide with means to reduce the micro-environment to pollution 1, 2 or 3.

Fig 3: Hanging surface

2.2 Mounting

2.2.1 Safety Notes

Don't remove the external cover of the inverter. No parts inside the inverter are to be maintained by the user. If necessary, only qualified maintenance staff can carry out; The solar panel exposed to sunlight supplies DC power. Pay attention to electric shock when connecting the DC power to the inverter.

The inverter (not stand-alone type) is designed to connect in parallel with the utility network. In order to avoid damage, the AC output can't be connected to a power generator or the like.

Heat will generate when the inverter operates. Don't touch the heat sink or on top of the enclosure to avoid injury due to the hot surface.

2.2.2 Install Inverter on Wall

- 1. Select the appropriate space and the solid and vertical surfaces enough to support the inverter.
- The space surrounding the inverter must be appropriate so that heat can be dissipated easily and maintained conveniently, as shown below.

Fig 4: Clearances required for installation

3. The wall bracket is fixed on the wall by these $8 \sim 12$ screws. The position of the fixing hole can be selected according to the wall condition. The construction can be referred in the following figure.

Fig 5: Fasten the mounting bracket

4. The four holes behind the inverter are simultaneously aligned with the four hooks on the bracket. Two persons are required to complete this step safely and correctly.

Fig 6: Hook the inverter on the mounting bracket

5. Finally, the screws (see Appendix H in 1.4) are used to lock in the holes on the left and right sides of the support, so that the inverter can be fixed on the wall rack.

Fig 7: Fasten the screws

2.2.3 Check Installation Status

- Ensure the backward tilting angle of the installation wall should not exceed 10°, and the inverter can't be installed on the walls which have forward-tilt.
- 2. Ensure the inverter is correctly fixed on the hooks at the four corners of hanger.
- 3. Ensure the two screws at the left and right sides of the inverter (safely fixed) have been indeed fastened.
- 4. Try to lift upward the inverter to ensure the firmness.
- 5. Ensure the LCD height is appropriate and the button can be conveniently operated.

Keep the wires as close or twist them together as you can. Also, run them in grounded conduit. This means the grounding path shall be as short as possible.

Try to keep antennas far from the inverters and house wirings. Some interference might be detected in close proximity to the potential noise source due to the disposal of system installation.

This inverter product complies with the requirements of the electromagnetic compatibility, IEC/EN 61000-6-2 and 61000-6-3. It's recommended to use household appliances with resistance to noise, which fulfills the interference immunity requirements, too.

2.3 Wiring the Inverter

2.3.1 Safety Notes

Avoid static discharge damaging inverter.

The parts inside the inverter could be damaged due to the electric static discharge. Please take the grounding measures prior to touching any internal parts and terminals.

2.3.2 Introduction

The inverter comprises DC input (connect to solar panel), AC output (connect to service entrance, utility power) and communication ports (monitor the inverter status). Please refer to the following figure.

Fig 8: Enclosure bottom view

	Description		
Α	DC disconnect switch used for isolation the inverter from solar panel.		
В	Connect the positive polarity (+) of DC wires from solar panel.		
С	Connect the negative polarity (-) of DC wires from solar panel.		
D	RS485 and WiFi/Ethernet (optional) communication ports.		
Е	Connect AC wires to service entrance, utility power.		

2.3.3 DC Input Wiring

2.3.3.1 Safety Notes

Touching the energized parts or the metal part of the connector may cause electric shock. The solar panel exposed to sunlight supplies hazardous DC voltage.

The maximum DC (PV array) input current of each MPPT in this inverter is 35 A and the DC connector rating is 25 A, so need to connect two DC input connector to apportion. The diameter of the power wire (e.g. c(UL) listed as RW90 1000V) shall be 8 AWG (8.36 mm²) at least, and use 1000VDC/50A circuit breaker each MPPT.

Ensure the open-circuited voltage (Voc) of your solar panels is less than 1000 Vdc under any condition, lowest temperature especially. Ensure the electrical polarity is correct prior to connection. The inverter will be damaged in case of miswiring.

2.3.3.2 Connect Solar Connector

- 1. Take the solar connectors from the package, which includes 2 male connectors (positive and negative, see section 1.4).
- Peel the DC wires insulation about 8~10 mm and insert them into the metal terminals to the end. Then use a connector plier to press the terminals.

Fig 9: Assemble your DC terminals (solar panel) - step 1

 Ensure the electrical polarity and loosen nuts on the connectors. Insert the pressed terminal to a locked extent, and try pulling back to check its tightness. Then tighten the nut.

Fig 10: Assemble your DC terminals (solar panel) - step 2

- 4. Ensure both the DC disconnect switch and the external AC breaker are in OFF position.
- 5. Insert the pressed terminals to the female sockets. Only if the latch is in position does the DC wires connection be completed.

Fig 11: Complete your DC terminals (solar panel)

2.3.4 COM Line Connection

2.3.4.1 Instruction

The product is equipped with RS485 and WiFi/Ethernet (optional) interface. RS485 supports communication between multiple inverters in parallel so the two sets of RS485 pins are provided for this function. The inverter has equipped with four RJ45 sockets. Please refer to the figure/table below as to the pins assignment.

Fig 12: Communication interface assignment

Fig 13: Communication interface RJ45 pins assignment

RJ45 Pin	Description
1	No Signal
2	RX B (485B)
3	+5V ISO GND
4	No Signal
5	No Signal
6	TX A (485A)
7	+5V ISO
8	No Signal

1. RS485 socket:(for inverter monitoring)

2. EM socket:(for energy meter)

RJ45 Pin	Description
1	RX B (485B)
2	TX A (485A)
3	+5V ISO GND
4	No Signal
5	No Signal
6	No Signal
7	+5V ISO
8	No Signal

3. FS socket: (for update firmware)

RJ45 Pin	Description
1	TxD (Mater MCU)
2	RxD (Mater MCU)
3	+5V ISO GND
4	No Signal
5	TxD (Slave MCU)
6	RxD (Slave MCU)
7	+5V ISO
8	No Signal

Only one interface (RS485 or WiFi/Ethernet) is functioning at a time.

2.3.4.2 Connection

1. Ensure both the DC disconnect switch and the external AC breaker are in OFF position; loosen the screws and remove the housing of COM port.

Fig 14: Remove the RS485 port housing

2. Counter-clockwise loosen the waterproof cable gland nut, remove waterproof plugs behind cable gland nut.

Fig 15: Assemble the communication cable gland

3. Loosen the rear nut on the gland and pass the communication cable through one of the rubber holes.

Fig 16: Assemble the communication cable

4. Connect each thread to the correct terminal contact (see 2.3.4.1) and lock the COM port housing back to the inverter.

Fig 17: Lock the RS485 port housing

5. Check the cable length and tightness. Insert the waterproof plug into another hole. Fasten the waterproof cable gland nut.

Fig 18: Fasten the waterproof cable gland nut

2.3.4.3 Connection in Parallel by RS485

For more than one inverter in a system, RS485 provides this convenient communication functions. The inverter provides two RS485 contacts. Basically one (contact) is of connecting to your monitoring device (e.g. PC); and the other one is for connecting with adjacent inverter.

Fig 19: Multi-inverter wiring by RS485

2.3.5 AC Output Wiring

2.3.5.1 Safety Notes

Ensure both the DC disconnect switch and the external AC breaker are in OFF position.

The maximum AC output current of this inverter is 48 A per phase and the AC connector rating is up to 50 A. The diameter of the power wire (e.g. Type USE/USE-2 600V, UL 854) shall be 6 AWG (13.3 mm²), and use 300VAC/50A circuit breaker.

The resistance of AC power line on utility network should be less than 1.25 $\boldsymbol{\Omega}.$

Ensure the local utility distribution prior to any connection. The nominal voltage and frequency shall be within the electrical specifications of the inverter.

2.3.5.2 Connect AC Connector

 Peel five AC wires insulation about 8~10 mm and insert them through the AC connector (see Appendix H in 1.4).

Fig 20: Assemble your AC contacts terminals - step 1

 Connect the AC wires and ensure the electrical polarity, which includes Red (L1 as live), Blue (L2 as live), White (L3 as live), Black (N as neutral) and Green (Ground).

Fig 21: Assemble your AC connector cable clamp - step 2

3. Align two smooth gaps over the connector when jointing. Push the connector until the latch is positioned. Then, fasten the gland nut to keep the waterproof usage.

Fig 22: Assemble your AC connector cable - step 3

4. Ensure both the DC disconnect switch and the external AC breaker are in OFF position. Then, insert AC connector to the socket on the inverter. Align the hook on male connector with the square hole on female socket when jointing. Push the connector until the latch is positioned.

Fig 23: Push the connector until the latch is positioned

5. Check the cable length and tightness. Fasten the AC connector cable.

Fig 24: Complete your AC wire connection

3 Operation

3.1 Overview

The DC (PV) voltage reaches a certain minimum voltage if sufficient insolation is available, the inverter will enter "grid-feed" mode. If, as nightfall approaches, the voltage drops below the minimum voltage value, grid-feed mode ends and the inverter will shut down itself.

Fig 25: Overview front panel of the inverter

1	LCD Display	6	LED Display
			(Green/Red/Blue)
2	DC switch	7	"▲(UP) " Key
3	DC connectors (solar)	8	"▼(DOWN)" Key
4	Communications ports	9	" ESC" Key
5	AC connectors (Grid)	10	"ОК" Кеу

3.2 LCD Display

The display menu is shown once the inverter starts up. Measured values and all of the information are displayed here. The LCD continues to display the information following the process flow described below in this section.

Fig 26: LCD display overview
3.3 Buttons on Panel

By using the " \blacktriangle ", " \blacktriangledown ", "OK" and "ESC" buttons, users may be able to view which measured value is to be displayed.

- "▲", "▼" key: Press "▲" or "▼" key to switch the various displays for measured values and data.
- 2. "OK" Key: To configure settings.
- 3. "ESC" Key: Return to previous state.

3.4 L ED Indication

The inverter is equipped with LED that give information about the various operating statuses as follows:

1. LED (blue flicker): Waiting

The Inverter sets the initial values and it waits to start up automatically in case the system is safety.

2. LED (green): Normal

In this mode, the green LED shines when the inverter feeds power to the grid.

3. LED (red): System Fault

The inverter was stopped when an unrecoverable failure occurred. (Refer to "error message table") If the fault notification cannot be cleared, please contact your local service staff.

4. LED (yellow): Recovery Fault

In some situations, such as abnormal voltage and frequency, the inverter has detected a recoverable failure and re-starts on its own.

3.4.1 Operational Status

The following paragraphs explain how the display works in each mode.

- 1. **Illumination:** Automatically the inverter shuts down in case of the low insolation.
- 2. **Standby:** The Inverter sets the initial values and it waits to start up automatically in case the PV array voltage is sufficient.

MA-462 -STANABY

3. **Checking:** On both AC and DC side the inverter checks the system parameters and the 4 AC relays to ensure the safety of connection.

MOGE: CHECKING

4. Grid/MPP: The inverter is feeding the AC power into the grid.

MOBE: ERIB/MPP

5. **Sys. Fault:** There is some recoverable failure detected. In abnormal situations the inverter re-starts on its own.

6. **Sys. Lock:** The inverter stops if an unrecoverable failure occurs; these some problem might be handled by technical service only.

GYG-I NTK

7. Derating: The inverter is limiting the maximum AC power feeding. This is not a malfunction.

8. **Warning:** The system has encountered some minor warning, but it can continue to feed the AC power to the grid.

9. **Sys. Flash:** The firmware is being updated.

10. **Sys. CNTL:** The inverter is remote controlled by the external controller.

MAGAE ENTE 5YG-

3.4.2 Check Error Message

When error messages display, users could select the "Error message" by press the " \forall " or " \blacktriangle " key from the main menu and then press the "OK" key to confirm. For each page, there are recorded error events as shown in the following figure. To see another recorded event, press " \forall " and " \blacktriangle " key to toggle the display. Please refer to clause 3.5 for more explanations as to error messages.

The last 99 failure information, including the date and real time clock, can be promptly read from the LCD display.

3.4.3 Setting before Operation

There are some parameters that can be re-configured from the panel. Users may select "Setting" from the main menu and press the "OK" key to enter system setting as shown below. Only the standard selection is password protected. Users may change the values for other settings, such as date, time, start-up voltage, communication baud rate, RS485 address, displays the cumulative/total electricity consumption, and operator mode. When the setting is complete, the inverter must be restarted to have the new settings effectively executed. The parameters can be re-configured from the panel are described as follows:

~	\sim
1	1 -

The real date and local time should be manually reset when completing the system installation.

Date/Time: The date and time settings.
Start V: Adjust the minimum startup voltage.
Std.: The standard setting according to local requirements.
Baudrate: Change the communication baud rate.
Address: Change the RS485 address.
Output Energy: Select the accumulative total of generating electricity.

(Display post by day, month, and year.)

Press "▼ / ▲" key ↑↓

TIME: 18:50:35

Press "▼ / ▲" key ↑↓

STRRT: 300V

Press "▼ / ▲" key ↑↓

STULL SERMANY

Press " $\mathbf{\nabla}$ / \mathbf{A} " key $\uparrow \downarrow$

EBALJCSRATE: 9600

Press " $\mathbf{\nabla}$ / \mathbf{A} " key $\uparrow \downarrow$

Ficial Research 255 - 255

Press " $\mathbf{\nabla}$ / \mathbf{A} " key $\uparrow \downarrow$

OUTPUT ENERGY: BRY

All the tripping-limit settings are protected by password. Only the authorized installers can adjust the protective functions under the approval of the distribution network operator (DNO).

The network and system protective values are readable via the communication interface or LCD display.

3.4.4 Information

Users may select the "Information" from the main menu and press the "OK" key to enter system information as shown below. The screen will display information of your inverter including firmware and etc.

- **\Box** T/N: The model name of the inverter.
- **S/N:** The serial number of the inverter.
- Master_Ver: The firmware version of the main controller.
- **Slave_Ver:** The firmware version of the slave controller.
- **LCD_Ver:** The firmware version of the LCD display controller.
- **Real-Time data:** The inverter's real-time data including voltage,

current, power and etc.

↑↓

3.5 Descriptions of Error Messages

In the event of a fault, the inverter will stop feeding the AC power to the utility grid and display the error message on the LCD. Qualified service staff shall do the analysis, measurement, and debug, if needed, according to the error message in order to resume normal conditions. Please contact your service representative if the same error message is persistent.

Error Message	Description
CRL8RTALOSS	 Internal calibration data is lost.
COMM_ERROR	 External communication failed. *warning message
URIFT FAC	Islanding is detected.
EEPROM FRULT	An error occurred when reading or writing the EEPROM. *warning message.
EBCELOW	The AC frequency of the utility grid is under the lower limit.
FRSTERRTHEURRENT	The drastic change of the leakage current has exceeded the allowable value.

Error Message Table

180 8168	■ The AC current has exceeded the
IRC MAX_	maximum permissible value.
IdE-INT.FRULT	■ The DC injection detection circuit failed.
IdC-INJ. HIGH	The DC current injected into the utility
	grid side is too high.
IPVA HET FALLT	■ The DC or AC current sensor is abnormal.
IRC HCT FRULT	
HCT FRULT	
IPVR RIGR	■ The DC current has exceeded the
IPV8 HIGH	maximum permissible value.
INV. TEMP. HIGH	The inverter's igbt module internal
	temperature sensor too high.
MEUS dIFF_HIGH	 Internal measurements from both CPU's
	are different from each other.
METER COMM_ ERR_	 External communication between the
	energy meter and the inverter is
	abnormal.

METER REVERSE CT	• The direction of current flow of the	
	energy meter is incorrect.	
MOJEL ERROR	The hardware and MCU firmware version	
	does not match.	
NO LORA RUNNING	The energy meter did not detect the user	
	load. *warning message.	
NO UTILITY	The AC voltage of the utility grid side has	
	not been detected.	
OFFSET FRULT	 Internal reference voltage detection 	
	circuit failed.	
PPVR HIGH	The DC power has exceeded the	
PPVB HIGH	maximum permissible value.	
REMLI FRULT	The residual current monitoring unit is	
	abnormal.	
RELAX OPEN	The output relay failed.	
RELAY SHORT		
RELAY FAULT		

RISO LOW	The insulation resistance between PV array and the ground is below the allowable value.
RTC FRULT	 The RTC is stopped abnormally. *warning message
SLOWERRTHEURRENT	The leakage current detected by inverter has exceeded the maximum permissible value.
SPI ERROR	 Internal communication between MCU inside is abnormal.
SYSTEM ERROR	The system is not working properly.
ТЕМР. НІБН (ШИ)	The temperature inside the inverter exceeds the nominal operational range.
URC HIGH FRST URC HIGH	The AC voltage of utility grid is above the upper limit.
FAN LOEK	The Fan is abnormal.

URC-LOW	■ The AC voltage of utility grid is under the
FRST URC LOW	lower limit.
URC OFFSET FRULT	The AC voltage detection circuit failed.
UBCBUS FRULT	The DC/DC converter is not working properly.
DaCBUS RIGR	 Internal DC bus voltage is too high.
UJC8US LOW	Internal DC bus voltage is too low.
UdCBUS UNBRLANCE	 Internal DC bus voltage is unbalanced.
UPVA BIGB	 The DC voltage of PV array is higher than
UPV8 НІБН	the permissible 1000 Vdc.
VERSION ERROR	The firmware version is not correct.

3.6 Troubleshooting

The Inverter requires very little maintenance. When the inverter has encountered an event of fault, the error message will be displayed on the LCD and recorded in memory. If you encounter problems with the inverter, refer to the tables in this chapter for probable causes and recommended solutions, and then remove the fault condition(s) to have the inverter return to normal condition and continue to feed AC power to the utility.

Error Message	Possible Causes	Disposal Measures
	External (PC, Meter)	 Check the external
	communication	(PC, Meter)
COMM_ERROR	malfunctions	communication
METER COMM_ERR_	 Baud rate or protocol 	equipment and cable
	error has occurred	 Check the baud rate and
		protocol format
	■ EEPROM's	 Inform professional
CALORTALOSS	parameters is lost or	service staff to update
	incorrect	the EEPROM's
		parameters
	A transient loss of the	Inform professional
arift fac	utility grid	staff to update the
	 Inverter placed at 	firmware if the fault
	weak points of the	continues
	utility grid	continues

Troubleshooting Table

Error Message	Possible Causes	Disposal Measures
	■ EEPROM's	 Inform professional
EEPROM FRULT	parameters are	service staff to update
	unrecognized	the EEPROM's
		parameters
	Cables or wires	Make sure that the
ERSTERRTHEURRENT	insulation is damaged	insulation rating is
SLOWERRTHEURRENT	and it causes a high	sufficient for the
	ground fault current	application
	 Current sensor 	 Restart the inverter
	detection circuit is	again if the fault
HET FRULT	abnormal	continues
		 Inform professional
		staff if you fail to restore
	 Utility voltage drops 	Benign neglect if it
IRC BIGB	suddenly	seldom occurs
IRC MRX_	 Inverter is abnormal 	 Inform professional
		staff if you fail to restore
	DC injection current	 Restart the inverter
	detection circuit is	again if the fault
IdE-INJ. RIGR	abnormal	continues
	The default settings is	■ Inform the service to
	inappropriate	check the settings
Ide-INJ. FAULT	 Circuits inside 	 Restart the inverter
DEFSET FRULT	inverter are	again; Inform
URE OFFSET FRULT	abnormal	professional staff if you
LUI ILLA LUI ILLUILLA ILLA ILLUILLA IL		fail to restore

Error Message	Possible Causes	Disposal Measures
	Calibration	Restart the inverter
	parameters have	again if failed to restore
MEUS aIFF. HIGH	deviated	Inform professional
	Circuits inside inverter	service staff to check the
	are abnormal	calibration parameters
	The direction of	Check current sensor
	current flow of the	direction must flow into
METER REVERSE	energy meter is	the user's load
ET	incorrect.	Check the AC wires L as
		live and N as neutral is
		connected correctly
MDBEL ERROR	Default setting is	Inform the service staff
	wrong	to replace the inverter
	The energy meter did	Check the users' load
NO LORA RONNTNG	not detect the user	and increase the load
	load. *warning	(no-load condition, the
	message.	inverter cannot start)
	The utility grid is	Wait until the grid is
	disconnected	restored
	Grid power has	Close the AC switch/
	blocked	breaker after clearing
NO UTILITY	AC switch/breaker	the faults
	between inverter and	Check the AC wirings
	utility is opened	
	Incorrect AC	
	connection	

Error Message		Possible Causes	Disposal Measures
	.	The residual current	Restart the inverter again;
REMLJ FALJLT	1	monitoring unit is	Inform professional staff if
	á	abnormal.	you fail to restore
		Dew or some object	Check the impedance
	6	exits between PV array	between PV(+), PV(-) and
RISO LOW	á	and earth.	the ground must be more
	.	The insulation	than 1MΩ.
	1	resistance is below the	Inform service staff to
	ä	allowable value.	check the settings
RELAY OPEN		AC output relay is	Restart the inverter again;
RELAY SHORT	á	abnormal.	Inform professional staff if
RELAY FAULT			you fail to restore
		Internal	Restart the inverter again;
SPI ERROR	(communication or	Inform professional staff if
	(circuit is abnormal.	you fail to restore
		Internal PI controller is	Restart the inverter again
	á	abnormal	if the fault continues
SYSTEM ERROR			Inform service staff to
			update the firmware if you
			fail to restore
		Ambient temperature	Make sure the ambient
TEMP. HIGH	i	is too high (low)	temperature of installation
(TEMP_LOW)	.	The natural air	is within -20°C to 60°C
		circulation is	Remove any obstacle near
	i	insufficient	heat sink

Error Message	Possible Causes	Disposal Measures
	 Main voltage or 	 Wait until the grid is
	frequency is higher	back to stable.
LAC AIGA	or lower than the	 Request the utility
URC LOW	permissible value	supplier to improve and
FAC HIGH	 The settings are 	then inform
F-FR[[]W	inappropriate	professional staff to
FRST URC HIGH		change the settings.
FAST URE LOW		 Inform professional
		staff to check the
		settings
FAN LOEK	 Fan is abnormal or 	 Clean the fans or change
	blocked	new fan
Daceos rigr	 Circuits inside 	 Restart the inverter
080805 000	inverter are	again if the fault
UdCaus FRULT	abnormal	continues
UJCBUS UNBRLANCE		 Inform professional
		staff if you fail to restore
	 PV array voltage, 	 Disconnect the DC
OPV BIGB	current or power	source and inform the
IPV HIGH	exceeds the	system installer to
PPV HIGH	permissible value	check the configuration
		of PV arrays
	 Firmware version is 	 Inform professional
VERSION ERROR	incompatible	staff to reinstall the
		firmware

4 Technical Documentation

4.1 Outline Drawing

Fig 27: Outline drawing

4.2 MPP Efficiency

The MPP efficiency is shown below.

Fig 28: MPP Efficiency of the TOUGH-3P-SERIES

12F No. 19-11 SAN-CHUNG ROAD, NAN KANG DISTRICT

TAIPEI, TAIWAN, R.O.C

TEL:+886-2-2655-3456

FAX:+886-2-2655-2286