Average, Midpoint, Distance

Practice Questions (and Solutions)

Content includes formulas, applications, graphing, Pythagorean Theorem, and more.

Average, Midpoint, and Distance Test

Part I: Find the Average
a) 8,24
b) $-2,0,14$
c) $12,37,51$
d) If the numbers in set S are $-2,8,19, \mathrm{X}$, and, the average of $\operatorname{set} \mathrm{S}$ is 12 , what is X ?
e) After 3 tests, John has a 75 average. What score does he need to get on his 4 th test to raise his average to 80 ?

Part II: Find the Midpoint
a) between 6 and -2
b) between $(2,7)$ and $(12,1)$
c) between $(-4,6)$ and $(7,6)$
d) between $(-1,-6)$ and $(-6,4)$
e) $(6,9)$ is the midpoint of $\overline{\mathrm{AB}}$. point $A=(12,12) .$. What is point B ?
f) $(-4,-3)$ is the midpoint of $\overline{C D}$.
point $\mathrm{C}=(\mathrm{X},-9)$ point $\mathrm{D}=(0, \mathrm{Y})$
What is X ? What is Y ?

Part III: Distance and Length (Distance Formula/Pythagorean Theorem)
a)

What is X ?
b)

What is Y ?
c)

What is Z ?
d) $\mathrm{A}=(3,6) \quad$ What is the length of $\overline{\mathrm{AB}}$? $B=(6,10)$
e) $\mathrm{C}=(-1,4) \quad$ What is the distance between C and D ? $\mathrm{D}=(5,5)$
f) $\mathrm{E}=(8,1)$
$\mathrm{F}=(-2,1) \quad$ What is the distance between E and F ?

Part IV: Graphing and Applications

Average, Midpoint, and Distance Test
For the points $\quad A=(-1,6)$
$B=(6,6)$
$\mathrm{C}=(6,-2)$
$\mathrm{D}=(-1,-2)$
a) plot the points A, B, C, and D on the graph.
b) What is the length of $\overline{\mathrm{AB}}$? $\overline{\mathrm{AD}}$?
c) What is the length of $\overline{\mathrm{AC}}$? $\overline{\mathrm{BD}}$?
d) What is the area of the figure $A B C D$?

e) What is the area inside the triangle DCB?

Part V: Extra question

The distance between A and B is 10 .
If A is $(3,11)$ and B is $(x, 5)$, what is x ?

SOLUTIONS

Part I: Find the Average
a) $8,24 \quad \frac{8+24}{2}=16$
b) $-2,0,14 \quad \frac{-2+0+14}{3}=4$
c) $12,37,51 \quad \frac{12+37+51}{3}=\frac{100}{3}=33.3 \overline{3}$ (vinculum bar, indicates
repeating indefinitely...)
d) If the numbers in set S are $-2,8,19, \mathrm{X}$, and, the average of $\operatorname{set} \mathrm{S}$ is 12 , what is X ?

$$
\begin{array}{cc}
\frac{-2+8+19+\mathrm{X}}{4}=12 & 25+\mathrm{X}=48 \\
& \mathrm{X}=23
\end{array}
$$

e) After 3 tests, John has a 75 average. What score does he need to get on his 4 th test to raise his average to 80 ?

$$
\begin{aligned}
& 3 \text { (tests) } \times 75 \text { (average) }=225 \text { (total) } 320 \\
& 4 \text { (tests) } \times 80 \text { (average) }=320 \text { (total) } \quad \frac{-225}{95}
\end{aligned}
$$

John needs a 95

Part II: Find the Midpoint
a) between 6 and -2 $\begin{array}{r}\text { (midpoint is 'average' on } \\ \text { the number line) }\end{array} \frac{6+(-2)}{2}=2$
b) between $(2,7)$ and $(12,1) \quad\left(\frac{2+12}{2}, \frac{7+1}{2}\right)=(7,4)$
c) between $(-4,6)$ and $(7,6)$

$$
\left(\frac{-4+7}{2}, \frac{6+6}{2}\right)=(3 / 2,6)
$$

Midpoint formula
$\left(\frac{X_{1}+X_{2}}{2}, \frac{Y_{1}+Y_{2}}{2}\right)$
d) between $(-1,-6)$ and $(-6,4)$

$$
\left(\frac{-1+(-6)}{2}, \frac{-6+4}{2}\right)=(-7 / 2,-1) \text { or }(-3.5,-1)
$$

e) $(6,9)$ is the midpoint of $\overline{\mathrm{AB}}$. point $A=(12,12) .$. What is point \(B ? \quad(6,9)=\left(\frac{12+x}{2}, \frac{12+y}{2}\right) \quad \begin{aligned} \& x=0

\& y=6\end{aligned}\)| $B=(0,6)$ |
| :--- |

f) $(-4,-3)$ is the midpoint of $\overline{C D}$.
point $\mathrm{C}=(\mathrm{X},-9)$ point $\mathrm{D}=(0, \mathrm{Y})$
What is X ? What is Y ?

$$
(-4,-3)=\left(\frac{X+0}{2}, \frac{-9+Y}{2}\right) \quad \begin{aligned}
& X=-8 \\
& Y=3
\end{aligned}
$$

(check points graphically)

$$
C^{\bullet}
$$

a)

What is X ?

$$
\begin{array}{r}
5^{2}+12^{2}=\mathrm{X}^{2} \\
25+144=\mathrm{X}^{2} \\
\mathrm{X}=13
\end{array}
$$

b)

$$
\begin{aligned}
& \text { What is } \mathrm{Y} ? \\
& 9^{2}+\mathrm{Y}^{2}=15^{2} \\
& 81+\mathrm{Y}^{2}=225 \quad \mathrm{Y}^{2}=144
\end{aligned}
$$

Pythagorean Theorem:

(right triangle) $\begin{aligned} & \mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{C}^{2} \\ & \text { leg leg hypotenuse }\end{aligned}$

Distance Formula:

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$$
\mathrm{Y}=12
$$

c)

What is Z ?

$$
\begin{gathered}
7^{2}+11^{2}=Z^{2} \\
49+121=z^{2} \\
Z=\sqrt{170}
\end{gathered}
$$

d) $\mathrm{A}=(3,6) \quad$ What is the length of $\overline{\mathrm{AB}}$?

$$
B=(6,10)
$$

$$
\begin{aligned}
\mathrm{m} \overline{\mathrm{AB}} & =\sqrt{(6-3)^{2}+(10-6)^{2}} \\
& =\sqrt{9+16}=5
\end{aligned}
$$

e) $\begin{aligned} & \mathrm{C}=(-1,4) \quad \text { What is the distance between } \mathrm{C} \text { and } \mathrm{D} \text { ? } \\ & \mathrm{D}=(5,5)\end{aligned}$
f) $\begin{aligned} \mathrm{E} & =(8,1) \\ \mathrm{F} & =(-2,1)\end{aligned}$

What is the distance between E and F ?

$$
\overline{\mathrm{dEF}}=\sqrt{100+0}=10
$$

$$
\text { For the points } \begin{aligned}
& \mathrm{A}=(-1,6) \\
& \mathrm{B}=(6,6) \\
& \mathrm{C}=(6,-2) \\
& \\
& \mathrm{D}=(-1,-2)
\end{aligned}
$$

a) plot the points A, B, C, and D on the graph.
b) What is the length of $\overline{\mathrm{AB}} \overline{\mathrm{AD}}$?

> AB is 7 units (across)
> AD is 8 units (down)
c) What is the length of $\overline{\mathrm{AC}}$? $\overline{\mathrm{BD}}$?

$$
\begin{aligned}
\mathrm{dAC} & =\sqrt{(6-(-1))^{2}+(-2-6)^{2}} & \mathrm{dBD} & =\sqrt{7^{2}+8^{2}} \\
& =\sqrt{49+64}=\sqrt{113} & & =\sqrt{113}
\end{aligned}
$$

AC and BD are diagonals of the rectangle...
d) What is the area of the figure $A B C D$?

$$
\begin{aligned}
\text { Area of rectangle } & =(\text { length })(\text { width }) \\
& =7 \times 8=56 \text { square units }
\end{aligned}
$$

e) What is the area inside the triangle DCB?

$$
\begin{aligned}
\text { area of triangle } & =1 / 2 \text { (base)(height) } \\
& =1 / 2(7)(8)=28 \text { square units }
\end{aligned}
$$

Part V: Extra question

The distance between A and B is 10 .
If A is $(3,11)$ and B is $(x, 5)$, what is x ?

$$
\text { distance }=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$$
\begin{gathered}
10=/ \sqrt{(3-x)^{2}+(11-5)^{2}} \\
100=(3-x)^{2}+36
\end{gathered}
$$

$$
64=(3-x)^{2}
$$

$$
\begin{aligned}
\pm 8 & =3-x \\
x & =-5 \text { or } 11
\end{aligned}
$$

Thanks for visiting. Hope it helps!
If you have questions, suggestions, or requests, let us know.
Cheers

Also, at Facebook, Google+, TeachersPayTeachers, and Pinterest.

