
Probability Introduction

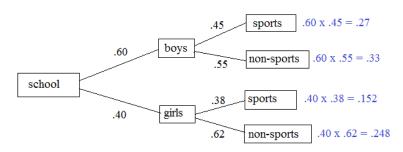
Notes, Examples, and Practice Exercise (with Solutions)

Topics include independent events, mutually exclusive, conditional probability, tree diagram, Venn diagram, and more...

Mathplane.com

p(drawing a picture card or a four) = p(picture) + p(four) - p(picture/four)

$$= \frac{12}{52} + \frac{4}{52} - \frac{0}{52}$$
 (no card consists of a four AND a picture)


= 4/13 (includes all 4s, jacks, queens, and kings)

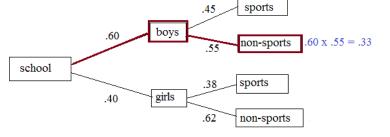
Consider a bag of 10 marbles:		a (duraning susan) = 0		
	1 black 2 red	p(drawing green) = 0 p(drawing black) = 1/10	Since p(black) + p(red)	+ p(blue) + p(yellow) = 1,
	2 blue	p(drawing red) = 2/10 p(drawing blue) = 2/10	then the probability of 1	NOT drawing a black marble is
	5 yellow	p(drawing vellow) = 2/10 p(drawing vellow) = 5/10	1 - p(drawing black) =	9/10
		total probability = 1		
Dependent vs. Independent Eve	ents (condition	al probability)	a	
"If 2 events affect each o	other then they a	are dependent"	flipping a co Inde	pendent
		nt B, then the probability	duration 2 -	-
of B is dependent on the	outcome of A)			ards from a deck (without replacement)? endent
"If events' outcomes don	<u>'t</u> affect each otl	her, then they are independent."	drawing 2 c	ards (with replacement)?
			Inde	pendent
If the events are independent	dent, then	p(flipping a coin 3 times & get	ting 3 heads) =	'replacement' vs. 'without replacement'
p(A and B) = p(A	A)n(B)	p(heads) * p(heads) * p(heads)) =	replacement assumes you return the sample to its original set. EX: If you draw a card
$p(\mathbf{A} \text{ and } \mathbf{B}) = p(\mathbf{A})$	r)b(p)	$1/2 \times 1/2 \times 1/2 = 1$	ННН	and put it back in the deck (replacement)
		$p(3 heads) = \frac{'successes'}{'possibilities'}$	= 1	
		possionnes	• HHH HHT HTH HT THH THT TTH T	
If 2 events are dependen	it, (i.e. B is depe	endent on the outcome of A), then		[]
p(A and B) = p(A	A)p(B A)			Note: If A and B are independent, then
"probability of A times t	he probability of	f B. GIVEN A has happened"		p(B) = p(B A)
"probability of A times the probability of B, GIVEN A has happened"				because the outcome of A doesn't affect the possibilities of B.
p(drawing 2 s		card is a spade) x p(2nd card is also	o a spade)	
		$\frac{13}{52}$ x $\frac{12}{51}$	$=\frac{156}{2652}$ = .059	"Dependent Events"
The shapes of deriving			$= \frac{156}{2652} = .059$	"Dependent Events"
The chance of drawing a But, what if you knew th	a king is 4/52 p	p(king) = 4/52	$=\frac{156}{2652}$ = .059	"Dependent Events"
The chance of drawing a But, what <u>if you knew</u> th Now, what are the	a king is 4/52 p nat the card chos	p(king) = 4/52 sen was a picture?	$=\frac{156}{2652}$ = .059	"Dependent Events"
But, what <u>if you knew</u> the Now, what are the	a king is 4/52 p nat the card chos chances it's a kin	p(king) = 4/52 sen was a picture? ng?	a card)	
But, what <u>if you knew</u> the Now, what are the	a king is 4/52 p nat the card chos chances it's a kin	p(king) = 4/52 sen was a picture? ng? lrew is a king) = p(king it's a picture	e card)	"Dependent Events" "Conditional Probability"
But, what <u>if you knew</u> the Now, what are the	a king is 4/52 p nat the card chos chances it's a kin	p(king) = 4/52 sen was a picture? ng?	e card)	
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference	a king is 4/52 p nat the card chos chances it's a kin e card that you d e between replac	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible king) (# of picture) tring a card (independent events)	e card) ngs) e cards)	
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference	a king is 4/52 p nat the card chos chances it's a kin e card that you d e between replac	p(king) = 4/52 sen was a picture? ng? Irew is a king) = p(king it's a picture $= \frac{4}{12} (possible king) = \frac{4}{12} (possib$	e card) ngs) e cards) ome	"Conditional Probability"
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw)	a king is 4/52 I hat the card chos chances it's a kin e card that you d e between replac card (dependent	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(kinglit's a picture $= \frac{4}{12} (possible king) = \frac{4}{12} (possible king)$ with the picture of pict	e card) ngs) e cards) ome	
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw)	a king is 4/52 I hat the card chos chances it's a kin e card that you d e between replac card (dependent	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible king) (# of picture) tring a card (independent events)	e card) ngs) e cards) ome	"Conditional Probability"
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2	a king is 4/52 1 hat the card chose chances it's a king card that you d be between replace card (dependent sevens w/o replace	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible kin (# of picture ting a card (independent events) events; 2nd draw depends on outc acement) = 13/52 x 12/51	e card) , ngs) e cards) ome	"Conditional Probability" "Replacement"
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2	a king is 4/52 1 hat the card chose chances it's a king card that you d be between replace card (dependent sevens w/o replace	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible kin (# of picture ting a card (independent events) events; 2nd draw depends on outc acement) = 13/52 x 12/51 tacement) = 13/52 x 13/52	e card) ngs) e cards) ome	"Conditional Probability" "Replacement" vs.
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2	a king is 4/52 1 hat the card chose chances it's a king card that you d be between replace card (dependent sevens w/o replace	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible kin (# of picture ting a card (independent events) events; 2nd draw depends on outc acement) = 13/52 x 12/51 tacement) = 13/52 x 13/52 Each fraction is 'possi	e card) , ngs) e cards) ome	"Conditional Probability" "Replacement" vs.
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2	a king is 4/52 I hat the card chos chances it's a kin e card that you d e between replac card (dependent sevens w/o repla sevens with repl	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible kin (# of picture ting a card (independent events) events; 2nd draw depends on outc acement) = 13/52 x 12/51 tacement) = 13/52 x 13/52 Each fraction is 'possi	e card) ngs) e cards) ome " ible successful outcomes'	"Conditional Probability" "Replacement" vs.
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2 p(drawing 2 Factorials: Counting Arranger	a king is 4/52 p nat the card chos chances it's a king e card that you d e between replac card (dependent sevens w/o replac sevens with repl nents	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible kin (# of picture ting a card (independent events) events; 2nd draw depends on outc acement) = 13/52 x 12/51 tacement) = 13/52 x 13/52 Each fraction is 'possi	e card) ngs) e cards) ome " <u>ible successful outcomes'</u> al possible outcomes'	"Conditional Probability" "Replacement" vs.
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2 p(drawing 2 Factorials: Counting Arranger	a king is 4/52 p nat the card chos chances it's a kin e card that you d e between replac card (dependent sevens w/o repla sevens with repl nents rial: The produc	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture = $\frac{4}{12}$ (possible kin (# of picture) events; 2nd draw dependent events) events; 2nd draw depends on outc accement) = 13/52 x 12/51 (accement) = 13/52 x 13/52 Each fraction is 'possi' tot	e card) ngs) e cards) ome " <u>ible successful outcomes'</u> al possible outcomes'	"Conditional Probability" "Replacement" vs. "Without Replacement"
But, what <u>if you knew</u> th Now, what are the p(the picture Notice the difference and not replacing a c of the 1st draw) p(drawing 2 p(drawing 2 Factorials: Counting Arranger	a king is $4/52$ p hat the card chose chances it's a king is card that you d is between replace card (dependent sevens w/o replace sevens with replace nents rial: The produce x! = x(x - x)	p(king) = 4/52 sen was a picture? ng? trew is a king) = p(king it's a picture $= \frac{4}{12} (possible kin (# of picture) ting a card (independent events) events; 2nd draw depends on outc acement) = 13/52 x 12/51 (acement) = 13/52 x 13/52 Each fraction is \frac{'possi}{'tot}et of an integer and all smaller positi1)(x - 2) 2 x 1$	e card) ngs) e cards) ome " <u>ible successful outcomes'</u> al possible outcomes'	"Conditional Probability" "Replacement" vs. "Without Replacement"

5! = 120 possible ways

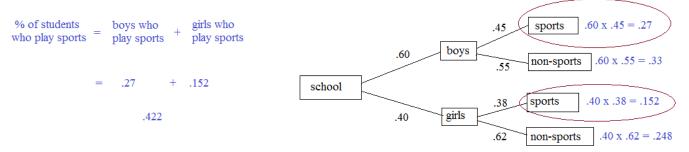
Probability Tree Diagram

Example: 60% of the math school is male, and 40% of the school is female. If 45% of the boys play sports, and 38% of girls play sports, use a probability tree diagram to answer the following:

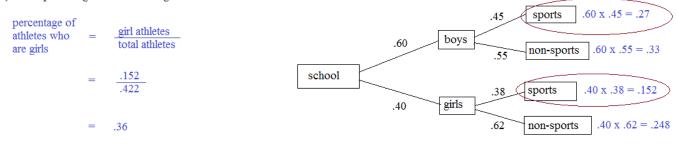
1) What is the probability of picking a boy who does not play sports?


Follow the branches:

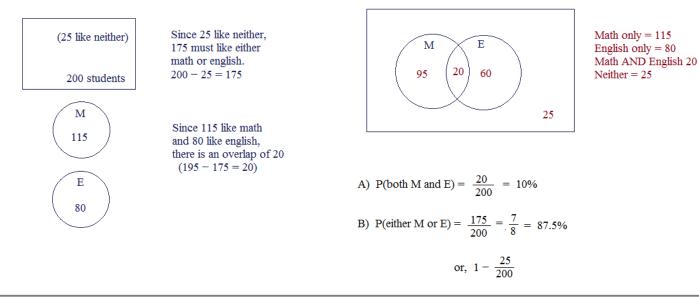
$$P(boy) = .60$$


P(not playing sports|boy) = .55

 $P(boy and non-sports) = P(boy) \times P(not sports|boy)$


$$= .60 \text{ x} .55 = .33$$

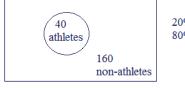
2) What percentage of students play sports?


3) What percentage of athletes are girls?

1) In a survey of 200 students, 115 like math, 80 like english, 25 like neither.

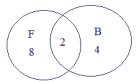
- A) What is the probability that a selected student likes both english and math?
- B) What is the probability that a selected student likes either math or engish?

An effective method of solving is to use a Venn Diagram:

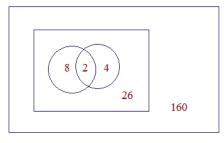


2) At the local high school, 20% of the students are athletes that play a sport.

Of the athletes, 25% play football, 10% play ONLY basketball, and 5% play football <u>and</u> basketball. (The rest of the athletes play other sports.)


- A) What percent of athletes play sports other than football or basketball?
- B) If I pick a random student, what is the probability that he plays basketball?

To simplify, let's assume the high school has 200 students


20% athletes 80% non-athletes

Then, let's break up the athletes

80% non-athletes

- 8 football only 4 basketball only 2 football/basketball
- A) Therefore, 40 athletes 14 basketball/football = 26 26 out of 40 play a different sport!

In the diagram, there are 200 students. And, 6 play basketball (4 play only basketball; 2 play basketball and football)

B) P(student plays basketball) = $\frac{6}{200} = 3\%$

$$\frac{26}{40} = 65\%$$

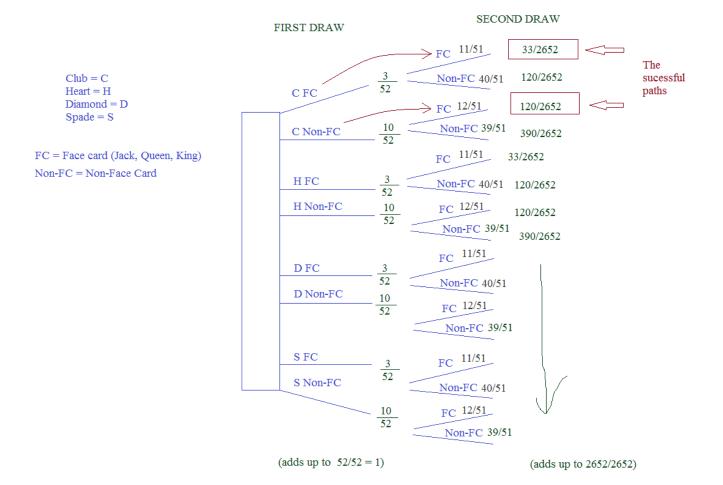
Example: What is the probability of drawing a club, then a face card (WITHOUT replacement)?

There are 52 cards in a standard deck. There are 4 suits --- 13 clubs.. and, there are 3 face cards per suit (12 total) Jack, Queen, King

the answer is NOT $\frac{13}{52} \cdot \frac{12}{51}$ because these are not completely independent events....

SOLUTION

CASE 1: First card is non-face club


$$\frac{10}{52} \cdot \frac{12}{51} = \frac{120}{2652}$$

Together, there are $\frac{153}{2652} = \frac{3}{52}$

CASE 2: First card is face club

$$\frac{3}{52} \cdot \frac{11}{51} = \frac{33}{2652}$$

This can be illustrated with a probability tree diagram:

What are the odds of success? Slim to none!

LanceAF #61 (12-1-12) www.mathplane.com

Conditional Probability Quick Quiz

- I. The following questions refer to a drawn card from a standard 52 card deck.
 - P(7 of spades) =
 - P(7 of spades|spade) =
 - P(7 of spades|seven) =
 - P(7 of spades|black card) =
 - Are "Kings" and "diamonds" independent?

Are "Kings" and "face cards" independent?

II.

	Freshmen	Sophomores	Juniors	Seniors	Totals
Algebra	52	32	16	0	100
Geometry	28	44	20	6	98
Trigonometry	17	20	59	20	116
Calculus	3	11	19	53	86
Totals	100	107	114	79	400

What is the probability that a randomly chosen student is a senior?

What is the probability that a random junior is taking calculus?

What is the probability that a senior is taking geometry?

What is the probability that a geometry student is a senior?

P(Calculus) =

P(freshmen or sophomore) =

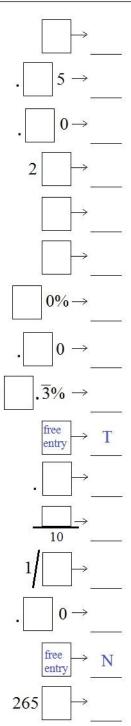
P(geometry and trigonometry) =

P(senior|algebra) =

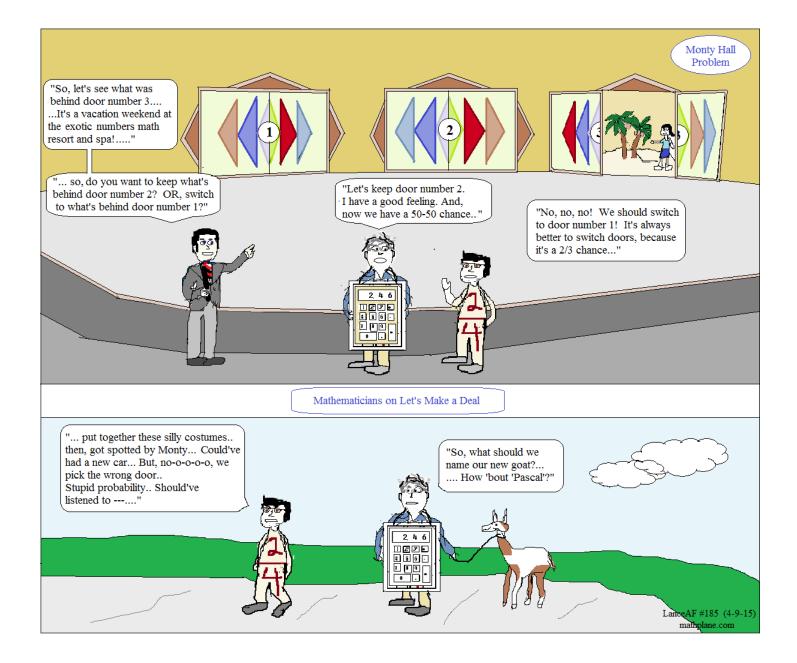
P(freshman|trigonometry) =

P(trigonometry|freshman) =

Answer the questions below. Then, convert the numbers to letters to reveal the solution.


L	ette	r Ke	ey:							
0	1	2	3	4	5	6	7	8	9	
A	В	Е	Ι	L	0	Ρ	R	S	Y	

- 1) Number of ways to roll "doubles" with 2 dice.
- Chance of drawing a club, diamond, or heart (from a deck of 52 cards).
- 3) Chances that the red face card drawn is a diamond.
- 4) If the odds of success are 7:3, how many successes would you expect in 30 independent trials?
- 5) Probability of an impossible event?
- 6) p('event A') + p(not 'event A') =
- 7) If the probability of X is 30%, the probability of Y is 100%, and X and Y are independent, what is the probability of X and Y occurring?
- 8) If it rains 60% of the time in February, what are the chances it doesn't rain on Valentine's day?
- 9) Probability of randomly selecting a white square:



- 10) FREE ENTRY
- 11) Outcomes M, N, and O are mutually exclusive. If $p(M) = .3 \quad p(N) = .6 \quad p(O) = .1$, what is the p(M or N)?
- 12) A bag contains 3 green blocks, 5 red blocks, and 2 blue blocks. Each time you draw, you put the block back. If you draw a green one three times in a row, what is the probability the next draw is green?
- 13) Odds of a coin landing heads 3 times in a row.
- 14) A bag has 4 marbles: 3 yellow and 1 blue. What are the chances of reaching in the bad and pulling 2 yellow marbles out?
- 15) FREE ENTRY
- 16) Total number of different blackjack hands that can possibly be dealt.

mathplane.com

3

SOLUTIONS-→

Conditional Probability Quick Quiz

II.

SOLUTIONS

A side note: P(7 of spades|red card) = 0

I. The following questions refer to a drawn card from a standard 52 card deck.

(7 of spades) 1 P(7 of spades) = 52 (total cards) 1 (the 7 of spades) 13 (13 total spades) P(7 of spades|spade) = $\frac{1}{4}$ (the 7 of spades) P(7 of spades|seven) = (4 total 7s) P(7 of spades|black card) = $\frac{1}{26}$ (7 of spades) (# of black cards) Are "Kings" and "diamonds" independent?

P(K) = 4/52 = 1/13Yes 1 P(K|D) = 1/13

P(K|FC) = 4/12 = 1/3

No \mathcal{V}

What is the probability the card I'm holding is a king? 4/52.. Now, what if I told you the card is a diamond? The probability it is a king remains 1/13.

Are "Kings" and "face cards" independent? P(K) = 1/13 then A and B are independent ...

is 0: impossible."

"the probability that a red card is the 7 of spades

P(7 of spades|seven) = "Probability that the card I'm

Definition of independent: P(B|A) = P(B),

a seven"

holding is the 7 of spades,

given that you are told it's

What is the probability that the card I'm holding is a king? 1/13.. But, what if I revealed that the card I'm holding is a face card? Now, the probability it is a king is 4/12...

	Freshmen	Sophomores	Juniors	Seniors	Totals
Algebra	52	32	16	0	100
Geometry	28	44	20	6	98
Trigonometry	17	20	59	20	116
Calculus	3	11	19	53	86
Totals	100	107	114	79	400

What is the probability that a randomly chosen student is a senior?

79 (seniors) 400 (total students)

What is the probability that a random junior is taking calculus? $P(Calculus|Junior) = \frac{19}{114}$ What is the probability that a senior is taking geometry? $P(\text{Geometry}|\text{Senior}) = \frac{6}{70}$

What is the probability that a geometry student is a senior?

 $P(\text{Senior}|\text{Geometry}) = \frac{6}{98}$

"If I select a junior, what is the

probability that he/she is taking

calculus?"

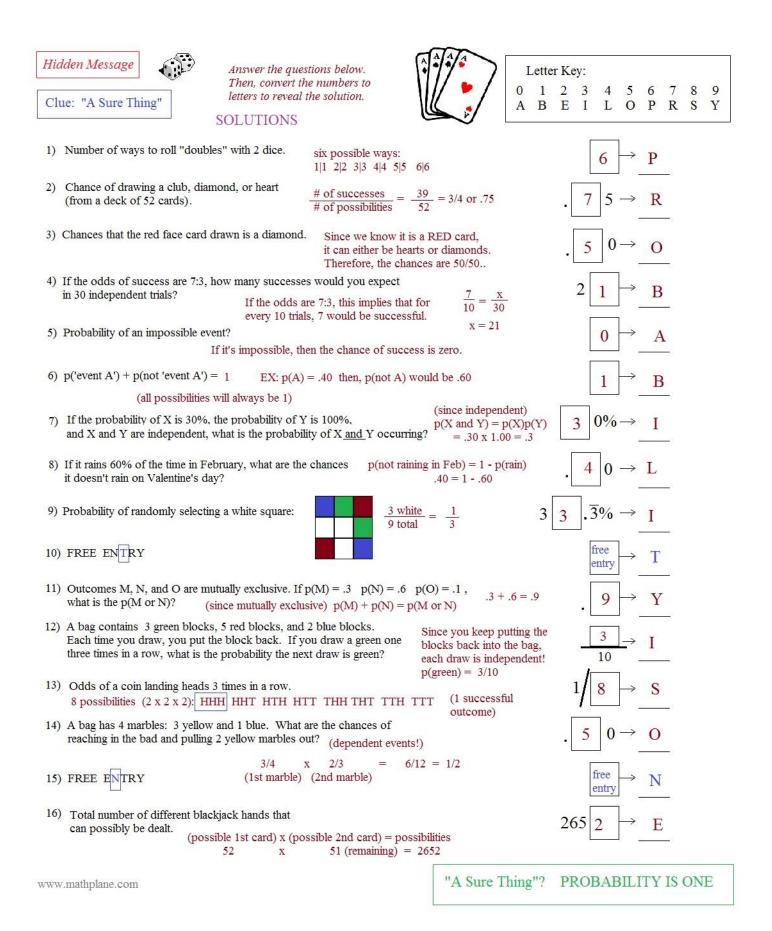
or <u>6 Senior Geometry students</u> 98 Total Geometry students

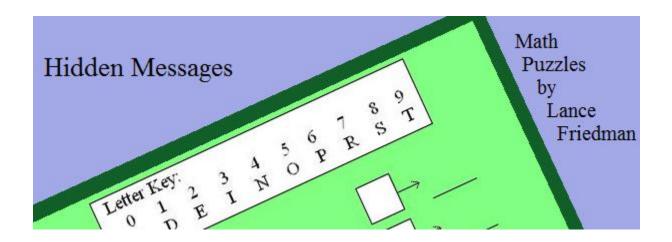
86 P(Calculus) = 400 207 P(freshmen or sophomore) =400P(geometry and trigonometry) = 0

$$P(\text{frashman}|\text{trigonomatry}) = -\frac{1}{2}$$

P(senior|algebra) = 0

$$P(\text{freshman}|\text{trigonometry}) = \frac{17}{116}$$


$$P(\text{trigonometry}|\text{freshman}) = \frac{17}{100}$$


probability he/she is a freshman?" "If I already know the student is a freshman, what is the probability

"If I already know the student is in

trigonometry, what is the

he/she is in trigonometry?"

Find more Hidden Message Puzzles at Mathplane.com...

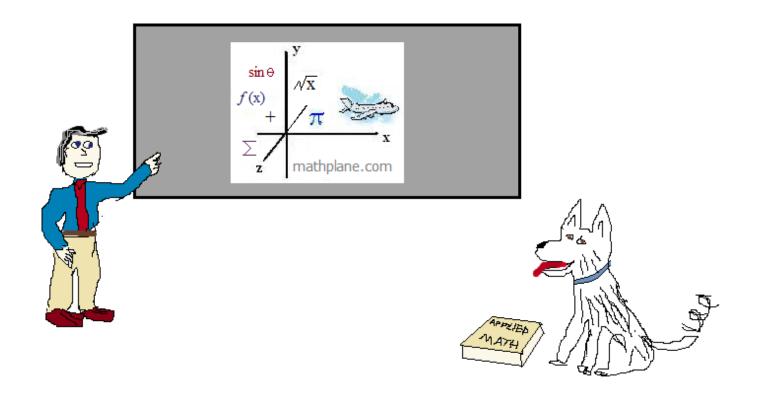
(Throughout the site and in the 'travel log collection')

One more probability question:

"Seating Assignment"

You and 2 friends receive invitations to the math awards banquet.

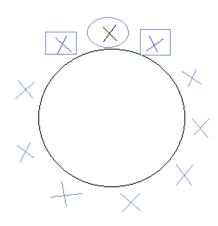
Each guest table is round and seats 10 people.


If you and your friends were randomly assigned seats at the same table, what is the probability that you are seated next to both friends?

Solution at the end of the packet...

Thanks for visiting. (Hope it helps!)

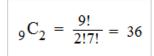
If you have questions, suggestions, or requests, let us know.


Cheers

Also, at Facebook, Google+, Pinterest, and TeachersPayTeachers

Seating Assignment Question:

You and 2 friends receive invitations to the math awards banquet. Each guest table is round and seats 10 people. If you and your friends were randomly assigned seats at the same table, what is the probability that you are seated next to both friends?



Your seat does not matter....

Now, consider the first friend... What is the probability that he/she is seated next to you? There are 9 seats left... And, there are 2 seats that are next to you. so the probability is 2/9.

Then, consider the second friend... What is the probability that he/she is seated next to you --- assuming the first friend got one of the 2 seats? 1/8

So, the probability that both friends get the two seats next to you is $2/9 \ge 1/8 = 1/36$

