Sketching Graphs 1: Derivatives

Notes, examples, and practice test (with solutions)

Topics include maximum/minimum, concavity, slope, velocity, acceleration, and more.

Derivatives and Graphs

The Function

f(x): position of each x

f(x) > 0 positive (above the x-axis)

f(x) < 0 negative (below the x-axis)

f(x) = 0 on the x-axis

The 1st derivative of the function

f'(x): instantaneous rate of change (slope) at each x

f'(x) > 0 increasing

f'(x) < 0 decreasing

f'(x) = 0 critical value (max/min)

The 2nd derivative of the function

f"(x): acceleration (concavity) at each x

f''(x) > 0 concave up f''(x) < 0 concave down f''(x) = 0 point of inflection

Derivatives and Graphs (continued)

Concavity and the 2nd derivative

The 1st derivative of a function describes the instantaneous rate of change of the function. (slope)

The 2nd derivative describes the instantaneous rate of change of the 1st derivative. (concavity)

Concave down:

The slope (1st derivative) decreases.

slope A = 2 1/2

slope B = 1

slope C = 0 (maximum)

slope D = -1

slope E = -

"The rate of change of the function is decreasing." (Or, "the rate of change of the rate of change is negative!")

Concave up:

The slope (1st derivative) increases.

slope a = -2

slope b = -1/2

slope c = 0 (minimum)

slope d = 1

slope e = 3

"The rate of change of the function is increasing."
(Or, "the rate of change of the rate of change is positive!")

Maximum or minimum?

If f'(x) = 0, it is a critical value --- a maximum or a minimum.

How do you determine if it's a maximum or a minimum?

Look at the first derivative:

Pick a value on the left, and pick a value on the right....

If increasing on the left and decreasing on the right, then it's a maximum. If decreasing on the left and increasing on the right, then it's a minimum.

OR.

Look at the second derivative:

For x, where f'(x) = 0,

if f''(x) < 0, it is concave down; therefore, it's a maximum.

if f''(x) > 0, it is concave up; therefore, it's a minimum.

point A is a local maximum f'(2) = 0 f''(2) < 0

(left) f'(-1) > 0 (increasing) (right) f'(5) < 0 (decreasing)

point B is a local minimum

f'(7) = 0 f''(7) > 0

(left) $f'(5) \le 0$ (decreasing) (right) $f'(9) \ge 0$ (increasing)

Derivatives and Graphs (continued)

Example 1: y = 3x - 5

The x-intercept is (5/3, 0). And, y < 0 for $(-\infty, 5/3)$ and y > 0 for $(5/3, \infty)$

first derivative: y' = 3 Since 3 > 0, the slope is always increasing.

second derivative: y'' = 0 There is no concavity.

Example 2: $f(x) = x^2 - 10x + 16$

If we factor the equation, (x-2)(x-8), we determine the x-intercepts are (2,0) and (8,0). And, f(x) is positive for the intervals $(-\infty,2)$ and $(8,\infty)$ negative for the interval (2,8)

$$f'(\mathbf{x}) = 2\mathbf{x} - 10$$

Set f'(x) = 0 to find critical values.

$$2x - 10 = 0$$

$$x = 5$$

$$f(5) = (5)^2 - 10(5) + 16 = -9$$
 (5, -9) is relative minimum.

2x - 10 < 0 for all x < 5 function is decreasing on interval $(-\infty, 5)$

2x - 10 > 0 for all x > 5 function is increasing on interval $(5, \infty)$

$$f''(x) = 2$$
 Since $2 > 0$, the function is concave up

Example 3:
$$g(x) = x^3 + 9x^2 + 24x - 2$$

$$g'(x) = 3x^2 + 18x + 24$$

To find critical values, set first derivative equal to zero:

$$3(x^{2} + 6x + 8) = 0$$
$$3(x + 2)(x + 4) = 0$$

$$3(x+2)(x+4) = 0$$
 $x = -2, -4$

$$(-2)^3 + 9(-2)^2 + 24(-2) - 2 = -22$$

$$(-4)^3 + 9(-4)^2 + 24(-4) - 2 = -18$$

critical points: (-2, -22) (-4, -18)

max or min? Check 2nd derivative.

$$g''(x) = 6x + 18$$

g''(-2) = 6 (concave up; local minimum)

g''(-4) = -6 (concave down; local maximum)

To add detail to the sketch: y-intercept is (0, -2)

point of inflection: (-3, -20)

(because g''(-3) = 0)

Suppose $h(t) = -16t^2 + 48t + 160$ represents the height of a ball (in feet) at a given time t seconds

a) If the ball was thrown from a balcony, how high is the balcony?

This is a position question;
$$h(0) = -16(0)^2 + 48(0) + 160 = 160$$
 feet

b) What is the initial velocity?

This is an instantaneous rate of change question; h'(t) = -32t + 48

since the initial velocity occurs at t = 0, the initial velocity is 48 feet/second

c) When does the ball reach maximum height? What is the maximum height?

To find a maximum, use the first derivative; h'(t) = -32t + 48

h'(t) = 0 will determine critical values

$$-32t + 48 = 0$$
 $t = 3/2$

The ball reaches maximum height at 3/2 seconds.

Note: h''(t) = -32 Since h''(t) < 0, the entire function is concave down. (only a maximum could exist)

To find the maximum height, use the original function.

$$h(3/2) = -16(3/2)^2 + 48(3/2) + 160 = -36 + 72 + 160 = 196$$
 feet

d) What is the acceleration of the ball?

Acceleration is the instantaneous rate of change of the velocity; use the 2nd derivative h''(t) = -32 feet/sec²

e) When does the ball hit the ground?

This is a position question; find where
$$h(t) = 0$$

$$-16t^{2} + 48t + 160 = 0$$
$$-16(t^{2} - 3t - 10) = 0$$
$$-16(t - 5)(t + 2) = 0$$
$$t = -2, 5$$

The ball is on the ground at 5 seconds. (time cannot be -2!)

Practice Quiz (and solutions) -→

I. Solve:

1)
$$f(x) = x^5 + 3x^3 - 4x + 9$$

a)
$$f(-1) =$$

b)
$$f'(2) =$$

c)
$$f''(0) =$$

2)
$$g(t) = -t^2 + 5t + 11$$

a)
$$g(5) =$$

b)
$$g'(1) =$$

c)
$$g''(3) =$$

II. Answer:

$$f(x) = x^4 + 12x^3 - 20x^2 + 7$$

- a) What is the y-intercept?
- b) Identify any relative maximum(s).
- c) Where are the points of inflection?
- III. Find the first and second derivatives of the function $f(x) = x^3 + 6x^2 + 9x$ Identify the x-intercept(s), y-intercept, and any critical values. Describe the concavity. Then, sketch a graph of the function.

- A) f(-3)
 - f'(-3)
 - f"(-3)
- B) f(1)
 - f'(1)
- C) f(5)
 - f"(5)
- D) f'(8)
 - f"(8)

Challenge

- V. The following is the graph of f'(x) (** It's the graph of the derivative of f(x))
 - 1) Sketch a graph of f(x).
 - 2) Sketch a graph of f''(x).

1) f(x)

2) f''(x)

I. Solve:

1)
$$f(x) = x^{5} + 3x^{3} - 4x + 9$$

a) $f(-1) = (-1)^{5} + 3(-1)^{3} - 4(-1) + 9$
 $-1 - 3 + 4 + 9 = 9$
b) $f'(2) = f'(x) = 5x^{4} + 9x^{2} - 4$
 $f'(2) = 5(2)^{4} + 9(2)^{2} - 4 = 112$
c) $f''(0) = f''(x) = 20x^{3} + 18x$
 $f''(0) = 20(0)^{3} + 18(0) = 0$

2)
$$g(t) = -t^2 + 5t + 11$$

a)
$$g(5) = -(5)^2 + 5(5) + 11 = -25 + 25 + 11 = 11$$

b)
$$g'(1) = g'(1) = -2t + 5$$

 $g'(1) = -2(1) + 5 = 3$
c) $g''(3) = g''(1) = -2$

c)
$$g''(3) = g''(t) = -2$$

 $g''(3) = -2$

II. Answer:

$$f(x) = x^4 + 12x^3 - 20x^2 + 7$$

a) What is the y-intercept? The point where the function crosses the y-axis: (0, ?) (0, 7) $f(0) = (0)^4 + 12(0)^3 - 20(0)^2 + 7 = 7$

b) Identify any relative maximum(s).

Relative max: any x, where
$$f'(x) = 0$$
 and $f''(x) < 0$

$$(0, 7) \text{ is the only relative maximum}$$

$$(1, 0) \text{ and } (-10, -3993) \text{ are relative minimums}$$

 $f'(x) = 4x^3 + 36x^2 - 40x$ $4x(x^{2} + 9x - 10) = 0$ 4x(x + 10)(x - 1) = 0

$$f''(x) = 12x^{2} + 72x - 40$$

$$4x(x^{2} + 9x - 10) = 0$$

$$4x(x + 10)(x - 1) = 0$$

$$f''(1) = 44 \text{ concave up}$$

$$f''(-10) = 440 \text{ concave up}$$

c) Where are the points of inflection?

point of inflection: second derivative equals 0

$$x = \frac{-9 + \sqrt{111}}{3}$$

 $f''(x) = 12x^2 + 72x - 40$ $4(3x^2 + 18x - 10) = 0$

(quadratic formula) $\frac{-18 + \sqrt{324 + 120}}{6}$ -9 [±] √111

III. Find the first and second derivatives of the function $f(x) = x^3 + 6x^2 + 9x$ Identify the x-intercept(s), y-intercept, and any critical values. Describe the concavity. Then, sketch a graph of the function.

$$f'(x) = 3x^2 + 12x + 9$$

$$f''(x) = 6x + 12$$

x-intercepts: f(x) = 0

(0,0) (-3,0)

y-intercept: f(0) =

$$x(x^2 + 6x + 9) = 0$$

$$x(x+3)(x+3) = 0$$

$$x = 0, -3$$

$$(0)^3 + 6(0)^2 + 9(0) = 0$$

(0, 0)

critical values: $f'(x) = 3x^2 + 12x + 9 = 0$

$$3(x^2 + 4x + 3) = 0$$

$$3(x + 1)(x + 3) = 0$$

 $x = -1$ and -3

$$x = -1 \text{ and } -3$$

 $x = 6x + 12 = 0$

points of inflection: f''(x) = 6x + 12 = 06(x+2)=0 (-1, -4) is a minimum

(-3, 0) is a maximum

(-2, -2) is point of inflection

concave down x < -2concave up x > -2

- A) f(-3) > 0
 - f'(-3) = 0 (local minimum)
 - f''(-3) > 0 (concave up)
- B) f(1) > 0
 - f'(1) < 0 (negative slope)
- C) f(5) < 0
 - f''(5) > 0 (concave up)
- D) f'(8) > 0 (positive slope)
 - f''(8) = 0 (point of inflection)

Challenge

- V. The following is the graph of f'(x) (** It's the graph of the derivative of f(x))
 - 1) Sketch a graph of f(x).
 - 2) Sketch a graph of f''(x).

1) f(x)

2) f''(x)

f''(x) is the derivative of f'(x), so the sketch describes the instantaneous rates of change (slopes) of each x in f'(x)