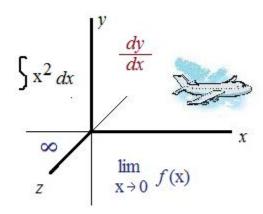
Calculus, Natural Log, and e

Practice Test and Solutions



mathplane.com

Topics include logarithms, area, tangent lines, implicit differentiation, graphing, inverses, partial fractions, and more.

Calculus: Logarithms, \ln , and e

I. Logarithm Review

1) Answer: $\ln 1 =$

lne =

 $\ln 0 =$

(no calculator)

2) $\log 4 = .602$

 $\log 3 = .477$

Find:

log 12 =

log 400 =

 $\log(.75) =$

(no calculator)

3) Solve for x:

A) $\log_5 x + \log_5 (x-4) = 1$

B) $3^{x} = 8$

C) $2^{6-x} = 4^{2+x}$

Challenge: $4^{X} - 2^{X+1} = 1$

II. Calculus: e and ln

Calculus: Logarithms, ln, and e

1) Find $\frac{dy}{dx}$

$$y = e^{2X}$$

$$y = -e^{-X}$$

$$y = e^2$$

$$y = \ln(2x + 4)$$

$$y = \ln(3)$$

$$y = \ln(x+3)^2$$

$$y = \ln((x+3)^2)$$

$$y = \frac{2}{e^{3X}}$$

2) What is the equation of the line tangent to $y=e^{2x-3}$ at the point $(\frac{3}{2},1)$? Optional: graph your result

3) What is the equation of the normal to $y = \ln(x - 2) + 4$ at the point (3, 4)? Optional: graph your result

4)
$$\int e^{2x} dx$$

$$\int \frac{3x}{3x^2 + 2} \, dx$$

$$\int \frac{2}{3x+3} dx$$

Calculus: Logarithms, \ln , and e

5) What is the area of the region above the x-axis that is bounded by the y-axis, x = 3, and e^{X} ?

6) What is the area of the region bounded by y = ln(x) + 2, y = 2, and x = 5? (Use Calculator)

7) Find the equation of the line that is tangent to $f(x) = 3x^2 - \ln x$ at (1, 3) (Optional: Use a graphing calculator to confirm your answer)

Calculus: Logarithms, ln, and e

8)
$$y = \frac{x^2}{2} - \ln x$$

What are the extrema?

Points of inflection?

(Optional: Use a graphing calculator to check your answers)

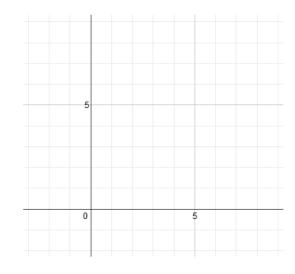
- III. Inverses and derivatives
- 1) f(x) and g(x) are one to one inverses. If the slope of f(x) at (3, 8) is 2, where is the slope of g(x) equal to 1/2?

2) $f(x) = x^3 - x - 6$ What is $f^{-1}(0)$?

- 3) $h(x) = \ln(x) + 4$
 - a) What is the inverse of h(x)?

b) $h(3) = \ln(3) + 4$ (≈ 5.1) What is the slope at h(3)?

c) Graph h(x) and $h^{-1}(x)$ Sketch the tangent lines at (3, 5.1) and (5.1, 3)What are the equations of the tangent lines?



Find the first derivatives:

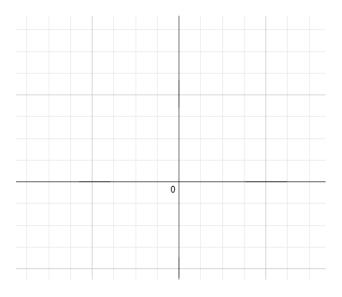
1)
$$g(x) = 2^{x+3}$$

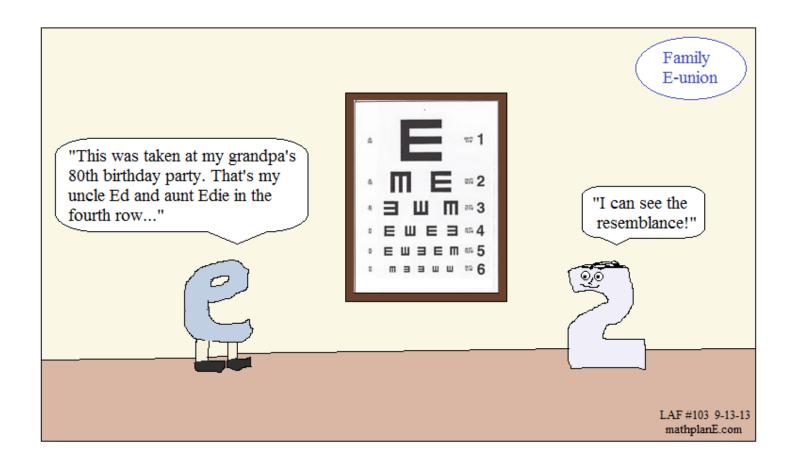
2)
$$f(x) = x^2 e^{x}$$

3)
$$g(t) = t^2 2^t$$

4) What is the equation of the line tangent to $y = 2^{-X}$ at (0, 1)?

(optional: sketch a graph containing the function and tangent line)





SOLUTIONS-→

Calculus: Logarithms, In, and e

I. Logarithm Review

1) Answer:
$$\ln 1 = \log_e 1 = x$$
 $\ln e = \log_e e = y$ $\ln 0 = \log_e 0 = z$ (no calculator) $e^X = 1$ $e^Y = e$ $e^Z = 0$ No solution (logarithms cannot be zero or negative)

2)
$$\log 4 = .602$$
 $\log 3 = .477$
Find: $\log 12 = \log(3 \cdot 4)$ $\log 400 = \log(4 \cdot 10)$ $\log(.75) = \log \frac{3}{4}$
(no calculator) $\log 3 + \log 4$ $\log 4 + \log 10$ $\log 3 + \log 4$
 $\log 3 + \log 4$ $\log 4 + \log 10$ $\log 3 + \log 4$
 $\log 3 + \log 4$ $\log 4 + \log 10$ $\log 3 + \log 4$
 $\log 3 + \log 4$ $\log 4 + \log 10$ $\log 3 + \log 4$
 $\log 3 + \log 4$ $\log 3 + \log 4$ $\log 4 + \log 10$ $\log 3 + \log 4$
 $\log 3 + \log 4$ $\log 4 + \log 10$ $\log 3 + \log 4$ $\log 3 + \log 4$

3) Solve for x:

A)
$$\log_5 x + \log_5 (x-4) = 1$$

B) $3^x = 1$
 $\log_5 x(x-4) = 1$
 $5^1 = x(x-4)$
 $5 = x^2 - 4x$
 $x^2 - 4x - 5 = 0$
 $(x-5)(x+1) = 0$
 $x = 5$
A) $\log_5 x + \log_5 (x-4) = 1$
 $x \log_3 x = 1$
 $x = \frac{1}{1}$

Challenge:
$$4^{X} - 2^{X+1} = 1$$

 $4^{X} - 2^{X+1} - 3 = 0$ therefore,
 $(2^{2})^{X} - (2^{X})(2^{1}) - 3 = 0$ $2^{X} = -1$ and 3
 $(2^{X})^{2} - (2^{X})(2^{1}) - 3 = 0$ $2^{X} = 3$ approximately 1.585
 $(2^{X})^{2} - (2^{X})(2^{1}) - 3 = 0$ $2^{X} = 3$ $2^{X} = 3$ Check:
 $(2^{X})^{2} - 2y - 3 = 0$ $2^{X} = 3$ $2^{X} = 3$ $2^{X} = -1$ Check:
 $(y - 3)(y + 1) = 0$ $y = -1, 3$ $y = -1, 3$

II. Calculus: e and ln

Calculus: Logarithms, ln, and e

1) Find
$$\frac{dy}{dx}$$

for $y = e^{u}$ "derivative of exponent times itself" for $y = \ln(u)$ "derivative over itself"

$$y = e^{2X}$$

$$y = -e^{-X}$$

$$e^{-x}$$
 or $\frac{1}{e^x}$

 $y = e^2$

$$y = \ln(2x + 4)$$

$$\frac{2}{2x+4} \text{ or } \frac{1}{x+2}$$

$$y = \ln(3)$$

$$y = \ln(x+3)^2$$

$$y = \ln((x+3)^2)$$

$$y = \frac{2}{e^{3X}}$$

$$2(\ln(x+3)^{1} \cdot \frac{1}{(x+3)}$$

$$\frac{2\ln(x+3)}{(x+3)}$$

$$\frac{2(x+3)}{(x+3)^2}$$

$$\frac{2}{x+3}$$

$$-6e^{-3x}$$
 or $\frac{-6}{e^{3x}}$

2) What is the equation of the line tangent to
$$y = e^{2x-3}$$
 at the point $(\frac{3}{2}, 1)$? Optional: graph your result

To find the equation of a line, we need a point and the slope.

Point:
$$(3/2, 1)$$

Slope: rate of change at $x = 3/2$

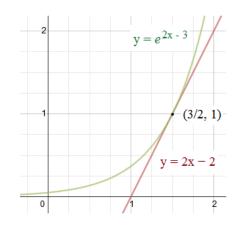
ln(3) is a constant

$$y' = 2 \cdot e^{2x - 3}$$

$$y' = 2 \cdot e^0 = 2$$

tangent line:
$$y - 1 = 2(x - \frac{3}{2})$$

normal line: y - 4 = -1(x - 3)



3) What is the equation of the normal to $y = \ln(x - 2) + 4$ at the point (3, 4)? Optional: graph your result

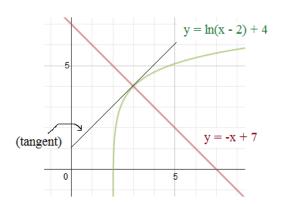
The normal is perpendicular to the tangent line

Point: (3, 4)

Find
$$\frac{dy}{dx}$$
 to get instantaneous rate of change (i.e. slope)

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1}{x-2} + 0$$

therefore, opposite reciprocal is -1 (normal slope)



4)
$$\int e^{2x} dx$$
$$\frac{1}{2} \int 2e^{2x} dx$$

$$\int \frac{3x}{3x^2 + 2} dx$$

$$\int \frac{2}{3x+3} dx$$

$$\frac{1}{2}$$
 $\sum_{i=1}^{2e^{-1}} dx$

$$\frac{1}{2} \int \frac{2 \cdot 3x}{3x^2 + 2} \ dx$$

$$\int \frac{2}{3(x+1)} \ dx$$

$$\frac{1}{2}e^{2x} + C$$

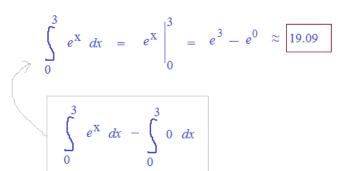
$$\frac{1}{2} \ln(3x^2 + 2) + C$$

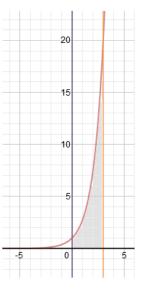
$$\frac{2}{3} \int \frac{1}{(x+1)} dx = \frac{2}{3} \ln(x+1) + C$$

5) What is the area of the region above the x-axis that is bounded by the y-axis, x = 3, and e^{X} ?

A quick sketch will show the enclosed region (and its boundaries) The endpoints of the integral will be x = 0 and x = 3

and, the upper boundary will be $y = e^{X}$ and the lower boundary will be y = 0





6) What is the area of the region bounded by $y = \ln(x) + 2$, y = 2, and x = 5? (Use Calculator)

First, draw a sketch

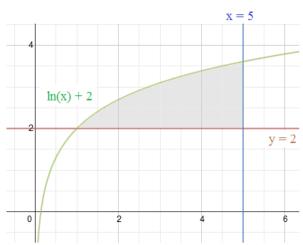
note: a region with boundaries y = ln(x), the x-axis, and x = 5 would have the same area. (a downward shift of 2)

Second, establish boundaries of integral (i.e. interval of the integrand)

The right boundary is x = 5The left boundary is x = 1because

$$y = ln(x) + 2$$
 find intersection:
 $y = 2$ (set equations equal)
 $2 = ln(x) + 2$
 $0 = ln(x)$

 $0 = \ln(x)$ x = 1



Then, evaluate the definite integral

$$\int_{1}^{5} \ln(x) + 2 \, dx - \int_{1}^{5} 2 \, dx = \int_{1}^{5} \ln(x) \, dx = x \ln(x) - x \Big|_{1}^{5} = 5 \ln(5) - 5 - (0 - 1)$$
upper boundary
$$\int_{1}^{5} \ln(x) \, dx = x \ln(x) - x \Big|_{1}^{5} = 5 \ln(5) - 5 - (0 - 1)$$

$$\approx 4.047$$

7) Find the equation of the line that is tangent to $f(x) = 3x^2 - \ln x$ at (1, 3)

Calculus: Logarithms, ln, and e

(Optional: Use a graphing calculator to confirm your answer)

Point: (1, 3)

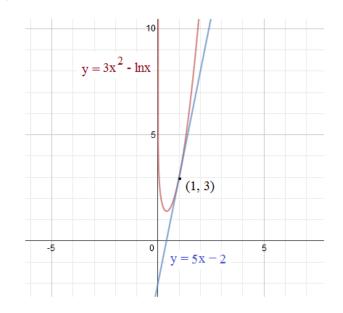
Slope: find instantaneous rate of change (derivative)

$$f'(x) = 6x - \frac{1}{x}$$

then, slope at (1, 3) is f'(1) = 5

Equation of tangent line:

$$y-3 = 5(x-1)$$
 or $y = 5x-2$

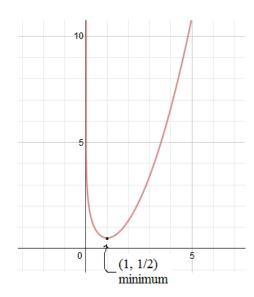


8)
$$y = \frac{x^2}{2} - \ln x$$

What are the extrema?

Points of inflection?

(Optional: Use a graphing calculator to check your answers)



To find extrema (max. or min), set first derivative equal to zero.

$$y' = x - \frac{1}{x}$$

$$x - \frac{1}{x} = 0$$

 $y' = x - \frac{1}{x}$ $x - \frac{1}{x} = 0$ multiply both sides by x

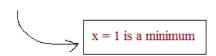
$$x^2 - 1 = 0$$
 factor

$$(x + 1)(x - 1) = 0$$

$$x = -1$$
 and

x = -1 and 1 since ln(-1) does not exist, -1 is extraneous!

at x = 0, derivative is ≤ 0 (decreasing) at x = 2, derivative is > 0 (increasing)



$$y'' = 1 + \frac{1}{x^2} \qquad 1 + \frac{1}{x^2} = 0$$

 $\frac{1}{x^2} = -1$ No solution, so there is no point of inflection!

III. Inverses and derivatives

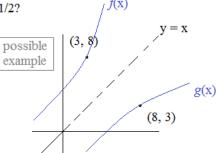
1) f(x) and g(x) are one to one inverses.

If the slope of f(x) at (3, 8) is 2, where is the slope of g(x) equal to 1/2?

Since f(x) and g(x) are inverses, they reflect over y = x.

the rate of change (slopes) of reflection points will be reciprocals...

the reflection point of (3, 8) is (8, 3)



2) $f(x) = x^3 - x - 6$

What is $f^{-1}(0)$?

We need to find two parts: 1) the value of $f^{-1}(0)$ If $x^3 - x - 6 = 0$

 $h^{-1}(x) = e^{x-4}$

$$x = 2$$

$$f^{-1}(a) = \frac{1}{f'(f^{-1}(a))}$$

2)
$$f'(x)$$
 $f' = 3x^2 - 1$

$$\frac{1}{3(2)^2 - 1} = \boxed{\frac{1}{11}}$$

- 3) $h(x) = \ln(x) + 4$
 - a) What is the inverse of h(x)?

$$y = \ln(x) + 4$$

 $y = \ln(x) + 4$ "switch x and y"

$$x = \ln(y) + 4$$

$$ln(y) = x - 4$$
 "solve for y"

$$\log_{e}(y) = (x - 4)$$

$$y = e^{X-4}$$

b) $h(3) = \ln(3) + 4 \ (\approx 5.1)$

What is the slope at h(3)?

$$h'(x) = \frac{1}{x} + 0$$
 $h'(3) = \frac{1}{3}$

$$h'(3) = \frac{1}{3}$$

 $h^{-1}(5.1) \approx 3$ What is the slope at $h^{-1}(5.1)$?

$$h^{-1}(x) = e^{x-4}$$

$$h^{-1}(x) = e^{x-4}$$
 $h^{-1}(5.1) = e^{5.1-4} = e^{1.1} = 3$

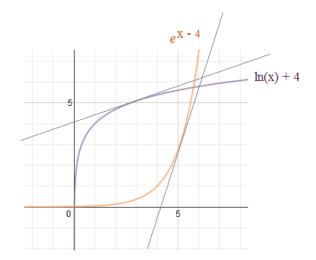
c) Graph h(x) and $h^{-1}(x)$

Sketch the tangent lines at (3, 5.1) and (5.1, 3)

What are the equations of the tangent lines?

$$y-5.1 = \frac{1}{3}(x-3)$$
 and $y-3 = 3(x-5.1)$
 $y = \frac{1}{3}x + 4.1$ $y = 3x - 12.3$

$$y = \frac{1}{3}x + 4.1$$
 $y = 3x - 12.3$



IV. Exponential Functions

Find the first derivatives:

1)
$$g(x) = 2^{x+3}$$

using logarithmic differentiation:

$$y = 2^{x+3}$$

$$\ln y = \ln(2^{x+3})$$

$$\ln y = (x+3)\ln 2$$

$$\frac{1}{y} \cdot y' = (1+0)\ln 2 + 0(x+3)$$

$$y' = y\ln 2$$

$$y' = 2^{x+3} \cdot \ln 2$$

2)
$$f(x) = x^2 e^{x}$$

$$= xe^{X}(x+2)$$

 $f'(x) = 2x(e^{X}) + e^{X}(x^{2})$

SOLUTIONS

3)
$$g(t) = t^2 2^t$$

$$g'(t) = 2t \cdot 2^t + 2^t (\ln 2) \cdot t^2$$

$$= 2^{t} \left((\ln 2)t^2 + 2t \right)$$

using the definition/formula:

$$u = x + 3$$

$$\frac{du}{dx} = 1$$

$$\frac{du}{dx} = 1$$
 $\frac{d}{dx}(2^{x+3}) = (1)(2^{x+3}) \ln 2$

$$a = 2$$

$$\frac{d}{dx}(a^{\mathbf{u}}) = \frac{du}{dx}(\mathbf{a}^{\mathbf{u}}) \ln a$$

4) What is the equation of the line tangent to $y = 2^{-X}$ at (0, 1)?

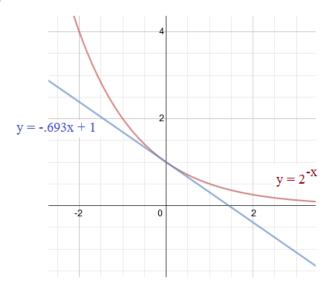
(optional: sketch a graph containing the function and tangent line)

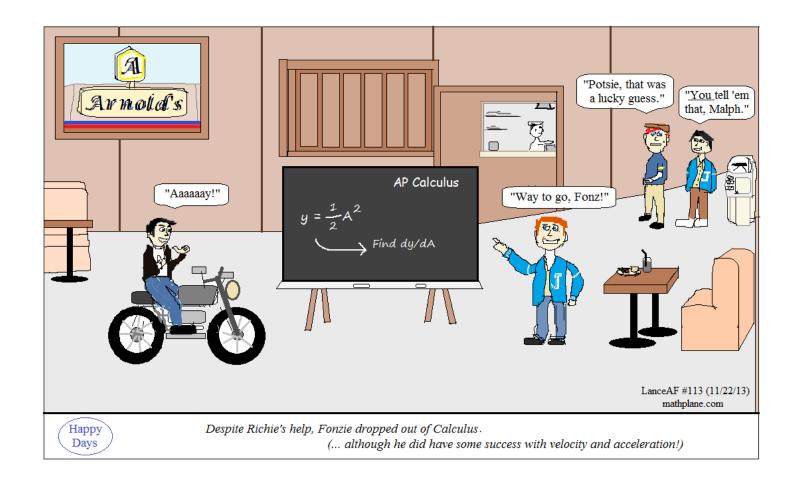
To find the equation of a line, we need the

slope:
$$y' = (-1)(2^{-X})(\ln 2)$$

at
$$x = 0$$
, the slope is $-(\ln 2) \approx -.693$

tangent line:
$$y = -.693x + 1$$





Implicit Differentiation and Logarithm extras----

Implicit differentiation and natural log

Example: Find $\frac{dy}{dx}$: $x^2 + 3\ln y + y^2 = 10$

$$2x + 3 \cdot \frac{1}{y} \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$$

$$\frac{3}{y} \frac{dy}{dx} + 2y \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} \left(\frac{3}{y} + 2y\right) = -2x$$

$$\frac{dy}{dx} = \frac{-2x}{\frac{3 + 2y^2}{y}} = \frac{-2xy}{3 + 2y^2}$$

Example: Find the equation of the line tangent to $x + y - 1 = \ln(x^2 + y^2)$ at (1, 0)

To find equation of a line, we need slope and a point.

Point: (1, 0)

Slope: Take the derivative and evaluate the point of tangency

Implicit differentiation:

$$1 + (1)\frac{dy}{dx} - 0 = \frac{2x + (2y)\frac{dy}{dx}}{(x^2 + y^2)}$$

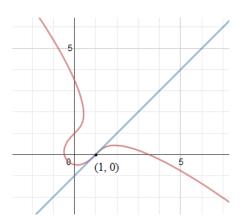
cross-multiply

$$(x^2 + y^2) + (x^2 + y^2) \frac{dy}{dx} = 2x + (2y) \frac{dy}{dx}$$

collect dy/dx to one side

$$(x^2 + y^2) - 2x = (2y)\frac{dy}{dx} - (x^2 + y^2)\frac{dy}{dx}$$

factor out the dy/dx



$$\frac{(x^2 + y^2) - 2x}{(2y) - (x^2 + y^2)} = \frac{dy}{dx}$$

To find slope at point of tangency, substitute (1, 0) for (x, y)

$$\frac{(1+0)-2}{0-(1+0)} = 1$$

Equation of the tangent line: y - 0 = 1(x - 1)

or
$$y = x - 1$$

Derivatives of logarithms (other than e)

Example:
$$f(x) = 5^{X}$$
 find $f'(x)$

$$\frac{d}{dx}\left(a^{X}\right) = \left(a^{X}\right) \ln a$$

(the base a is a constant)

using the definition:

$$5^{X} \cdot \ln 5$$

using logarithmic differentiation:

$$y = 5^{X}$$
 $log of both sides$
 $log = ln5^{X}$
 $log arithm power rule$

$$\frac{1}{y} \cdot y' = (1)\ln 5 + 0(x)$$
 derivative

$$y' = y\ln 5$$
 substitution

$$y' = 5^{X} \cdot \ln 5$$

Example:
$$y = 3^{x^2}$$
 find $\frac{dy}{dx}$

$$\frac{d}{dx} (a^{\mathbf{u}}) = \frac{du}{dx} (\mathbf{a}^{\mathbf{u}}) \ln a$$

(the base a is a constant and u is a function)

using the definition:

$$u = x^{2}$$

$$a = 3$$

$$\frac{du}{dx} = 2x$$

$$\frac{dy}{dx} 3^{x^{2}} = (2x) \cdot 3^{x^{2}} \cdot \ln 3$$

using logarithmic differentiation:

$$y = 3^{X^{2}}$$

$$\ln y = \ln 3^{X^{2}}$$

$$\ln y = x^{2} \ln 3$$

$$\ln y = 1.098x^{2}$$

$$\frac{1}{y} \cdot y' = 2.196x$$

$$\frac{1}{y} \cdot y' = 2x(\ln 3)$$

$$y' = 2.196xy$$

$$y' = 2x(\ln 3)y$$

$$y' = 2x \cdot \ln 3 \cdot 3^{X^{2}}$$

Example: What is the derivative of e^{X} ?

$$y = e^{X}$$
 $y' = e^{X} \cdot \ln(e)$ $y' = e^{X} \cdot 1 = e^{X}$

Comparing Logarithmic Differentiation

Example:
$$y = (2x + 3)^{2} (x^{2} + 1)$$

$$\ln y = \ln \left[(2x + 3)^{2} (x^{2} + 1) \right]$$

$$\ln y = \ln (2x + 3)^{2} + \ln (x^{2} + 1)$$

$$\ln y = 2\ln(2x + 3) + \ln (x^{2} + 1)$$

$$\frac{1}{y} \frac{dy}{dx} = 2 \frac{2}{(2x + 3)} + \frac{2x}{(x^{2} + 1)}$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{4}{(2x + 3)} + \frac{2x}{(x^{2} + 1)}$$

$$\frac{dy}{dx} = \left[\frac{4}{(2x + 3)} + \frac{2x}{(x^{2} + 1)} \right] y$$

 $\frac{dy}{dx} = \left[\frac{4}{(2x+3)} + \frac{2x}{(x^2+1)} \right] \left[(2x+3)^2 (x^2+1) \right]$

f g
$$(2x+3)^{2} (x^{2}+1)$$

$$2(2x+3) \cdot 2 \cdot (x^{2}+1) + 2x \cdot (2x+3)^{2}$$
f' g g' f

$$4(2x + 3)(x^2 + 1) + 2x(2x + 3)^2$$

The left uses logarithms and implicit differentiation...

The right uses power rule, product rule, and chain rule...

Example:

$$y = \sqrt{4 \sqrt{\frac{(x-2)^3 (x^2+1)}{(2x+5)^3}}}$$

$$\ln y = \ln \left[\frac{(x-2)^3 (x^2+1)}{(2x+5)^3} \right]^{\frac{1}{4}}$$

$$\ln y = \frac{1}{4} \ln \left[\frac{(x-2)^3 (x^2+1)}{(2x+5)^3} \right]$$

$$\ln y = \frac{1}{4} \left[\ln (x-2)^3 + \ln (x^2+1) + \ln (2x+5)^3 \right]$$

$$\ln y = \frac{1}{4} \left[3 \ln (x-2) + \ln (x^2+1) + 3 \ln (2x+5) \right]$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right]$$

$$\frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right] y$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right] \qquad \frac{dy}{dx} = \frac{1}{4} \left[\frac{3}{(x-2)} + \frac{2x}{(x^2+1)} + \frac{3 \cdot 2}{(2x+5)} \right] \left[\frac{(x-2)^3 (x^2+1)}{(2x+5)^3} \right]^{\frac{1}{4}}$$

Calculus: Logarithm Extras

Derivative of an exponential function (other than e^{X})

Example: Find the equation of the line tangent to $y = 4^{X}$ at (1, 4)

To determine the equation of a line, we need a point and the slope.

Point: (1, 4)

Slope: Find the derivative

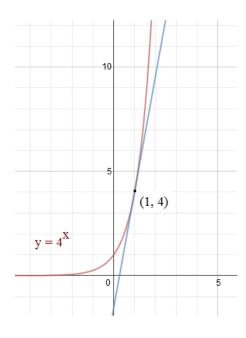
$$y' = 4^{X} \cdot \ln(4)$$

and, at x = 1 the slope is $4^{(1)} \cdot \ln(4) \approx 5.545$

$$y - 4 = 5.545(x - 1)$$

$$\frac{d}{dx}(a^{X}) = (a^{X}) \ln a$$

(the base a is a constant)



Logarithmic Differentiation: Using logarithms and implicit differentiation to find a derivative.

Example:
$$y = x^{\sin x}$$
 Find $\frac{dy}{dx}$

Since there is a variable in the term AND the exponent, it cannot be directly differentiated.

But, we can take the natural log of both sides...

$$ln(y) = ln(x \sin x)$$

Logarithm properties: power rule

$$ln(y) = sinx \cdot ln(x)$$

Implicit differentiation

$$\frac{1}{y} \frac{dy}{dx} = \cos x \cdot \ln(x) + \sin x \cdot \frac{1}{x}$$

multiply both sides by y (to isolate the dy/dx)

$$\frac{dy}{dx} = y \left(\cos x (\ln(x)) + \frac{\sin x}{x} \right)$$

substitute the y with the original terms

$$\frac{dy}{dx} = x \sin x \left(\cos x (\ln(x)) + \frac{\sin x}{x} \right)$$

Using partial fractions to find the integral

Example:
$$\int \frac{8x+5}{x^2+3x-10} dx$$

$$\frac{A}{(x+5)} + \frac{B}{(x-2)} = \frac{8x+5}{x^2+3x-10}$$

$$(x+5)(x-2)$$

$$\frac{A(x-2)}{(x+5)(x-2)} + \frac{B(x+5)}{(x+5)(x-2)} = \frac{8x+5}{x^2+3x-10}$$

$$A(x-2) + B(x+5) = 8x+5$$

$$Ax-2A + Bx+5B = 8x+5$$

$$(A+B)(x) - 2A + 5B = 8x+5$$

Then, we know
$$A + B = 8$$
 $2A + 2B = 16$ $-2A + 5B = 5$ $A = 5$ $B = 3$ $7B = 21$ then, $A = 5$ $B = 3$ $A = 5$ $A =$

$$\int \frac{8x+5}{x^2+3x-10} dx = \int \frac{5}{(x+5)} dx + \int \frac{3}{(x-2)} dx$$

 $5\ln|x+5| + 3\ln|x-2| + C$

Example:
$$\int \frac{-6x^2 + 3x + 5}{x^3 - x} dx \qquad \frac{-6x^2 + 3x + 5}{x^3 - x} = \frac{A}{x} + \frac{B}{(x+1)} + \frac{C}{(x-1)}$$
$$= \frac{(x+1)(x-1)A}{x(x+1)(x-1)} + \frac{x(x-1)B}{x(x+1)(x-1)} + \frac{x(x+1)C}{x(x+1)(x-1)}$$

$$-6x^2 + 3x + 5 = (x + 1)(x - 1)A + x(x - 1)B + x(x + 1)C$$

"Express method"

$$Ax^{2} - 1A + Bx^{2} + Bx + Cx^{2} + Cx$$

If the proof of the eliminate P and C (regroup the terms)

Let x = 0 (to eliminate B and C)

$$0 + 0 + 5 = -1A + 0B + 0C$$

$$A = -5$$

Let x = -1 (to eliminate A and C)

$$-6 + (-3) + 5 = 0A + 2B + 0C$$

$$B = -2$$

Let x = 1 (to eliminate A and B)

$$-6 + 3 + 5 = 0A + 0B + 2C$$

$$C = 1$$

$$\int \frac{-5}{x} + \frac{[-2]}{(x+1)} + \frac{1}{(x-1)} dx$$

$$-5\ln|x| + -2\ln|x+1| + \ln|x-1| + C$$

$$(A + B + C)x^{2} + (-B + C)x + A(-1)$$

 $-6x^{2} + 3x + 5$

$$A + B + C = -6$$

+ B + C = 3
-A = 5

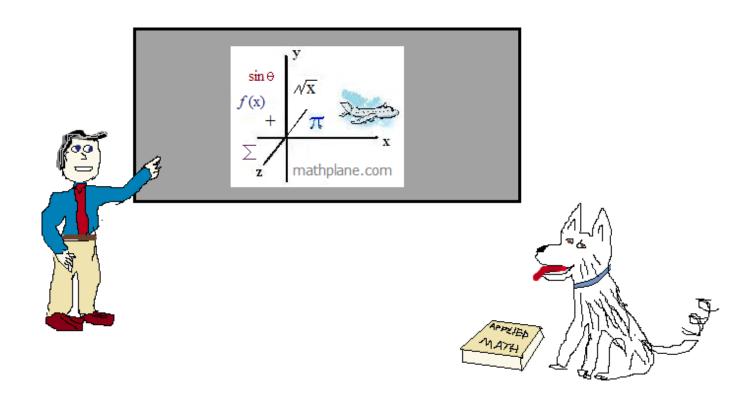
$$A = -5$$
 $-5 + B + C = -6$ $-B + C = 3$ $-B + C = 3$ $-B + 1 = 3$

$$\frac{-6x^2 + 3x + 5}{x^3 + x} = \boxed{ \frac{-5}{x} + \frac{-2}{(x+1)} + \frac{1}{(x-1)}}$$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Enjoy



Also, at Facebook, Google+, and TeachersPayTeachers, TES, and Pinterest