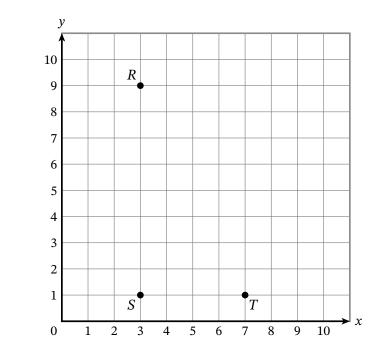
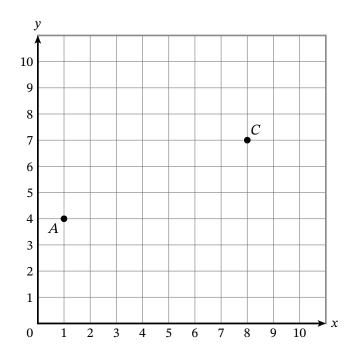


Name


Date

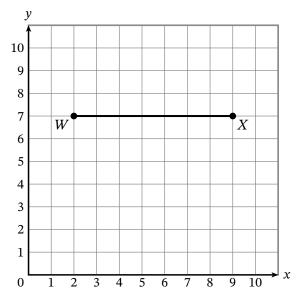
1. Rectangle *MNOP* is shown in the coordinate plane.


- a. Circle the ordered pairs for vertices of rectangle MNOP.
 - (5,6) (8,5) (8,2) (8,6)
 - (3, 2) (4, 2) (3, 4) (3, 6)
- b. Points *M* and *N* have the same _____-coordinate because they are on the same horizontal line.
- c. Points *N* and *O* have the same _____-coordinate because they are on the same vertical line.

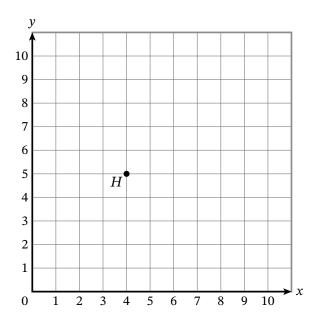
EUREKA MATH²

2. Points R, S, and T are three of the vertices of a rectangle. Plot the fourth vertex of the rectangle. Label the point U and write its ordered pair next to the point.

- 3. Points *A* and *C* are opposite vertices of a rectangle.
 - a. Plot the other two vertices of the rectangle. Label the points *B* and *D*.
 - b. Draw rectangle *ABCD*.
 - c. What are the coordinates of points *B* and *D*?



4. \overline{WX} of rectangle WXYZ is shown in the coordinate plane. The width of rectangle WXYZ is 2 units.


Determine whether each ordered pair could be the location of a vertex of rectangle *WXYZ*. Write each ordered pair in the correct column of the table.

- (9,5) (9,6) (2,8) (9,9)
- (2,5) (9,8) (2,6) (2,9)

Possible Vertex of Rectangle WXYZ	Not a Possible Vertex of Rectangle <i>WXYZ</i>

- 5. Point H is plotted at (4, 5).
 - a. Draw a rectangle with a length of 5 units and a width of 4 units. Use point H as one of the rectangle's vertices.
 - b. What are the coordinates of the three other vertices of your rectangle?

