Trigonometry Identities V: Honors

Examples and Practice Test (with Solutions)

Mathplane.com

Examples-→

$$\frac{\tan x - \cot x}{\tan^2 x - \cot^2 x} = \sin x \cos x$$

Using Pythagorean Identities and Quotient Identities

$$\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}$$

$$\frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\sin^2 x}$$

Convert to sines and cosines using quotient identities

$\frac{\sin^2 x - \cos^2 x}{\cos x \sin x}$

Combine numerator

and

$$\frac{\sin^4 x - \cos^4 x}{\cos^2 x \sin^2 x}$$

Combine denominator

Simplify entire rational expression

Example:

$$\frac{\cos(x)}{1-\tan(x)} + \frac{\sin(x)}{1-\cot(x)} = \cos(x) + \sin(x)$$

change to sines and cosines (quotient identities)

$$\frac{\cos(x)}{1 - \frac{\sin(x)}{\cos(x)}} + \frac{\sin(x)}{1 - \frac{\cos(x)}{\sin(x)}}$$

condense the denominators

$$\frac{\cos(x)}{\cos(x) - \sin(x)} + \frac{\sin(x)}{\sin(x) - \cos(x)}$$

$$\cos(x) + \frac{\sin(x)}{\sin(x)}$$

divide each rational expression

$$\frac{\cos(x)}{1} \cdot \frac{\cos(x)}{\cos(x) - \sin(x)} + \frac{\sin(x)}{1} \cdot \frac{\sin(x)}{\sin(x) - \cos(x)}$$

$$\frac{\cos^2(x)}{\cos(x) - \sin(x)} + \frac{\sin^2(x)}{\sin(x) - \cos(x)}$$

multiply 2nd expression by -1/-1

$$\frac{\cos^{2}(x)}{\cos(x) + \sin(x)} - \frac{\sin^{2}(x)}{\cos(x) + \sin(x)}$$

$$\frac{\cos^{2}(x) - \sin^{2}(x)}{\cos(x) + \sin(x)}$$

factor the numerator, then simplify...

$$\frac{(\cos(x) + \sin(x))(\cos(x) - \sin(x))}{\cos(x) + \sin(x)} = \cos(x) + \sin(x)$$

sin (A - B) Label angles and draw triangles

sinAcosB - cosAsinB

calculator check:

$$\frac{5}{13} \cdot \frac{4}{5} - \frac{12}{13} \cdot \frac{3}{5}$$

$$\sin(22.62^{\circ} - 36.87^{\circ})$$

 $\sin(-14.25^{\circ}) = -.246$

$$\frac{-16}{65}$$

Example: $cos(sin^{-1} x - tan^{-1}y)$

$$\cos(\bigcirc - B)$$

 $\cos\ominus\cos B + \sin\ominus\sin B$

$$\frac{\sqrt{1-x^2}}{1} \cdot \frac{1}{\sqrt{1+y^2}} + \frac{x}{1} \cdot \frac{y}{\sqrt{1+y^2}} \qquad \boxed{\frac{\sqrt{1-x^2}}{\sqrt{1+y^2}}}$$

Example: Evaluate $\sin (\Theta + B)$ if $\Theta = \csc^{-1} \left(\frac{-12}{5} \right)$ inverse function for csc is in quadrant IV

$$B = \cot^{-1} \left(\frac{3}{4} \right)$$
 inverse function for cot is in quadrant I

sin⊖ cosB − cos⊖sinB

$$\frac{-5}{12} \frac{3}{5} - \frac{\sqrt{119}}{12} \frac{4}{5}$$

Example: $\tan^2 x = \frac{3}{2} \sec x$

Since we want a "common trig function", we'll use the identity:

$$1 + \tan^2 x = \sec^2 x$$

$$\sec^2 x - 1 = \frac{3}{2} \sec x$$
 (multiply by 2 for convenience)

$$2\sec^2 x - 2 = 3\sec x$$
 (rearrange)

$$2\sec^2 x - 3\sec x - 2 = 0$$

(factor)

$$(2\sec x + 1)(\sec x - 2) = 0$$
 (solve)

 $2\sec x + 1 = 0$

$$secx = \frac{-1}{2}$$

Not possible

secx = 2

 $\sec x - 2 = 0$

$$x = 60,300 \text{ degrees}$$

or
$$\frac{1}{3}$$
 $\frac{5}{3}$

Example:
$$-11 = -3 - 4 \csc(\ominus + 225^{\circ})$$
 find $0^{\circ} < \ominus < 360^{\circ}$

$$2 = \csc(\bigcirc + 225^{\circ})$$

$$\csc^{-1}(2) = (\bigcirc + 225^{\circ})$$

$$30^{\circ} = (\ominus + 225^{\circ}) \qquad \ominus = -195$$

$$150^{\circ} = (\ominus + 225^{\circ})$$

$$150^{\circ} = (\bigcirc + 225^{\circ}) \qquad \bigcirc = -75$$
$$390^{\circ} = (\bigcirc + 225^{\circ}) \qquad \bigcirc = 165^{\circ}$$

$$\Theta = 165^{\circ}$$

$$510^{\circ} = (\ominus + 225^{\circ})$$
 $\ominus = 285^{\circ}$

Example: $\sin(2 \ominus + 30^{\circ}) = \frac{-\sqrt{3}}{2}$

Find \bigoplus , where $0^{\circ} < \bigoplus < 360^{\circ}$

Let
$$A = (2 \ominus + 30^{\circ})$$

$$\sin A = \frac{-\sqrt{3}}{2}$$

$$A = 240^{\circ} \text{ and } 300^{\circ}$$

$$-\sqrt{3}$$

$$2$$

$$2$$

$$-\sqrt{3}$$

Also, $A = 600^{\circ}$ and 660°

$$(2 \ominus + 30^{\circ}) = 240^{\circ}$$

$$(2 \ominus + 30^{\circ}) = 300^{\circ}$$

$$\ominus$$
 = 135°

$$(2 \ominus + 30^{\circ}) = 600^{\circ}$$

$$\ominus$$
 = 285°

$$(2 \ominus + 30^{\circ}) = 660^{\circ}$$

$$\Theta = 315^{\circ}$$

105, 135, 285, 315

method 1

square both sides

method 2

use trig quotient identity...

$$\cos^2 x + 2\sin x \cos x + \sin^2 x = 0$$

$$\cos x = -\sin x$$

$$-1 = \frac{\sin x}{\cos x}$$

$$2\sin x\cos x = -1$$

$$-1 = tanx$$

$$\sin(2x) = -1$$

$$2x = 270, 630, etc..$$

$$x = 135, 315, ...$$

$$x = \frac{377}{4}$$
 and $\frac{777}{4}$

$$\sin(2x) = -1$$

$$2x = 270, 630, etc.$$

$$x = 135, 315, ...$$

cosx

-sinx

To solve by graphing, find the intersections of cosx and -sinx

 $\cos x + \sin x = 0$ $\cos x = -\sin x$

Example: $\tan \ominus = 2\sin \ominus$

$$\frac{\sin \bigcirc}{\cos \bigcirc} = 2\sin \bigcirc$$

Important: Don't divide by sine... (It may erase a solution!)

Instead, factor out the sine...

$$\frac{\sin \, \ominus}{\cos \, \ominus} \ - \ 2\sin \, \ominus \ = \ 0$$

$$\sin \ominus \left(\frac{1}{\cos \ominus} - 2\right) = 0$$

$$\sin \ominus = 0$$
 $\sec \ominus = 2$

$$sec \hookrightarrow = 2$$

$$\bigcirc$$
 = 0.180

$$\Theta = 0,180$$
 $\Theta = 60,300$

Example: cos2A = cosA

In this form, cosine is NOT the common factor...

Use trig identity to change double angle...

$$\cos^2 A - \sin^2 A = \cos A$$

$$\cos^2 A - (1 - \cos^2 A) = \cos A$$

Now, the equation includes common factors, cosA

$$2\cos^2 A - \cos A - 1 = 0$$

$$(2\cos A + 1)(\cos A - 1) = 0$$

$$\cos A = -1/2$$
 $\cos A = 1$

$$cosA = 1$$

$$\Delta = 120, 240$$

$$A = 120, 240$$
 $A = 0, 360$

Example: Graph and solve (with calculator)

$$x^2 + 3\sin x = 0$$

$$x = -1.722$$
 or $x = 0$

Example: tanx = cotx (solve and graph, using degrees or radians)

method 1: use quotient identities

$$\frac{\sin x}{\cos x} = \frac{\cos x}{\sin x}$$

$$\tan^2 x = 1$$

$$\sin^2 x = \cos^2 x$$

$$tanx = 1$$
 $tanx = -1$

$$\cos^2 x - \sin^2 x = 0$$

$$\frac{1}{4}$$
, $\frac{3}{4}$, $\frac{5}{4}$, $\frac{7}{4}$, etc..

double angle identity

$$\cos 2x = 0$$

$$2x = 90, 270, 450, 630, etc..$$

$$x = 45, 135, 225, 315, etc..$$

Notes:

$$\sin\frac{1}{4} + \sin\frac{1}{6} = ?$$

Are these the same?!?!?

$$\frac{\sqrt{2}}{2} + \frac{1}{2} = \frac{\sqrt{2} + 1}{2}$$
 $\sin(45) + \sin(30) = 1.207$

$$n(45) + \sin(30) = 1.207$$

$$\sin \frac{5 + 1}{12} = \sin \left| \frac{1}{4} + \frac{1}{6} \right| = ?$$

$$\frac{\sqrt[4]{2}}{2} \quad \frac{\sqrt[4]{3}}{2} \quad + \quad \frac{\sqrt[4]{2}}{2} \quad \frac{1}{2} \quad = \quad \frac{\sqrt[4]{6} + \sqrt[4]{2}}{4}$$

 $\sin(45)\cos(30) + \cos(45)\sin(30)$

 $\sin(75) = .966$

"Lowering of Powers"

Example:
$$\sin^2 x \cos^2 x$$
 \Longrightarrow $(\sin x \cos x)^2$

Practice Test-→

1)
$$\frac{1 + \cos x + \sin x}{1 + \cos x - \sin x} = \sec x + \tan x$$

2)
$$\frac{\cos(x)}{1 - \tan(x)} + \frac{\sin(x)}{1 - \cot(x)} = \cos(x) + \sin(x)$$

Evaluate the expressions....

3)
$$\tan \left(\sin^{-1} \frac{3}{5} - \cos^{-1} \frac{-4}{5}\right)$$

4)
$$\tan^{-1} (\cos \frac{17}{14})$$

5)
$$\cos \left(\sin^{-1} \frac{x}{5} + \cos^{-1} \frac{3}{x} \right)$$

6)
$$\sin \left(\tan^{-1} \left(\frac{5}{8} \right) - A \right)$$
 where $\sin A = -3/5$ and $\tan A > 0$

7)
$$\sin 2 \ominus \sin \bigcirc = \cos \bigcirc$$
 for $0^{\circ} < \bigcirc < 360^{\circ}$

Trigonometry Review Test (Honors)

Rewrite as a single trig value....

Simplify....

10) If
$$\ominus$$
 is an acute angle, and $\sin \ominus = 3x$,

what is $tan \ominus ?$

11)
$$4\sin^2 x + 2\cos^2 x = 3$$
 for all real numbers...

13)
$$\sin \frac{1}{2}A + \cos A = 1$$

where $0 \le A < 2$

14)
$$\cos \left(\sin^{-1} \left(\frac{5}{13} \right) + \cot^{-1} \left(\frac{3}{4} \right) \right)$$
 Evaluate...

15)
$$\tan(\frac{\bigcirc}{2}) = \sqrt{3}$$
 where $0 < \bigcirc < 360$

16)
$$sin(y) + cos(y) = 1$$
 Find y (in degrees or radians)

Trigonometry Review Test (Honors)

$$\frac{\sin(x+y) - \sin(x-y)}{\cos(x+y) + \cos(x-y)} = \tan y$$
 Verify the identity...

18) Using trig addition/subtraction properties, find cos(165)

19)
$$2\sin\left(\frac{y}{3}\right) + \sqrt{3} = 0$$
 Find all solutions for y.

20)
$$-1/4(\cos x) = -1/2$$

21)
$$\sin \left(2 \cdot \sin^{-1} \left(\frac{-4}{5} \right) \right)$$
 Evaluate...

$$\cos\left(\frac{\cos^{-1}\left(\frac{12}{13}\right)}{2}\right) =$$

ANSWERS-→

1)
$$\frac{1 + \cos x + \sin x}{1 + \cos x - \sin x} = \sec x + \tan x$$

$$\frac{1 + \cos x + \sin x}{1 + \cos x - \sin x} \cdot \frac{(1 + \cos x) + \sin x}{(1 + \cos x) + \sin x} = \frac{1 + \cos x + \sin x + \cos x + \cos^2 x + \cos x + \sin x}{(1 + \cos x)^2 - \sin^2 x}$$

multiply using conjugate

$$= \frac{1 + 2\cos x + 2\sin x + 2\sin x \cos x + \cos^{2} x + \sin^{2} x}{1 + 2\cos x + \cos^{2} x - \sin^{2} x}$$

$$= \frac{2 + 2\cos x + 2\sin x + 2\sin x \cos x}{1 + 2\cos x + \cos^{2} x - 1 + \cos^{2} x}$$

$$= \frac{2(1 + \cos x + \sin x + \sin x \cos x)}{2(\cos x + \cos^{2} x)}$$

$$= \frac{(1 + \cos x)(1 + \sin x)}{\cos x(1 + \cos x)} = \frac{1 + \sin x}{\cos x} = \sec x + \tan x$$

2)
$$\frac{\cos(x)}{1 - \tan(x)} + \frac{\sin(x)}{1 - \cot(x)} = \cos(x) + \sin(x)$$

change to sines and cosines (quotient identities)

$$\frac{\cos(x)}{1 - \frac{\sin(x)}{\cos(x)}} + \frac{\sin(x)}{1 - \frac{\cos(x)}{\sin(x)}}$$

condense the denominators

$$\frac{\cos(x)}{\cos(x) + \sin(x)} + \frac{\sin(x)}{\sin(x) - \cos(x)}$$
$$\cos(x) + \frac{\sin(x)}{\sin(x)}$$

divide each rational expression

$$\frac{\cos(x)}{1} \cdot \frac{\cos(x)}{\cos(x) + \sin(x)} + \frac{\sin(x)}{1} \cdot \frac{\sin(x)}{\sin(x) - \cos(x)}$$

$$\frac{\cos^2(x)}{\cos(x) - \sin(x)} + \frac{\sin^2(x)}{\sin(x) - \cos(x)}$$

multiply 2nd expression by -1/-1

$$\frac{\cos^2(x)}{\cos(x) - \sin(x)} - \frac{\sin^2(x)}{\cos(x) + \sin(x)}$$
$$\frac{\cos^2(x) - \sin^2(x)}{\cos(x) - \sin(x)}$$

factor the numerator, then simplify...

$$\frac{(\cos(x) + \sin(x))(\cos(x) - \sin(x))}{\cos(x) + \sin(x)} = \cos(x) + \sin(x)$$

3)
$$\tan \left(\sin^{-1} \frac{3}{5} - \cos^{-1} \frac{-4}{5}\right)$$

Let
$$A = \sin^{-1} \frac{3}{5}$$
 Let $B = \cos^{-1} \frac{-4}{5}$

$$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} = \frac{3/4 - 3/4}{1 + (3/4)(-3/4)} = \frac{3/2}{7/16} = 24/7$$

4)
$$\tan^{-1} (\cos \frac{17}{14})$$

with a negative value and reference angle 3 11

therefore, the inverse tangent function, of a negative value, must be in quadrant IV... with a reference value of

5)
$$\cos \left(\sin^{-1} \frac{x}{5} + \cos^{-1} \frac{3}{x} \right)$$

cos(A + B) = cosAcosB - sinAsinB

$$\frac{\sqrt{25 \cdot x^2}}{5} \cdot \frac{3}{x} - \frac{x}{5} \cdot \frac{\sqrt{x^2 \cdot 9}}{x}$$

$$\frac{3\sqrt{25-x^2}-x/\sqrt{x^2-9}}{5x}$$

6)
$$\sin\left(\tan^{-1}\left(\frac{5}{8}\right) - A\right)$$
 where $\sin A = -3/5$
A and $\tan A > 0$

$$sin(\bigcirc - A) = sin \bigcirc cosA - sinAcos \bigcirc$$

$$\frac{5}{\sqrt{89}} \cdot \frac{-4}{5} - \frac{-3}{5} \cdot \frac{8}{\sqrt{89}}$$

7)
$$\sin 2 \ominus \sin \bigcirc = \cos \bigcirc$$
 for $0^{\circ} < \bigcirc < 360^{\circ}$

$$2\sin^2 \ominus \cos \ominus - \cos \ominus = 0$$

$$\cos \ominus (2\sin^2 \ominus - 1) = 0$$

$$\cos \ominus = 0$$

$$2\sin^2 \ominus - 1 = 0$$

$$\ominus$$
 = 90 and 270

$$\sin^2 \ominus = \frac{1}{2}$$

$$\sin \ominus = + \frac{1}{\sqrt{2}}$$

$$\ominus$$
 = 45, 135, 225, and 315

SOLUTIONS

8) $\sin(30)\cos(-10) - \cos(30)\sin(10)$

Rewrite as a single trig value....

Since cos(-10) = cos(10), we can rewrite

$$\sin(30)\cos(10) - \cos(30)\sin(10)$$

$$\sin(30-10) = \sin(20)$$

addition/ subtraction properties

9) 2(sin53cos23 - cos53sin23)

Simplify....

$$2(\sin 30) = 1$$

10) If \ominus is an acute angle, and $\sin \ominus = 3x$,

what is $tan \ \ominus \ ?$

$$\tan \Leftrightarrow = \frac{3x}{\sqrt{1 - 9x^2}} \quad \frac{\text{opposite}}{\text{adjacent}}$$

11) $4\sin^2 x + 2\cos^2 x = 3$ for all real numbers...

"split the sines"

$$2\sin^2 x + 2\sin^2 x + 2\cos^2 x = 3$$

$$\sin^2 x = \frac{1}{2}$$

$$\sin^2 x = \frac{1}{2} \qquad \qquad \sin x = \frac{1}{\sqrt{2}} \quad \text{or} \quad \frac{-1}{\sqrt{2}}.$$

$$2\sin^2 x + 2(\sin^2 x + \cos^2 x) = 3$$

$$2\sin^2 x + 2(1) = 3$$

$$x = 45$$
 , 135, 225, 315,

$$\frac{1}{4} + \frac{1}{2} k$$
 where k is any integer

12)
$$sec(2x) = \frac{sec^2x}{2 - sec^2x}$$
 Verify the identity...

$$\frac{\sec^2 x}{2}$$

double angle identity

$$\frac{\sec^2 x}{1 - \tan^2 x}$$

$$\frac{\sec^2 x}{1 + (\sec^2 x - 1)} \frac{\sec^2 x}{2 - \sec^2 x}$$

$$\frac{\sec^2 x}{2 - \sec^2 x}$$

$$13) \quad \sin\frac{1}{2}A + \cos A = 1$$

13)
$$\sin \frac{1}{2}A + \cos A = 1$$
 using 1/2 angle identity.... $\sqrt{\frac{1 + \cos A}{2}} = 1 + \cos A$

where $0 \le A \le 2$

$$\frac{1+\cos A}{2} = 1 + 2\cos A + \cos^2 A$$

1/2 angle identity

$$1 + \cos A = 2 + 4\cos A + 2\cos^2 A$$

$$\cos A = 2 + 4\cos A + 2\cos^2 A$$

$$\cos A = 1$$

$$2\cos^2 A - 3\cos A + 1 = 0$$

$$\cos A = 1/2$$

$$A = \frac{7}{3} \quad \frac{5}{3}$$

$$2\cos^2 A - 3\cos A + 1 = 0$$

$$(2\cos A + 1)(\cos A + 1) = 0$$

14)
$$\cos \left(\sin^{-1} \left(\frac{5}{13} \right) + \cot^{-1} \left(\frac{3}{4} \right) \right)$$
 Evaluate...

A

cos(A + B) = cosAcosB - sinAsinB

$$\frac{12}{13} \cdot \frac{3}{5} - \frac{5}{13} \cdot \frac{4}{5} = \boxed{\frac{16}{65}}$$

15)
$$\tan(\frac{\bigcirc}{2}) = \sqrt{3}$$

where
$$0 < \bigcirc < 360$$

Let
$$\frac{\bigcirc}{2} = A$$

only 120 degrees...

mathplane.com

16) sin(y) + cos(y) = 1 Find y (in degrees or radians)

square both sides

$$\sin^2(y) + 2\sin(y)\cos(y) + \cos^2(y) = 1$$

$$2\sin(y)\cos(y) = 0$$
$$\sin(2y) = 0$$

$$y = 0, 90, 180, 270, 360, ...$$

Important! Since we multiplied variables, we may have added extraneous solutions... Check the answers..

If
$$y = 0$$
, $\sin(0) + \cos(0) = 1$
 $y = 90$, $\sin(90) + \cos(90) = 1$
 $y = 180$, $\sin(180) + \cos(0) = 1$
 $y = 270$, $\sin(270) + \cos(270) = 1$

To solve by graphing, find the intersections of cos(y) and 1 - sin(y)...

$$y = 0^{\circ} + 360k$$

 $y = 90^{\circ} + 360k$

SOLUTIONS

$$\frac{\sin(x+y) - \sin(x-y)}{\cos(x+y) + \cos(x-y)} = \tan y \qquad \text{Verify the identity...}$$

Using Addition and Subtraction Identities

$$\frac{\sin x \cos y + \sin y \cos x - (\sin x \cos y - \sin y \cos x)}{\cos x \cos y + \sin x \sin y} = \frac{2 \sin y \cos x}{2 \cos x \cos y} = \frac{\sin y}{\cos y} = \tan y$$

18) Using trig addition/subtraction properties, find cos(165)

method 1: 135 + 30

$$\cos(165) = \cos(135 + 30)$$

$$= \cos(135)\cos(30) - \sin(135)\sin(30)$$

$$= \frac{-\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$\frac{-\sqrt{6} - \sqrt{2}}{4}$$

method 2:
$$\cos(15) = -(\cos 165)$$

 $\cos(15) = \cos(45 - 30)$
 $= \cos(45)\cos(30) + \sin(45)\sin(30)$
 $= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$
 $\cos(15) = \frac{\sqrt{6} + \sqrt{2}}{4}$ then, flip the signs to switch to 165...

mathplane.com

$$19) \quad 2\sin\left(\frac{y}{3}\right) + \sqrt{3} = 0$$

Find all solutions for y.

SOLUTIONS

$$2\sin\left(\frac{y}{3}\right) = -\sqrt{3}$$

$$\sin\left(\frac{y}{3}\right) = \frac{-\sqrt{3}}{2}$$

$$\frac{y}{3} = \frac{4\sqrt{1}}{3}, \frac{5\sqrt{1}}{3}, \frac{10\sqrt{1}}{3}, \frac{11\sqrt{1}}{3}, \dots$$

$$\frac{y}{3} = \sin^{-1}\left(\frac{-\sqrt{3}}{2}\right)$$

$$4 \overrightarrow{\parallel} + 6 \overrightarrow{\parallel} K$$
 where K are integers $5 \overrightarrow{\parallel} + 6 \overrightarrow{\parallel} K$

20) $-1/4(\cos x) = -1/2$

$$cosx = 2$$

NO SOLUTION

21)
$$\sin \left(2 \cdot \sin^{-1} \left(\frac{-4}{5} \right) \right)$$
 Evaluate...

let
$$A = \sin^{-1}\left(\frac{-4}{5}\right)$$

 $-1\left(\frac{-4}{5}\right)$

working with double angles and inverse trig values

$$sin(2A) = 2sinAcosA$$

$$2 \cdot \frac{-4}{5} \cdot \frac{3}{5} = \boxed{\frac{-24}{25}}$$

working with 1/2 angles and inverse trig values

$$\cos\left(\frac{\cos^{-1}\left(\frac{12}{13}\right)}{2}\right) =$$

let B =
$$\cos^{-1}\left(\frac{12}{13}\right)$$

create the triangle...

$$\cos(\frac{B}{2}) = \sqrt{\frac{1 + \cos B}{2}}$$

$$= \sqrt{\frac{1+12/13}{2}}$$

$$\sqrt{\frac{25}{26}}$$

(since the angle is in quad I, the result is positive)

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers

Also, Mathplane Express for mobile at mathplane.ORG

Find the weekly math comic and other mathplane content on Facebook, Google+, Pinterest, TES, and TeachersPayTeachers.