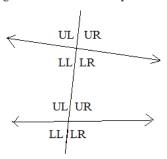
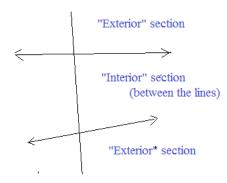

Geometry

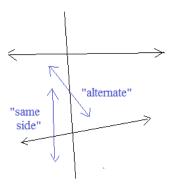
Parallel Lines Cut by Transversals

(Definitions, Examples, Applications & Proofs)


Includes Notes, Practice Quiz, and Solutions


Introduction: Two lines cut by a transversal

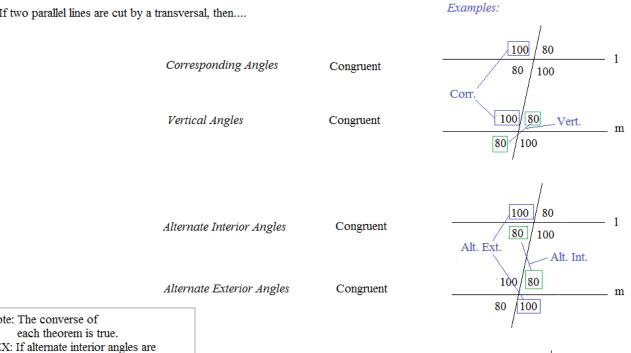
"Corresponding angles":


Angles in the same relative position

"Interior angles" Angles between the two lines

"Alternate angles": Angles on opposite sides of the transversal

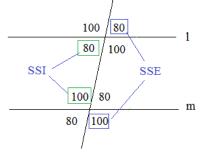
 $1 \parallel m$


Example:

UL upper left angle (top) corresponds to

UL upper left angle (bottom)

Parallel Lines Cut by a Transversal


If two parallel lines are cut by a transversal, then....

Note: The converse of EX: If alternate interior angles are congruent, then the lines are parallel

> Same Side Interior Angles Supplementary

> Same Side Exterior Angles Supplementary

Examples: In the diagram $A \parallel B$ and $C \parallel D$.

Identify the pairs of corresponding angles that include $\angle 1$

1 & 3 are corresponding angles

1 & 9 are corresponding angles

Which pair of alternate interior angles include $\angle 3$?

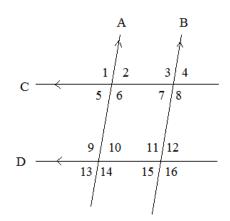
6 and 3 are alternate interior angles

Which pairs of alternate interior angles include $\angle 10$?

10 & 15 are alternate interior angles

10 & 5 are alternate interior angles

List all the angles that are congruent to $\angle 13$

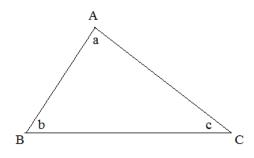

13 & 10 vertical angles

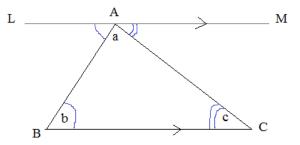
13 & 15 corresponding angles

13 & 5 corresponding angles 13 & 2 alternate exterior angles

13 & 12 alternate exterior angles

also, 7 and 4 are congruent to 13 (transitive property)

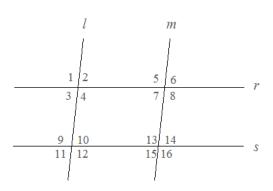



Proving the sum of interior angles of a triangle is 180 degrees (using Parallel Lines Cut by a Transversal)

	Statements	Reasons
1. Triangle	ABC	1. Given
Auxiliary parallel to	V LM is line to BC through A	(parallel postulate) A line can be drawn through a point parallel to a given line.
3. ∠LAB +	$\angle a + \angle MAC = 180^{\circ}$	(angle addition postulate &) measure of a straight angle is 180 degrees
4. $\angle b = 2$ $\angle c = 2$		if parallel lines cut by a transversal, alternate interior angles congruent
5. ∠a+∠	$b + \angle c = 180^{\circ}$	5. substitution

Given: △ABC

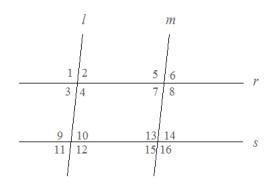
Prove: $m \angle a + m \angle b + m \angle c = 180$



Using Parallel Lines Cut by Transversals: Theorems and Converses

Example: Given: $l \mid m$ and $r \mid s$

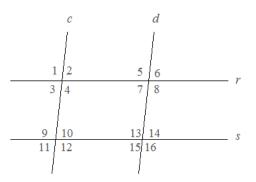
Prove: $1 \stackrel{\sim}{=} 16$


Statements	Reasons
1) l m	1) Given
2) ∠ 1≅ ∠5	If parallel lines cut by transversal, then corresponding angles congruent
3) ∠5 ≅ ∠8	3) Vertical angles are congruent
4) ∠ 1≅ ∠8	4) Transitive property
5) r s	5) Given
6) ∠8≅′∠16	6) Corresponding Angles
7) ∠1≅′∠16	7) Transitive property

Example: Given: $l \mid |m|$ and $r \mid |s|$

Prove: Angles 9 and 6 are supplementary

Statements	Reasons
1) r s	1) Given
2) ∠9 ≅ ∠4	If parallel lines cut by transversal then alternate interior angles congruent
3) Angles 4 and 2 are supplementary	3) Definition of Supplementary angles
4) \angle 9 supp. to \angle 2	4) Substitution property
5) $l \mid \mid m$	5) Given
6) ∠2 ≅ ∠6	6) If parallel lines cut by transversal, then corresponding angles congruent
7) Angles 9 and 6 are supplementary	7) Substitution property

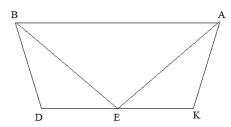

Example: Given: $r \mid \mid s$ $\angle 7 = \angle 10$

Statements

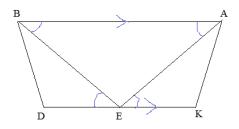
Prove: $c \mid \mid d$

1) $r \mid \mid s$	1) Given
2) $\angle 2 = \angle 10$	If parallel lines cut by transversal, then corresponding angles congruent
3) <u>∠</u> 7 = <u>∠</u> 10	3) Given
4) $\angle 2 = \angle 7$	4) Transitive property (or Substitution)
5) $c \mid \mid d$	5) (converse of alt. interior angles)
	If 2 lines cut by a transversal form congruent alternate interior angles, then the 2 lines are parallel

Reasons

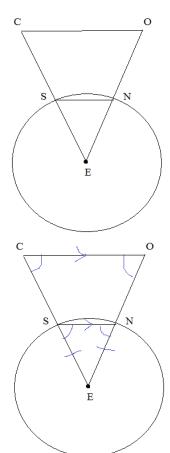


NOTE: Although c and d look parallel, their angles cannot be considered congruent/supplementary UNTIL they are proven to be parallel!!


For example, angles 1 and 5 are not considered congruent UNTIL c and d are proven parallel...

$$\angle AEK = \angle BED$$

Prove: △ABE is isosceles


Recognizing the alternate interior angles...

Example: Given: Circle E

 \triangle COE is scalene

Prove: $\angle C \neq \angle ESN$

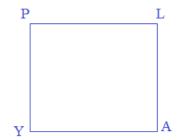
Statements	Reasons
1) AB EC	1) Given
2) <u>/</u> AEK = <u>/</u> BED	2) Given
3) <u>/</u> BED = <u>/</u> EBA <u>/</u> AEK = <u>/</u> BAE	If parallel lines cut by transversal, then alternate angles are conguent
4) <u>/</u> EBA = <u>/</u> BAE	4) Transitive property
5) ABE is isosceles	5) If base angles are congruent, then triangles is isosceles

C = ESN or $C \neq ESN$

Statements	Reasons
1) Circle E	1) Given
2) \triangle COE is scalene	2) Given
3) $\angle C = \angle ESN$	3) Assume for Contradiction
4) $\overline{\text{ES}} = \overline{\text{EN}}$	4) All radii are congruent
5) CO SN	5) If corresponding angles are congruent, then lines are parallel
6) $\angle O = \angle ENS$	If lines are parallel, then corresponding angles are congruent
7) $\angle ESN = \angle ENS$	7) If congruent sides, then congruent angles
8) $\angle O = \angle C$	8) Transitive property
9) △ COE is isosceles	9) If base angles are congruent, then triangle is isosceles

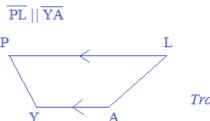
However, 2) and 9) contradict each other

Recognizing the corresponding angles...


Geometry Applications:

EXAMPLE: If quadrilateral PLAY has angles

P: 59 degreesL: 37 degreesA: 143 degreesY: 121 degrees


Which sides are parallel? Sketch the figure.

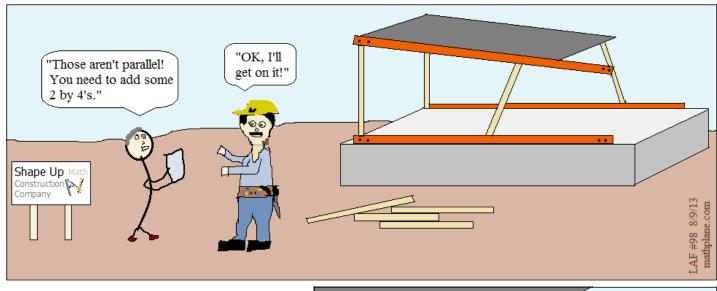
Since the quadrilateral is PLAY, the figure will have consecutive vertices P - L - A - Y


If parallel lines are cut by a transversal, then same side interior angles are supplementary.

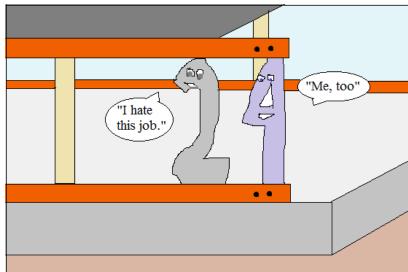
Since ∠L and ∠A are supplementary and ∠P and ∠Y are supplementary

Trapezoid

EXAMPLE: If C and D are parallel, are A and B parallel?


Since C || D, then

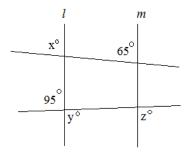
(x + 26) = 2x corresponding angles x = 26


Because x = 26, x + 26 = 52...so, $\angle 1 = 52$ vertical angles

126 + 52 = 178

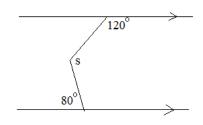
If same side interior angles \neq 180, then lines A and B are NOT parallel

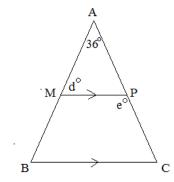
The Math Guy misunderstood the Architect's suggestion...



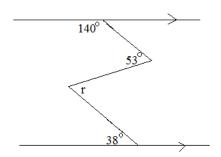
Building Materials

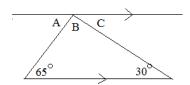
Practice Quiz -→


I. Determine the following:

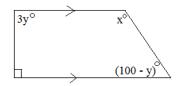

$$z =$$

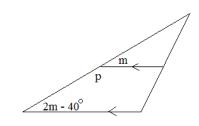
$$l \parallel m$$

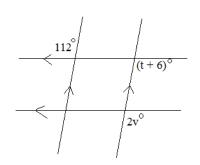

3) $m \angle s =$



 \triangle ABC is Isosceles triangle

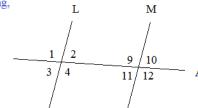

$$\overline{AC} \cong \overline{AB}$$
MP || BC


- 5) ∠**A** = <u>∠</u>B=
 - ∠**C** =


 $\mathbf{x} =$ y =

- 7) m =
 - p =

- 8) t =
 - $\mathbf{v} =$

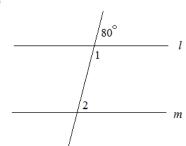

- 9) Use information to determine which lines (if any) are parallel:
 - a) $1 \stackrel{\checkmark}{=} 9$ since 1 and 9 are corresponding, $L \parallel M$

e) 6 = 15

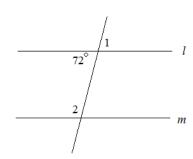
f) 9 = 16

- b) 4 ≃ 8
- d) 10 ≅ 7

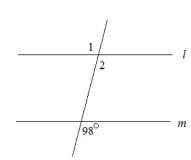
c) 2 ² ² 3

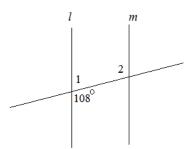


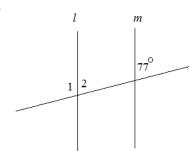
- 13/14 15/16
- h) 13 ≃ 14

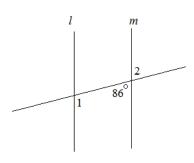

g) 5 ≌ 9

10) Answer and identify the relevant theorem or postulate: (assume $l \parallel m$)

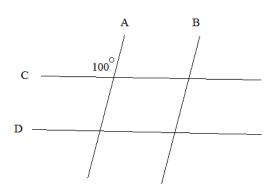

a)


b)

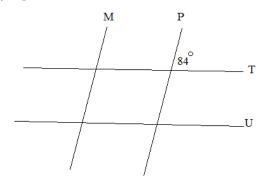

c)


d)

e)



f)



11) Fill in the possible angles from the given information...

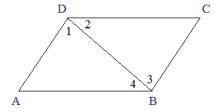
a) $A \parallel B$ and $C \parallel D$

b) T || U

Parallel Lines Cut by Transversals

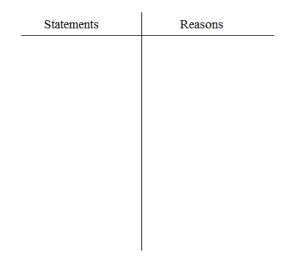
- II. Answer or prove the following:
 - 1) Given $\overline{AD} \parallel \overline{BC}$

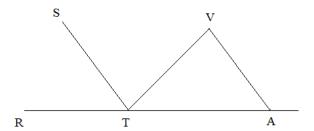
$$\begin{array}{ll} m \angle 1 = & 5.8x + 2.2 \\ m \angle 2 = & 4x \end{array}$$

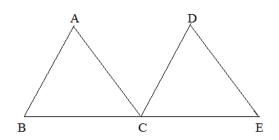

$$m \angle 2 = 42$$

$$m \angle 3 = 6.4x - 4.4$$

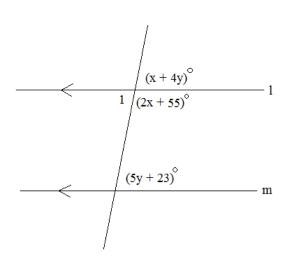
$$m \angle 4 = 42$$

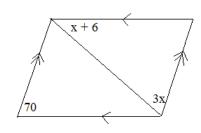

Find m $\angle 1 =$


Are \overline{DC} and \overline{AB} parallel segments?


2) Given: \overline{ST} bisects $\angle RTV$ $\overline{ST} \parallel \overline{VA}$

Prove: △VAT is isosceles

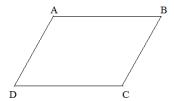

Prove: $\overline{AC} \parallel \overline{DE}$


Statements Reasons

4) Given: 1∥ m

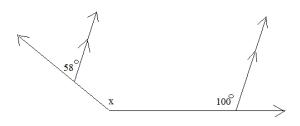
Find: measure of angle 1

5) find x:

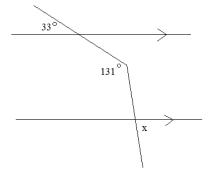

6) Given: $\overline{AB} \parallel \overline{CD}$

 $\overline{AB} \cong \overline{CD}$

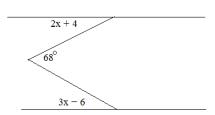
Prove: $\overline{AD} \parallel \overline{BC}$


(Hint: Use an auxilary line segment)

Statements	Reasons



7) "Crook Problems"

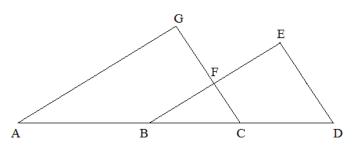

a)

b)

c)

Parallel Lines Cut by Transversals

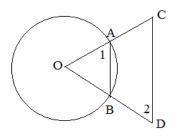
III. Proofs


1) Given: $\overline{AB} \stackrel{\sim}{=} \overline{CD} \quad \overline{AG} \stackrel{\sim}{=} \overline{BE}$

 $\overline{AG} \parallel \overline{BE}$

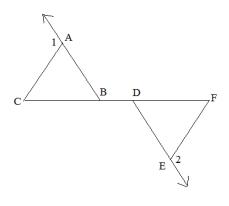
Prove: $\overline{GC} \parallel \overline{ED}$

Statements	Reasons


(Hint: This proof uses a "detour")

2) Given: \bigcirc O $\angle 1 \stackrel{\text{def}}{=} \angle 2$

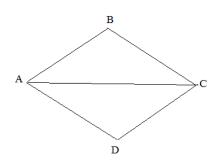
Prove: $\overline{AB} \parallel \overline{CD}$


Statements	Reasons

$$\overline{AB} \cong \overline{DE}$$

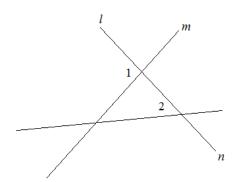
∠1 ≅ ∠2

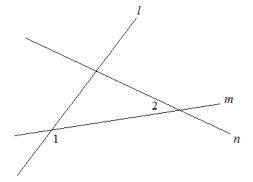
Prove: $\overline{CD} \stackrel{\sim}{=} \overline{FB}$

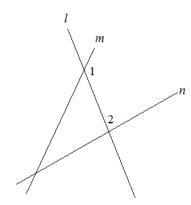


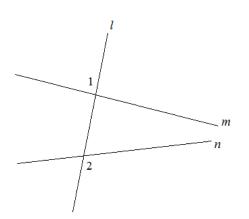
Statements	Reasons

4) Given:
$$\overline{AB} = \overline{CD}$$

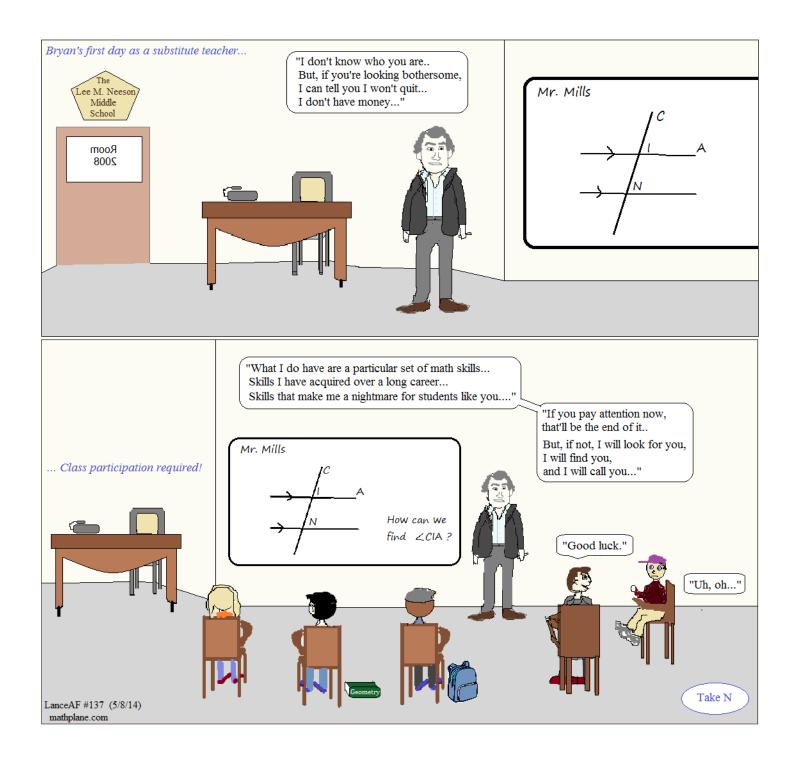

 $\overline{BC} = \overline{AD}$

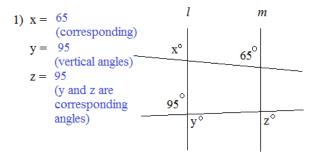

Prove $\overline{AB} \parallel \overline{CD}$



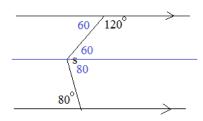

Statements	Reasons

1) In each group, identify the transversal. Then, describe the angle pairs.




2) Is d parallel to f?

SOLUTIONS-→


Parallel Lines Cut by Transversals

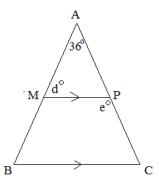
I. Determine the following:

$$l \parallel m$$

3)
$$m \angle s = 140^{\circ}$$

Draw an auxilary parallel line through the vertex of middle angle...

then, using supplementary angles: 60 alternate interior angles: 60 and 80 and addition postulate, $s = 60 + 80 = 140^{\circ}$


SOLUTIONS

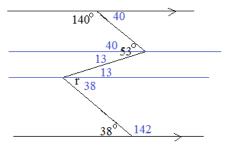
2)
$$d = 72$$

 $e = 108$

since angle A is 36, angle B and C are 72 and 72 (isosceles and sum is 180 degrees)

Since B is 72, AMP is 72 (corresponding angles)

Since C is 72, APM is 72.. then, MPC is 108 (supplementary angles)


△ ABC is Isosceles triangle

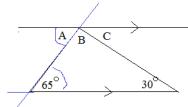
$$\overline{AC} \cong \overline{AB}$$
 $MP \parallel BC$

4)
$$m \angle r = 51^{\circ}$$

Draw auxilary parallel lines.. Then, use supplementary angles, interior angles, and addition...

$$140 + 40 = 180$$

 $38 + 142 = 180$
 $53 - 40 = 13$
 $13 + 38 = 51$



x + (70) = 180

x = 110

$$\angle B = 85$$

$$\angle C = 30$$

A + B + C = 180(straight angle)

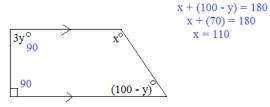

A = 65 (alternate interior angles)

C = 30 (alternate interior angles)

B = 85 (angles in triangle add up to 180)

7)
$$m = 40$$

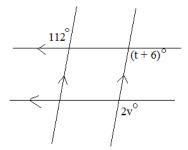
$$p = 140$$



2m - 40 = m (corresponding angles) m = 40

$$m + p = 180$$
 (supplementary) so, $p = 140$

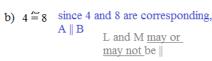
SOLUTIONS



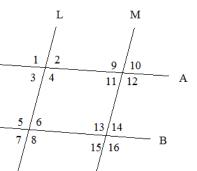
3y + 90 = 180 (same side interior angles are supplementary)

$$3y = 90$$
$$y = 30$$

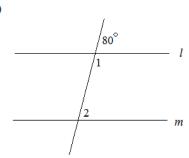
8) t = 106


t + 6 = 112 (alternate exterior angles) v = 56t = 106

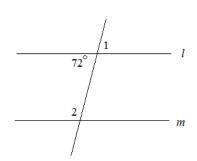
2v = 112 (corresponding angles) v = 56


9) Use information to determine which lines (if any) are parallel:

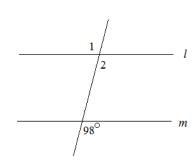
a) $1 \stackrel{\checkmark}{=} 9$ since 1 and 9 are corresponding, $L \parallel M$


c) 2 ²² 3 2 and 3 are vertical angles, so we don't know if any lines are parallel...

d) 10 = 7If 10 and 7 are congruent, then L || M AND A || B



- since 6 and 15 are alternate interior e) 6 = 15angles , then $L \parallel M$
- f) 9 = 169 and 16 are alternate exterior angles, so A | B
- g) 5 ²⁴ 9 If 5 = 9, then $L \parallel M$ AND $A \parallel B$
- Since 13 = 14, both must be h) $13 \stackrel{\sim}{=} 14$ right angles... However, that doesn't determine if the lines are parallel...

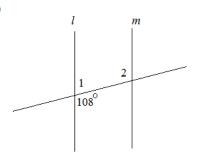

a)

b)

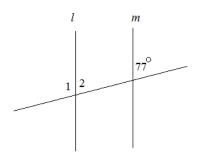
c)

1 = 100 supplemetary

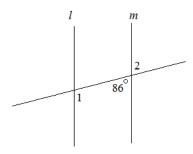
2 = 80 corresponding angles


1 = 72 vertical angles

2 = 108 same side interior (supp.)


1 = 98 alternate exterior

2 = 98 corresponding angles

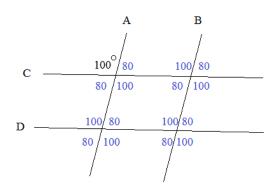

d)

e)

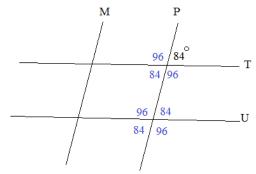
f)

1 = 72 supplementary angles

2 = 108 alternate interior angles


1 = 103 same side exterior

2 = 77 corresponding angles


1 = 94 same side interior (supp.)

2 = 86 vertical angles

- 11) Fill in the possible angles from the given information...
 - a) $A \parallel B$ and $C \parallel D$

b) T || U

**since we don't know if $M \parallel P$, some of the angles cannot be determined!

Parallel Lines Cut by Transversals

II. Answer or prove the following:

1) Given $\overline{AD} \parallel \overline{BC}$

$$m \angle 1 = 5.8x + 2.2$$

$$m \angle 2 = 4x$$

$$m \angle 3 = 6.4x - 4.4$$

$$m \angle 4 = 42$$

Find
$$m \angle 1 = 66^{\circ}$$

Are DC and AB parallel segments? NO

Since AD and BC are parallel, angles 1 and 3 are congruent:

$$5.8x + 2.2 = 6.4x - 4.4$$

$$6.6 = .6x$$
$$x = 11$$

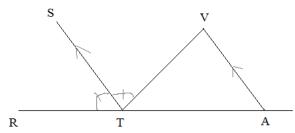

angle 1:
$$5.8(11) + 2.2 = 66$$

angle 3: $6.4(11) - 4.4 = 66$

2) Given: \overline{ST} bisects $\angle RTV$ $\overline{ST} \parallel \overline{VA}$

Prove: △VAT is isosceles

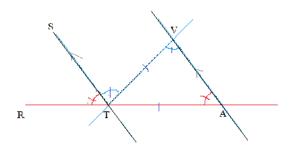
SOLUTIONS


1 and 3 are alternate interior angles..

the measure of angle 4 is 42 degrees... the measure of angle 2 is 4(11) = 44 degrees

Since
$$\angle 4 \neq \angle 2$$
,

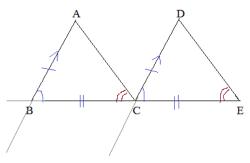
then \overline{AB} and \overline{DC} are not parallel

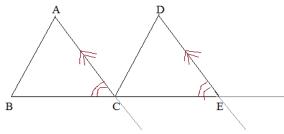


Label the diagram

What are we trying to find?

2 sides of $\triangle VAT$ that are the same... (or, 2 angles that are congruent)


Strategy: Use parallel lines cut by transversal to identify congruent angles



Statements	Reasons
1. ST bisectsRTV	1. Given
2. ∠RTS≅ ∠STV	2. Definition of angle bisector
3. ST VA	3. Given
4. ∠TAV≅ ∠RTS	4. If parallel lines cut by transversal, then corresponding ∠s congruent
5. ∠STV≅ ∠TVA	5. If parallel lines cut by transversal, then alternate interior angles congruent
6. ∠TAV≅ ∠TVA	6. Transitive property (from 4, 2, and 5.)
7. $\overline{\text{TV}} \stackrel{\sim}{=} \overline{\text{TA}}$	7. "sides-angles" (if 2 angles of triangle are congruent, then their opposite sides are =)
∆VAT is isosceles	8. Definition of isosceles triangle

mathplane.com

Prove: $\overline{AC} \parallel \overline{DE}$

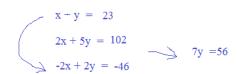
Cita	+		4~
ಾಡ	ıtem	ш	เร

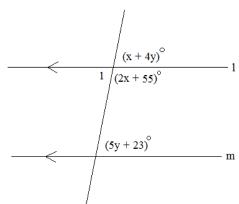
- 1) $\overline{AB} \parallel \overline{CD}$
- 2) ∠B≅ ∠DCE
- 3) $\overline{AB} \stackrel{\triangle}{=} \overline{CD}$
- 4) C is midpoint of BE
- 5) BC ≅ CE
- 6) $\triangle ABC = \triangle DCE$
- 7) \(\alpha \text{CB} = \(\subseteq \text{E} \)
- 8) AC || DE

Reasons

- 1) Given
- 2) If parallel lines cut by transversal then corresponding angles ≅
- 3) Given
- 4) Given
- 5) Definition of midpoint
- 6) Side-Angle-Side (SAS) (3, 2, 5)
- 7) Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
- 8) If corresponding angles are ≅ , then lines are parallel (converse of above theorem)

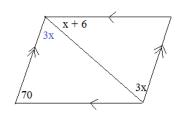
Find: measure of angle 1


Since lines are parallel,


$$x + 4y = 5y + 23$$

(corresponding angles)

$$(2x + 55) + (5y + 23) = 180$$


(same side interiors are supplementary)

$$y = 8$$
 angle $1 = 63$ degrees $x = 31$

5) find x:

$$3x + x + 6 + 70 = 180$$

$$4x = 104$$

$$x = 26$$

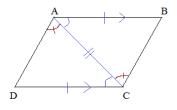
to check: plug in
$$x = 26...$$

angles are $78 + 32 = 110$

angles are
$$78 + 32 = 110$$

and 70

same side angles add up to 180...

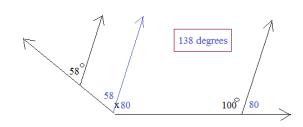


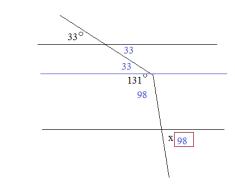

 $\overline{AB} \cong \overline{CD}$

Prove: $\overline{AD} \mid \mid \overline{BC}$

(Hint: Use an auxilary line segment)

Statements	Reasons
1) $\overline{AB} = \overline{CD}$	1) Given
2) AC is a line segment	2) Auxilary line (2 points make a line)
3) $\overline{AB} \parallel \overline{CD}$	3) Given
4) <u>/</u> BAC = <u>/</u> DCA	If lines cut by transversal, then alternate interior angles congruent
5) $\overline{AC} \stackrel{\sim}{=} \overline{AC}$	5) Reflexive Property
6) \triangle BAC $\stackrel{\sim}{=}$ \triangle DCA	6) Side-Angle-Side (SAS) (1, 4, 5)
7) $\angle ACB = \angle CAD$	Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
8) AD BC	If alternate interior angles are congruent, then lines are parallel





b)

7) "Crook Problems"

a) corresponding angles

c) 2x + 4 68° 3x - 6

$$5x - 2 = 68$$

$$5x = 70$$

$$x = 14$$

Parallel Lines Cut by Transversals

SOLUTIONS

III. Proofs

1) Given: $\overline{AB} \stackrel{\sim}{=} \overline{CD} \quad \overline{AG} \stackrel{\sim}{=} \overline{BE}$

 $\overline{AG} \parallel \overline{BE}$

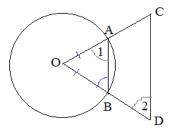
Prove: $\overline{GC} \parallel \overline{ED}$

	G		
		E	
	/		
	*	F	
	_		
4	1 4	X	1 8
Á	B	Ċ	-t

(Hint: This proof uses a "detour")

Label the figure and observe that there are 2 overlapping triangles.

Strategy: Using SAS, prove that the triangles are congruent. Then, CPCTC will prove that corresponding angles C and D are congruent

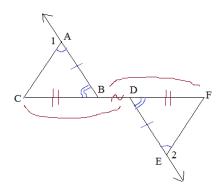

Statements	Reasons
1. $\overline{AB} \stackrel{\sim}{=} \overline{CD}$	1. Given
$2. \overline{BC} \cong \overline{BC}$	2. Reflexive property
$3. \overline{AC} \stackrel{\sim}{=} \overline{BD}$	3. Addition postulate
4. AG ≅ BE	4. Given
5. $\overline{AG} \parallel \overline{BE}$	5. Given
6. ∠GAC = ∠EBD	6. If parallel lines cut by transversal, then corresponding angles congruent
7. \triangle GAC = \triangle EBD	7. Side-Angle-Side (statements 4, 6, 3)
8. ∠ACG = ∠BDE	8. CPCTC
9. GC ED	9. If the corresponding angles of 2 lines (cut by a transversal) are congruent,

∠1≅∠2 2) Given: (•) O

Prove: $\overline{AB} \parallel \overline{CD}$

Statements	Reasons
1. Circle with center O	1. Given
$2.\overline{OA} = \overline{OB}$	2. All radii of circle are congruent
3. ∠OBA≅ ∠1	3. "Sides-Angles" (If 2 sides of △ are congruent, then opposite ∠s congruent)
4. <u>∠</u> 1 = <u>∠</u> 2	4. Given
5. ∠OBA = ∠2	5. Transitive property (from statements 3, 4)
6. $\overline{AB} \parallel \overline{CD}$	6. If the corresponding angles of 2 lines (cut by transversal) are congruent, then the lines are parallel

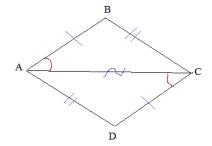
then the lines are parallel


label the diagram -- we see 1 and 2 are congruent...

Strategy: Verify that angle B is congruent to angle D (or angle C is congruent to angle A), because corresponding angles -> parallel lines cut by transversal

Prove: $\overline{CD} \stackrel{\sim}{=} \overline{FB}$

Strategy: use the given statements to help prove that the triangles are congruent..


Then, use sides in triangles to ultimately get congruent segments...

4) Given: $\overline{AB} = \overline{CD}$

 $\overline{BC} = \overline{AD}$

Prove $\overline{AB} \parallel \overline{CD}$

SOLUTIONS

10) $\overline{\text{CD}} \cong \overline{\text{FB}}$

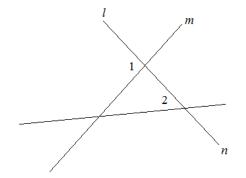
Statements Reasons 1) AB ≅ DE 1) Given 2) \(\sum 1 \) \(\sum 2 \) 2) Given 3) Definition of supplementary angles 3) $\angle 1$ and \angle BAC are supplementary (adjacent angles that form straight angle) ∠2 and ∠DEF are supplementary 4) ∠BAC ≅ ∠DEF 4) Congruent supplements (If angles are supplementary to congruent angles, then they are congruent.) 5) Given 5) AB || DE 6) ∠ABC ≅ ∠EDF 6) If parallel lines cut by transversal, then alternate exterior angles are congruent 7) ASA (Angle-Side-Angle) 4, 1, 6 7) \triangle ABC \cong \triangle EDF 8) CPCTC (Corresponding Parts of Congruent Triangles are Congruent) 8) $\overline{\text{CB}} \cong \overline{\text{FD}}$ 9) BD = BD 9) Reflexive Property

Parallel Lines Cut by Transversals

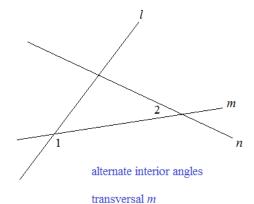
10) Addition Property (If segment (BD) is added to congruent

segments, then the sums are congruent)

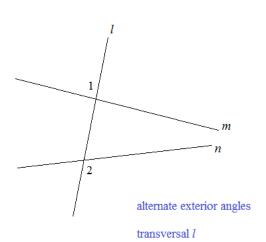
Statements	Reasons
1) AB = CD	1) Given
2) $\overline{BC} = \overline{AD}$	2) Given
3) $\overline{AC} = \overline{AC}$	3) Reflexive Property
4) \triangle ABC = \triangle CDA	4) SSS (Side-Side-Side)
5) $\angle BAC = \angle DCA$	5) CPCTC (Corresponding Parts of Congruent Triangles are Congruent)
6) AB CD	If alternate interior angles are congruent, then the lines are parallel

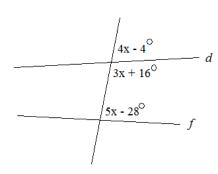

Note: angles DAC and BCA are irrelevant, because they would prove BC \parallel AD

IV. **Challenge Questions


Parallel Lines Cut by Transversals

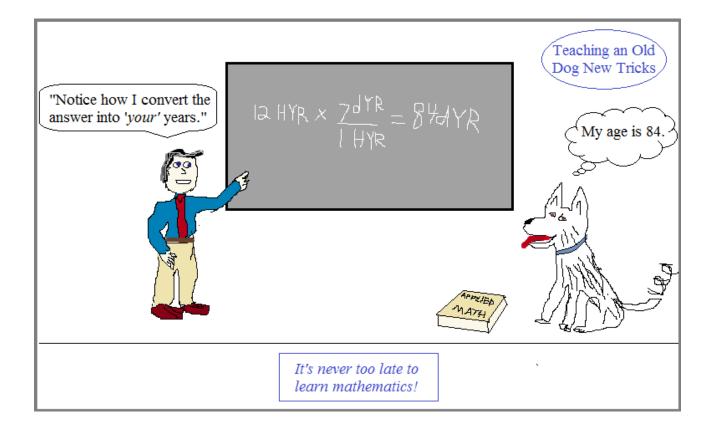
1) In each group, identify the transversal. Then, describe the angle pairs.


SOLUTIONS


corresponding angles transversal n

l m 1 same side interior transversal l

2) Is d parallel to f?


$$4x - 4 + 3x + 16 = 180$$
 (supplementary angles)
 $x = 24$

since x must be 24, $\,$ angles are 92, 88, and 92 $\,$ corresponding angles congruent.... $\,$ d $\|$ f

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers.

ONE MORE.....

Which letters in the alphabet illustrate congruent corresponding angles?

Supplementary same side interior angles?

Congruent alternate interior angles?

Parallel Lines, Transversals, and the Alphabet

Consider the alphabet:

Which letters illustrate congruent alternate interior angles?

Which letters demonstrate same-side interior angles are supplementary?

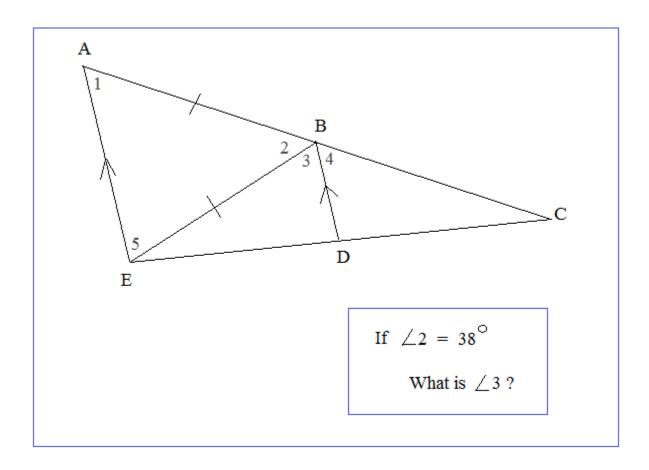
Which letters have congruent corresponding angles?

(Depending on the font, upper & lower case, and other factors,) here are some possibilities:

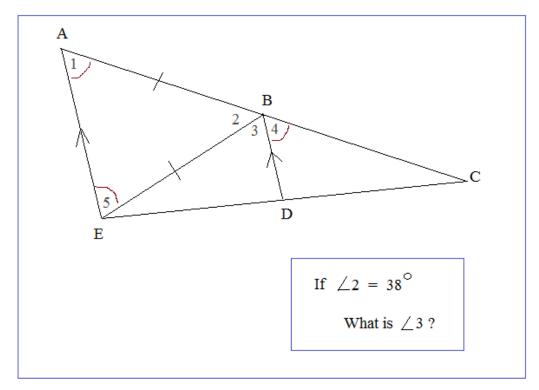
Congruent Alternate Interior:

N = Z

Same-Side interior (supplementary):


E F H I

Congruent Corresponding:


7

And, of course, the letter with vertical angles:

X

SOLUTION -→

Answer: Since $\overline{AB} = \overline{EB}$, angles 1 and 5 are also congruent. (if 2 congruent sides in triangle, then opposite angles are congruent)

$$1 + 5 + 2 = 180^{\circ}$$
 (angle sum of triangle)
 $1 + 5 + 38^{\circ} = 180^{\circ}$

Angles 1 and 5 must be 71° each

Since AE || BD, angles 1 and 4 are congruent. (if parallel lines cut by transversal, corresponding angles are congruent)

$$2 + 3 + 4 = 180^{\circ}$$
 (3 adjacent angles form a straight angle - 180 degrees)
 $38^{\circ} + 3 + 71^{\circ} = 180^{\circ}$
 $3 = 71^{\circ}$