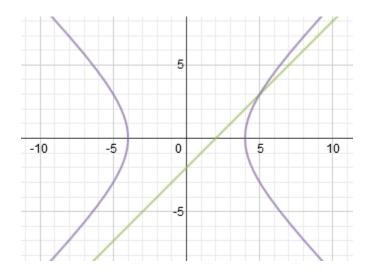
Conics IV: Systems

Examples and Practice Test (with solutions)



Topics include solving systems algebraically and graphically, word problems, completing the square, and more.

Conics Systems Examples and Applications

Here are examples that review properties of conics, completing the square, graphing, solving systems, and more...

Example: Solve and graph the following system:

$$9x^2 - 16y^2 = 144$$

$$x + y^2 = -4$$

Step 1: Identify the 2 functions

$$9x^2 - 16y^2 = 14$$

 $9x^2 - 16y^2 = 144$ hyperbola $(x^2 \text{ and } y^2 \text{ are different signs})$

$$x + y^2 = -4$$

 $x + y^2 = -4$ parabola (x^2 is missing)

Step 2: Solve algebraically

$$9x^2 - 16y^2 = 144$$

Use substitution method

$$(x + y^2 = -4)$$

 $(y^2 = -4 - x)$
 $(y^2 = -4 - x)$
 $(y^2 = -4 - x)$
 $(y^2 = -4 - x)$

$$9x^2 - 16(-4 - x) = 144$$

$$9x^2 + 16x + 64 = 144$$

$$9x^2 + 16x - 80 = 0$$

$$(9x - 20)(x + 4) = 0$$

$$x = 9/2$$
 and -4

If
$$x = -4$$
: $(-4) + y^2 = -4$

$$y = 0$$

If
$$x = \frac{9}{2}$$
: $(\frac{9}{2}) + y^2 = -4$

(-4, 0) is the only solution

(i.e. the only point of intersection)

$$y^2 = -4 - \frac{9}{2}$$

extraneous solution!

(because y² cannot be negative)

Horizontal Hyperbola: $\frac{(x-h)^2}{\text{(with center (h, k))}} = \frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ Standard Form

Horizontal Parabola:

(opens to the left or right)

Horizontal axis of symmetry

$$x = a(y - k)^2 + h$$

$$(x - h) = a(y - k)^{2}$$
 and

where (h, k) is the vertex

$$a = \frac{1}{4p}$$

$$(y-k)^2 = \frac{(x-h)}{a}$$
 $4p = \frac{1}{a}$

$$4p = \frac{1}{a}$$

Vertex at origin: $y^2 = 4px$

Step 3: Solve graphically

$$9x^2 - 16y^2 = 144$$

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

horizontal hyperbola; center is (0, 0)

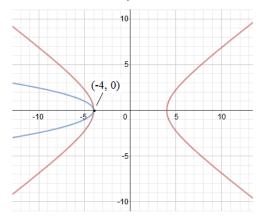
Vertices: (4, 0) and (-4, 0)

Foci: (5, 0) and (-5, 0)

asymptotes:

$$y = \frac{3}{4}x$$

$$y = -\frac{3}{4}x$$



$$x + y^2 = -4$$

$$y^2 = -4 - x$$

Vertex: (-4, 0)

(opens to the left)

$$y^2 = -(x+4)$$

Focus: (-17/4, 0)

Directrix: x = -15/4

$$x^2 + y^2 - 2x - 8 = 0$$

$$x^2 + y^2 + 6y + 5 = 0$$

Solve:

Since combination method won't eliminate both variables, we'll use substitution...

Change the first equation...

$$y^{2} = -x^{2} + 2x + 8$$

$$y = \frac{+}{\sqrt{-x^{2} + 2x + 8}}$$

Substitute into second equation...

$$x^{2} + (-x^{2} + 2x + 8) + 6\left(\frac{+}{\sqrt{-x^{2} + 2x + 8}}\right) + 5 = 0$$

$$6\left(\frac{+}{\sqrt{-x^{2} + 2x + 8}}\right) = -5 - 2x - 8$$

$$36(-x^{2} + 2x + 8) = (-2x - 13)^{2}$$

$$-36x^{2} + 72x + 288 = 4x^{2} + 52x + 169$$

$$40x^{2} - 20x - 119 = 0$$

Use Quadratic formula/Calculator:

$$x \approx -1.49$$
 or 1.99

If
$$x = -1.49$$
:

$$y^{2} = -x^{2} + 2x + 8$$

$$y^{2} = -(-1.49)^{2} + 2(-1.49) + 8$$

$$y^{2} = 2.8$$

$$y = \pm 1.67$$

$$(-1.49, -1.67)$$

Test the other equation!!

$$x^{2} + y^{2} + 6y + 5 = 0$$

 $(-1.49)^{2} + (1.67)^{2} + 6(1.67) + 5 > 0$

Graph:

Each of the equations is a circle. (coefficients of x^2 and y^2 are the same)

Step 1: Complete the square (and change to standard form)

$$x^2 - 2x + y^2 = 8$$

$$x^2 + y^2 + 6y = -5$$

$$(x^2 - 2x + 1) + y^2 = 8 + 1$$

$$x^2 + (y^2 + 6y + 9) = -5 + 9$$

$$(x-1)^2 + y^2 = 9$$

$$x^2 + (y+3)^2 = 4$$

Step 2: Identify parts and graph

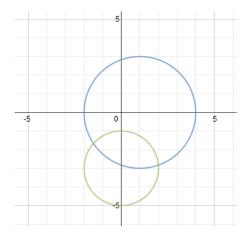
center: (1, 0)

center: (0, -3)

radius: 3

radius: 2

Step 3: Graph and confirm intersections



If
$$x = 1.99$$
:

$$y^2 = -x^2 + 2x + 8$$

$$y^2 = -(1.99)^2 + 2(1.99) + 8$$

$$y^2 = 8.0$$

(1.99, 2.83)

$$y = \pm 2.83$$

(1.99, -2.83)

Again, +y will not satisfy the other equation!

Conics Systems Examples and Applications

Example: In my backyard, I built a rectangular area for my dog, using 200 yards of fencing. If the area is 2100 square yards, what are the dimensions?

Perimeter is 200 yards: 21 + 2w = 200 yards

Area is 2100 square yards: lw = 2100 sq. yards

Solve the system:

$$1 + w = 100$$

$$1 + \left(\frac{2100}{1}\right) = 100$$

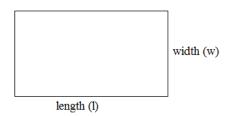
$$w = \frac{2100}{1}$$

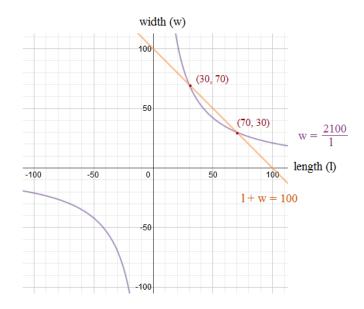
$$1^{2} - 1001 + 2100 = 0$$

$$(1 - 30)(1 - 70) = 0$$

$$1 = 30 \text{ or } 70$$
then, $w = 70 \text{ or } 30$

Dimensions are 30 yds x 70 yds



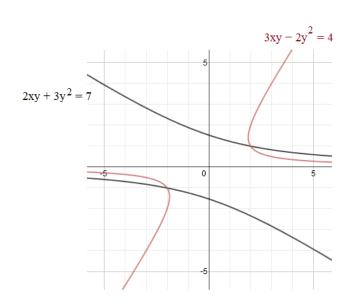


Example: Solve the system:
$$2xy + 3y^2 = 7$$

 $3xy - 2y^2 = 4$

Using elimination method:

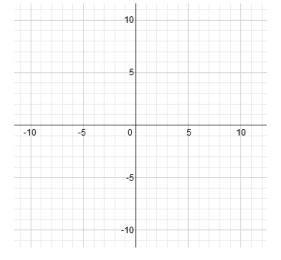
$$2xy + 3y^{2} = 7$$
 $x = 3$ $6xy + 9y^{2} = 21$
 $3xy - 2y^{2} = 4$ $x = 2$ $6xy - 4y^{2} = 8$
 $13y^{2} = 13$ subtract
 $y = 1 \text{ or } -1$
If $y = 1$, then $2x(1) + 3(1)^{2} = 7$ $(2, 1)$
 $x = 2$ and
If $y = -1$, then $2x(-1) + 3(-1)^{2} = 7$ $(-2, -1)$
 $x = -2$



Conics Systems Test

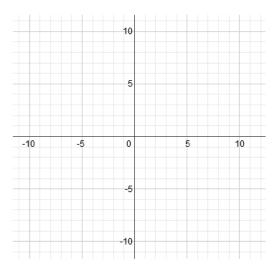
1) Graph and solve the following system: $x^2 - y^2 = 16$

$$x - y = 2$$



2) Solve and graph: $x^2 + y^2 = 25$

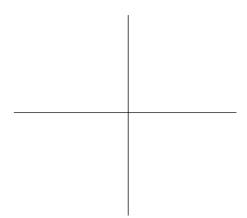
$$xy = 12$$



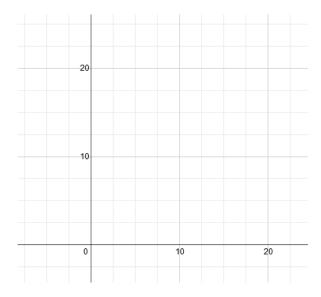
3) A rectangular painting with perimeter 82 inches has a diagonal of 29 inches. What are the dimensions of the painting?

Solve and Graph the following System:
$$9x^2 + y^2 - 2y = 80$$

$$x^2 + y^2 - 10y = 0$$



5) A friend on the 2nd floor throws a ball off the balcony with a trajectory of $y=-.4x^2+2x+20$ Simultaneously, below him, I throw a ball in the same direction with a trajectory path of $y = -.2x^2 + 3x + 4$ (x is the number of feet away from the building, and y is the number of feet above the ground) Is it possible that the balls can collide? Explain.



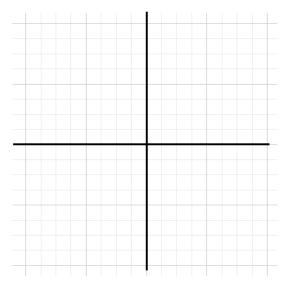
 $4x^2 + 16y^2 = 64$

$$16x^2 + 4y^2 = 64$$

7) ***Challenge: Determine the intersection(s) of

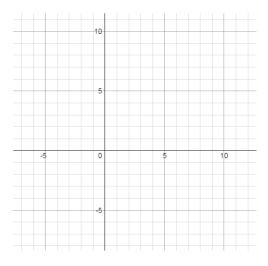
$$y = |x + 2|$$
 and $x^2 + y^2 = 25$

(Hint/Suggestion: Sketch the equations)



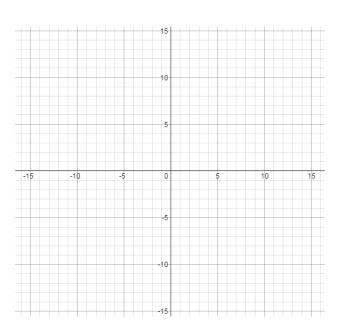
8)
$$25x^2 + 9y^2 - 250x - 36y + 436 = 0$$

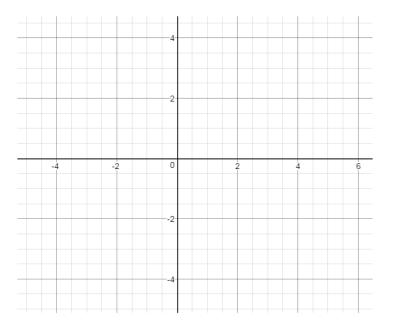
 $x^2 + y^2 - 4y = 0$



9)
$$y^2 - x^2 = 36$$

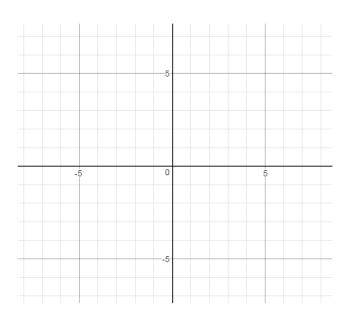
 $xy = 24$

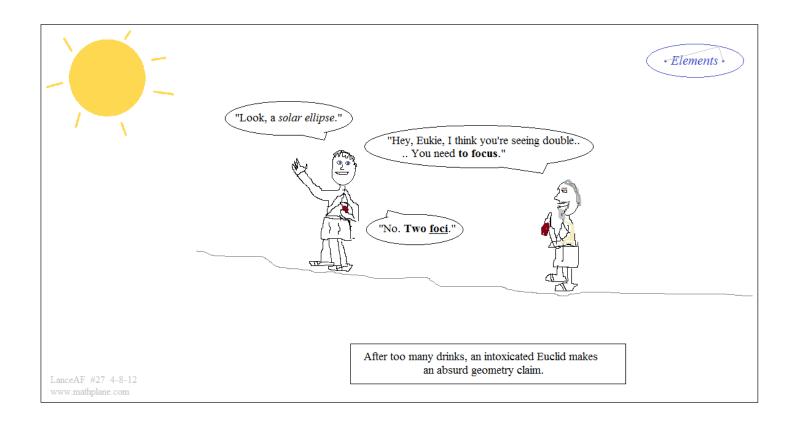




11)
$$y^2 = x + 5$$

 $x^2 + y^2 = 25$





Solutions -→

Conics Systems Test

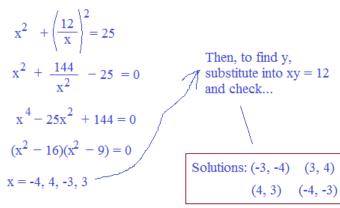
$x^2 - y^2 = 16$ 1) Graph and solve the following system:

Use Substitution: x = 2 + y $(2+y)^2 - y^2 = 16$ $y^2 + 4y + 4 - y^2 = 16$ 4y = 12y = 3x = 5

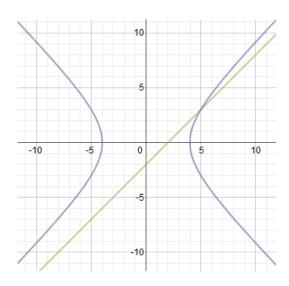
There is only one answer: (5, 3)

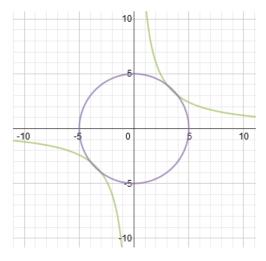
2) Solve and graph: $x^2 + y^2 = 25$ xy = 12 $y = \frac{12}{y}$

substitution:



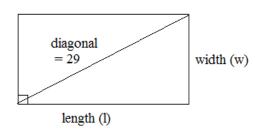
SOLUTIONS





3) A rectangular painting with perimeter 82 inches has a diagonal of 29 inches. What are the dimensions of the painting?

1 + w = 41perimeter: 2(length) + 2(width) = 82 $1^2 + w^2 = 841$ diagonal: $(length)^2 + (width)^2 = 29^2$ $(41 - w)^2 + w^2 = 841$ $2w^2 - 82w + 1681 = 841$ $w^2 - 41w + 420 = 0$ (w-20)(w-21)=0w = 20 or 21



dimensions are 20" x 21" (or, 21" x 20")

$$9x^2 + y^2 - 2y = 80$$
$$x^2 + y^2 - 10y = 0$$

Conics Systems Test

$$9x^2 + y^2 - 2y = 80$$

(complete the square)

$$x^2 + y^2 - 10y = 0$$

$$9x^2 + y^2 - 2y + 1 = 80 + 1$$

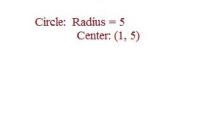
$$x^2 + y^2 - 10y + 25 = 0 + 25$$

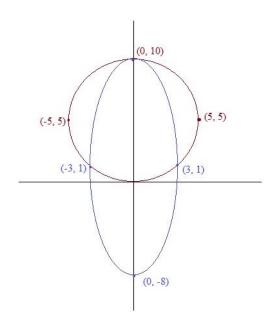
$$9x^2 + (y-1)^2 = 81$$

$$x^2 + (y-5)^2 = 25$$

$$\frac{x^2}{9} + \frac{(y-1)^2}{81} = 1$$

Ellipse: minor axis x, a = 3major axis y, b = 9Center: (0, 1)





Algebraic Solution:

$$9x^2 + y^2 - 2y = 80$$
 $x^2 + y^2 - 10y = 0$ (isolate x^2)
 $x^2 = -y^2 + 10y$

$$9(-y^2 + 10y) + y^2 - 2y = 80$$

$$-9y^2 + 90y + y^2 - 2y = 80$$

$$-8y^2 + 88y - 80 = 0$$

$$8y^2 - 88y - 80 = 0$$
$$8y^2 - 88y + 80 = 0$$

$$v^2 - 11v + 10 = 0$$

(solve)
$$(y-10)(y-1) = 0$$

(using the y solutions, find x)

$$x^2 + y^2 - 10y = 0$$

$$x^2 + (1)^2 - 10(1) = 0$$

$$x^2 - 9 = 0$$

$$x = 3, -3$$

(3, 1)

$$(-3, 1)$$

$$x^2 + (10)^2 - 10(10) = 0$$

$$x^2 + 100 - 100 = 0$$

$$x = 0$$

To check, plug solutions into other equation:

(factor)

$$9x^2 + y^2 - 2y = 80$$

$$(0, 10)$$
 $9(0)^2 + (10)^2 - 2(10) = 80$

$$0 + 100 - 20 = 80$$

$$(3, 1)$$
 $9(3)^2 + (1)^2 - 2(1) = 80$

$$(-3, 1)$$
 9(-3)² + (1)² - 2(1) = 80

5) A friend on the 2nd floor throws a ball off the balcony with a trajectory of $y = -.4x^2 + 2x + 20$ Simultaneously, below him, I throw a ball in the same direction with a trajectory path of $y = -.2x^2 + 3x + 4$ (x is the number of feet away from the building, and y is the number of feet above the ground)

Is it possible that the balls can collide? Explain.

If the timing is right, the balls could collide...

$$y = -.4x^{2} + 2x + 20$$

$$y = -.2x^{2} + 3x + 4$$

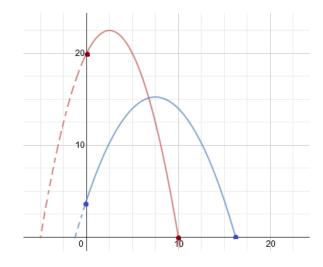
$$-.2x^{2} + 3x + 4 = -.4x^{2} + 2x + 20$$

$$.2x^{2} + x - 16 = 0$$

$$x^{2} + 5x - 80 = 0$$

(quadratic formula)

$$x = \frac{-5 + \sqrt{25 - 4(1)(-80)}}{2(1)} = \frac{-5 + \sqrt{345}}{2}$$
approximately - 12.79 and 6.79



Since the ball is presumably thrown forward, we'll eliminate the negative term. Also, the negative intersection occurs when y is negative (i.e. underground).

If x = 6.79, then
$$y = -.4(6.79)^2 + 2(6.79) + 20 \approx 15.14$$

 $y = -.2(6.79)^2 + 3(6.79) + 4 \approx 15.14$

If the timing were right, the balls would collide 6.79 feet from the building and 15.14 feet above the ground!

(Calculator)

SOLUTIONS

Conics Systems Test

$$4x^2 + 16y^2 = 64$$

$$16x^2 + 4y^2 = 64$$

To find points of intersection (algebraically), use combination/elimination method:

Then, sketch a graph of the system to confirm your answer.

$$-4\left(4x^{2} + 16y^{2} = 64\right)$$

$$16x^{2} + 4y^{2} = 64$$

$$+ -16x^{2} - 64y^{2} = -256$$

$$-60y^{2} = -192$$

$$y = \pm \sqrt{3.2} \quad \text{(approx. } \pm 1.79\text{)}$$

$$4x^{2} + 16y^{2} = 64$$

$$4x^{2} + 16(3.2) = 64$$

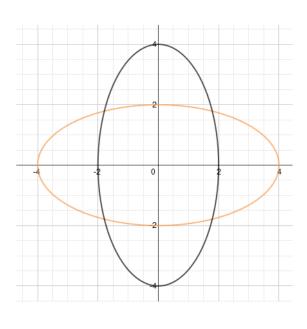
$$x^{2} = 3.2$$

$$x = \pm \sqrt{3.2} \quad \text{(approx. } \pm 1.79\text{)}$$

 $(\sqrt{3.2}, \sqrt{3.2})$ $(\sqrt{3.2}, -\sqrt{3.2})$

 $(-\sqrt{3.2}, \sqrt{3.2})$

 $(-\sqrt{3.2}, -\sqrt{3.2})$



7) ***Challenge: Determine the intersection(s) of

$$y = |x + 2|$$
 and $x^2 + y^2 = 25$

(Hint/Suggestion: Sketch the equations)

$$y = |x + 2|$$
 is composed of 2 lines: $y = x + 2$ (where $x > -2$)
 $y = -x - 2$ (where $x < -2$)

So, we'll use these lines for to find the intersections...

$$y = x + 2$$
 (use substitution)

$$x^{2} + y^{2} = 25$$
 \Rightarrow $x^{2} + (x + 2)^{2} = 25$
 $2x^{2} + 4x - 21 = 0$

(quadratic formula)

$$y = x + 2$$
 \longrightarrow if $x = -4.39$ then $y = -2.39$ if $x = 2.39$, then $y = 4.39$

(since it is absolute value, y cannot be negative)

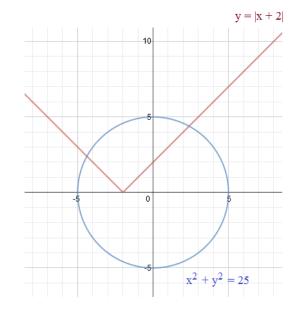
$$y = -x - 2$$
 (substitution)

$$x^{2} + y^{2} = 25$$
 \Rightarrow $x^{2} + (-x - 2)^{2} = 25$
 $2x^{2} + 4x - 21 = 0$

 $x \approx$ -4.39 and 2.39

$$y = -x - 2$$
 if $x = -4.39$, then $y = 2.39$

if x = 2.39, then y = -4.39



Mathplane.com

SOLUTIONS

8)
$$25x^2 + 9y^2 - 250x - 36y + 436 = 0$$

 $x^2 + y^2 - 4y = 0$

To graph, convert each equation into Standard Form...

$$25x^{2} - 250x + 9y^{2} - 36y = -436$$
 (Ellipse)

$$25(x^{2} - 10x + 25) + 9(y^{2} - 4y + 4) = -436 + 625 + 36$$
 Complete the square

$$25(x - 5)^{2} + 9(y - 2)^{2} = 225$$

$$\frac{(x - 5)^{2} + (y - 2)^{2}}{9} = 1$$
 Center: (5, 2)
Major Axis: 10
Minor Axis: 6

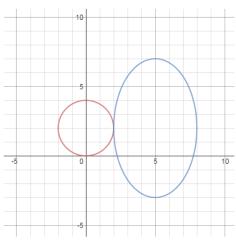
$$x^2 + y^2 - 4y = 0$$
 (Circle)

$$x^2 + y^2 - 4y + 4 = 0 + 4$$

Complete the square

$$x^2 + (y - 2)^2 = 4$$

Center: (0, 2)



Intersection at (2, 2)

To confirm Algebraically...

$$25x^{2} + 9y^{2} - 250x - 36y + 436 = 0$$

$$x^{2} + y^{2} - 4y = 0$$

$$25x^{2} - 250x$$

$$+ 9y^{2} - 36y + 436 = 0$$

$$9x^{2}$$

$$+ 9y^{2} - 36y = 0$$

$$\sin ce 9y^{2} + 36y = -9x^{2}$$

$$25x^{2} - 250x - 9x^{2} + 436 = 0$$

$$16x^{2} - 250x + 436 = 0$$

$$16x^{2} - 250x + 436 = 0$$

$$8x^{2} - 125x + 218 = 0$$

$$(x - 2)(8x - 109) = 0$$

$$x = 2 \text{ or } x = 109/8 \text{ is extraneous (it cannot be substituted into the equations)}$$

$$(2, 2)$$

9)
$$y^2 - x^2 = 36$$

To graph, change first equation into Standard Form

$$\frac{y^2}{36} - \frac{x^2}{36} = 1$$
 (Vertical Hyperbola)

"a" value is 6

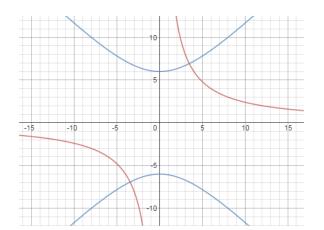
"b" value is 6/2

Center: $(0, 0)$

Vertices: $(0, 6)$ $(0, -6)$

Foci: $(0, 6/\sqrt{2})$ $(0, -6/\sqrt{2})$

Asymptotes: $y = x$ and $y = -x$



Recognize the second equation is a reciprocal function

$$y = \frac{24}{x}$$
 $y = 1/x$ that is 'stretched by 24'
(2, 12) (-2, -12)
(3, 8) (-3, -8)

To solve system, use substitution:

$$y^2 - x^2 = 36$$

$$(\sqrt{12}, \sqrt{48})$$

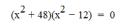
$$(-\sqrt{12}, -\sqrt{48})$$

$$\left(\frac{24}{x}\right)^2 - x^2 = 36$$

$$y^{2}-x^{2} = 36$$

 $y = \frac{24}{x}$
 $x^{4} + 36x^{2} - 576 = 0$
 $(x^{2} + 48) = 0$
 $(x^{2} + 48) = 0$
 $(x^{2} - 12) = 0$
 $x = 3.46$ and $(x = 3.46)$

$$x^4 + 36x^2 - 576 = 0$$



$$(x^2 + 48) = 0$$

$$(x^2 - 12) = 0$$

x = 3.46 and -3.46(and, y = 6.93 and -6.93) 10) $4x^2 + 9y^2 = 36$ 3y + 2x = 6

$$3y = 6 - 2x$$
 square both sides $9y^2 = (6 - 2x)^2$

substitution

$$4x^2 + (6-2x)^2 = 36$$

$$4x^2 + 36 + 24x + 4x^2 = 36$$

$$8x^2 + 24x = 0$$

$$8x(x+3) = 0$$

$$x = 0, 3$$

looking at the linear equation

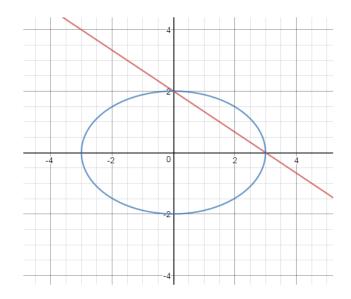
if
$$x = 0$$
, then $y = 2$ (0, 2)

if
$$x = 3$$
, then $y = 0$ (3, 0)

graphing a line and an ellipse...

$$2x + 3y = 6$$

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$



11)
$$y^2 = x + 5$$

 $x^2 + y^2 = 25$

Direct substitution!

$$x^2 + (x+5) = 25$$

$$x^2 + x - 20 = 0$$

$$(x+5)(x+4) = 0$$

$$x = -5, 4$$

looking at the parabola..

if
$$x = -5$$
, then $y^2 = -5 + 5$ (-5, 0)

if
$$x = 4$$
, then $y^2 = 4 + 5$

$$x = 4$$
, then $y^2 = 4 + 5$ (4, -5)

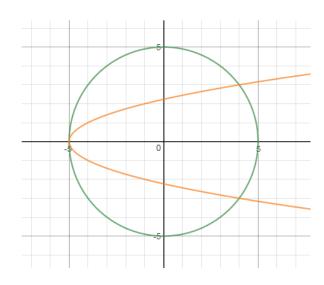
(4, -3) and (4, 3)

graphing a parabola

opens out to the right vertex: (-5, 0)focus: (-4.75, 0)directrix: x = -5.25

and, a circle

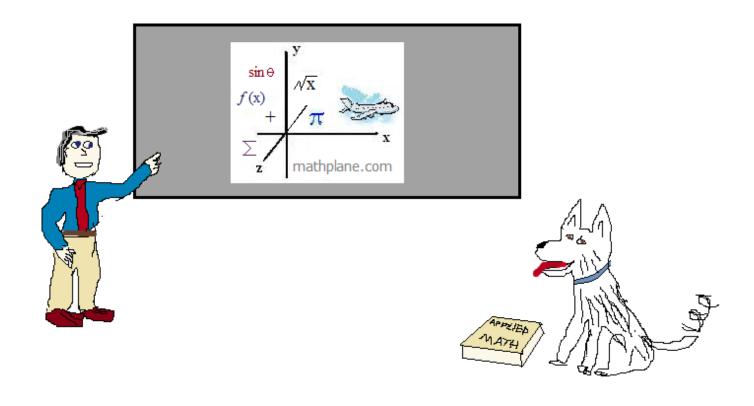
radius: 5 center: (0, 0)



Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers



Also, at Facebook, Google+, TES, Pinterest, and TeachersPayTeachers

Mathplane Express for Mobile at Mathplane.ORG