Trigonometry: Polar and Rectangular Equations

Notes, Examples, and Quiz (with solutions)

Topics include converting from polar to rectangular forms, graphing conics, eccentricity, directrix, trig functions, and more.

Mathplane.com

Example: Convert $r^2 = \sin 2 \ominus$ into rectangular coordinates

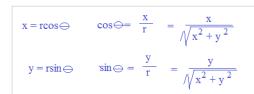
$$x^2 + y^2 = 2\sin \ominus \cos \ominus$$

$$x^2 + y^2 = 2\left(\frac{x}{r}\right)\left(\frac{y}{r}\right)$$

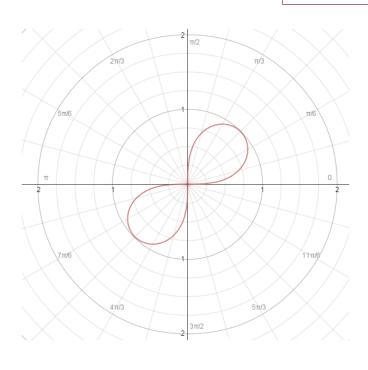
$$x^2 + y^2 = \frac{2xy}{x^2 + y^2}$$

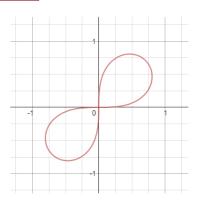
$$x^4 + 2x^2y^2 + y^4 = 2xy$$

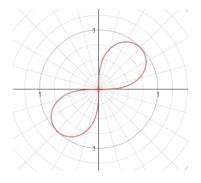
cross-multiply



$$x^4 + 2x^2y^2 - 2xy + y^4 = 0$$







Example: Convert $4x^2 - 9y^2 = 1$ into polar coordinates

$$4r^2\cos^2\Theta - 9r^2\sin^2\Theta = 1$$

$$x = r\cos \ominus y = r\sin \ominus$$

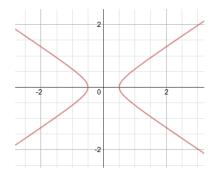
$$r^2 (4\cos^2 \ominus - 9\sin^2 \ominus) = 1$$

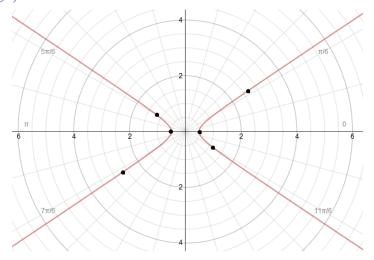
$$r^2 = \frac{1}{(4\cos^2 \ominus - 9\sin^2 \ominus)}$$

$$r^{2} (4\cos^{2} \ominus - 9\sin^{2} \ominus) = 1$$

$$r = \pm \sqrt{\frac{1}{(4\cos^{2} \ominus - 9\sin^{2} \ominus)}}$$

0		<u>T</u>	$\frac{1}{2}$	<u>57T</u>	33°	
r	1/2	DNE	DNE	1.15	2.65	
	-1/2	DNE	DNE	-1.15	-2.65	





Sketch the following polar conic
$$r = \frac{8}{4 + 2\cos\Theta}$$

Using POLAR form

rewrite in standard form (by dividing by 4)

$$r = \frac{2}{1 + (1/2)\cos\Theta}$$

$$e = 1/2$$

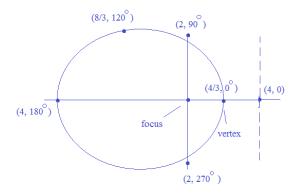
since
$$ep = 2$$
, $p = 4$

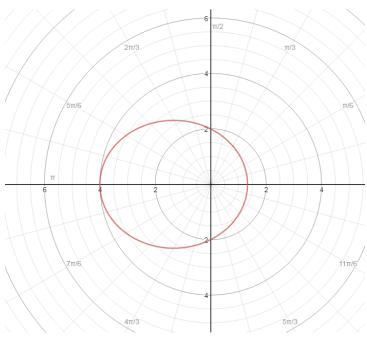
$$r = \frac{ep}{1 + ecos \ominus}$$

e = eccentricity

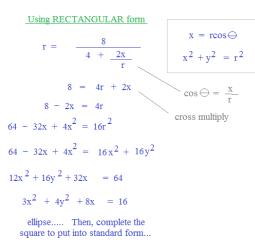
p is distance between focus and directrix (and, focus is on the pole)

- since e < 1, it is an ellipse
- and, because it is positive, the right focus is on the pole...





mathplane.com



$$3(x^{2} + \frac{8}{3}x + \frac{16}{9}) + 4y^{2} = 16 + \frac{16}{3}$$

$$3(x + \frac{4}{3})^{2} + 4y^{2} = \frac{64}{3}$$

$$\frac{9(x + \frac{4}{3})^{2}}{64} + \frac{3y^{2}}{16} = 1$$

center:
$$\left(-\frac{4}{3}, 0\right)$$

 $a^2 = \frac{64}{9}$ $b^2 = \frac{16}{3}$
 $c^2 = a^2 - b^2 = \frac{16}{9}$

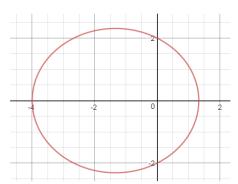
$$a = \frac{8}{3}$$
 vertices: $(\frac{4}{3}, 0)$ $(-\frac{12}{3}, 0)$

b =
$$\frac{4}{\sqrt{3}}$$
 co-vertices: $\left(-\frac{4}{3}, \frac{4}{\sqrt{3}}\right) \left(-\frac{4}{3}, \frac{-4}{\sqrt{3}}\right)$
(-1.33, 2.31) (-1.33, -2.31)

$$c = \frac{4}{3}$$
 foci: $(0,0)$ $(-\frac{8}{3},0)$

directrix =
$$\frac{a^2}{c}$$
 = $\frac{64/9}{4/3}$ = $\frac{16}{3}$

so, 5.33 to the right of the center x = 4 and, 5.33 to the left of the center... x = -20/3



Sketch the following polar conic
$$r = \frac{12}{4 + 8\cos \ominus}$$

Using POLAR form

rewrite in standard polar form (by dividing by 4)

$$r = \frac{3}{1 + 2\cos\Theta}$$

$$e = 2$$

since $ep = 3$, $p = \frac{3}{2}$

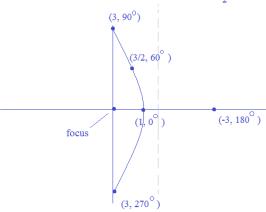
$$r = \frac{ep}{1 + ecos \ominus}$$

e = eccentricity

p is distance between focus and directrix (and, focus is on the pole)

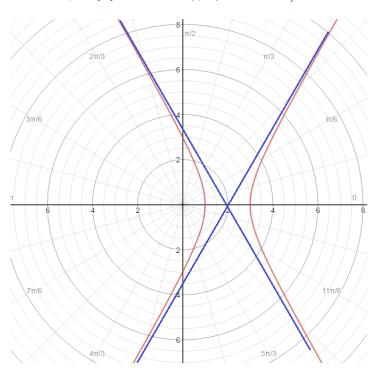
- since e > 1, it is a hyperbola
- and, because it is positive, the left focus is on the pole

and, the left (vertical) directrix is $\frac{3}{2}$ units from focus...



***When \ominus = 120° or 240°, the function is undefined! (those are the asymptotes...)

and, the asymptotes will cross at $(2, 0^{\circ})$ because 2 is midpoint of 1 and 3...



Using RECTANGULAR form

$$x^{2} + y^{2} = r^{2}$$
$$x = r cos \Leftrightarrow$$

$$r = \frac{12}{4 + 8\frac{x}{r}}$$

cross multiply

$$12 = 4r + 8x$$

divide by 4 and rearrange

$$r = 3 - 2$$

square both sides

$$r^2 = 9 - 12x + 4x^2$$

$$x^2 + y^2 = 9 - 12x + 4x^2$$

$$3x^2 + 12x - y^2 = -9$$

$$3(x^2 - 4x + 4) - y^2 = -9 + 12$$

$$3(x-2)^2 - y^2 = 3$$

$$\frac{(x-2)^2}{1} - \frac{y^2}{3} = 1$$

$$a^2 = 1$$
 $b^2 = 3$ $c^2 = 4$

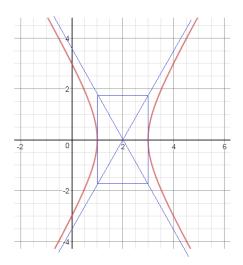
Horizontal hyperbola

center: (2, 0)

$$c = 2$$
 foci: $(0, 0)$ and $(4, 0)$

$$a = 1$$
 vertices: $(1, 0)$ and $(3, 0)$

$$b = \sqrt{3}$$
 co-vertices: $(2, \sqrt{3})$ and $(2, -\sqrt{3})$



Note: the asymptotes have a slope of $\frac{\sqrt{3}}{1}$ and $+\frac{\sqrt{3}}{1}$

$$\tan^{-1}(\sqrt{3}) = 60^{\circ}$$
 240° $\tan^{-1}(-\sqrt{3}) = 120^{\circ}$

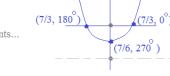
sketch
$$r = \frac{7}{3 - 3\sin\Theta}$$

 $sketch \ \ r = \frac{7}{3-3sin \ominus} \quad \ \ identify \ the \ conic \ and \ main \ features \\ \ \ (eccentricity, \ focus, \ vertices, \ etc..)$

Using POLAR form

(7/3, 180°) plotting 3 easy points...

(undefined at 90°)



$$r = \frac{ep}{1 - esin \bigoplus}$$

eccentricity (e) = 1 distance between focus and directrix (p) = 7/3

- Since the coefficient of the trig function is 1, it is a parabola...
- Since it is $\sin \ominus$, it is a vertical parabola...
- Since it is Negative sine, it opens upward (directrix is <u>below</u> the focus)

Note: there is a slight difference between "p" in polar form "p" in rectangular form!

polar "p" is distance from directrix to focus rectangular "p" is distance from vertex to focus

Using RECTANGULAR form

$$r = \frac{7}{3 - 3(\frac{y}{r})}$$

$$\frac{x^2 + y^2 = r^2}{y = r \sin \ominus}$$

$$x^2 + y^2 = r^2$$

$$3r - 3y = 7$$

$$3(\sqrt{x^2+y^2}) - 3y = 7$$

$$3(\sqrt{x^2+y^2}) = 3y + 7$$

$$9x^2 + 9y^2 = 9y^2 + 42y + 49$$

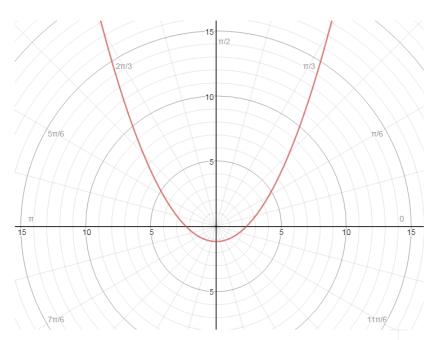
$$9x^2 = 42y + 49$$

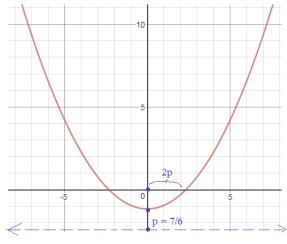
$$y = \frac{9}{42} x^2 - \frac{7}{6}$$

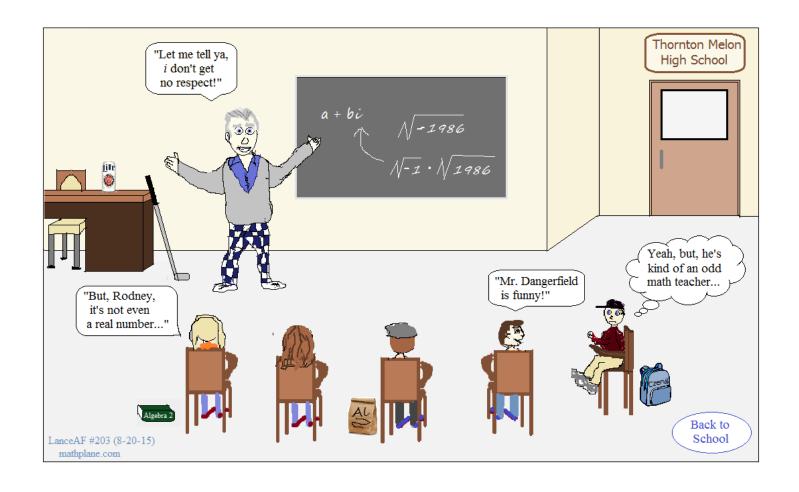
$$p = \frac{1}{4a} = \frac{1}{4(9/42)} = \frac{7}{6}$$

latus rectum =
$$4p = \frac{14}{3}$$

vertex: (0, -7/6) directrix: y = -7/3 focus: (0, 0)







Quick Quiz-→

- A) Express $(3, \frac{517}{6})$ where r < 0 and $-217 < \bigcirc < 0$
- Express (6, 225°) where r > 0 and -360° < $\Theta < 0$ °

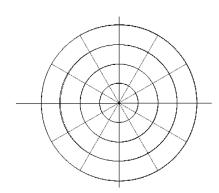
where r > 0 and $-2 \uparrow \uparrow < \bigcirc < 0$

where r < 0 and $-360^{\circ} < \bigcirc < 0^{\circ}$

 $\text{where} \quad r < 0 \quad \text{and} \qquad 0 < \ensuremath{\ensuremath{\ensuremath{\ensuremath{o}}}} < \ensuremath{\ensuremath{\ensuremath{o}}} \quad 2 \ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{o}}}} \quad \ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{o}}}}$

where r < 0 and $0^{\circ} < \Theta < 360^{\circ}$

B) On the polar graph, label the following coordinates:



$$A = (2, \frac{2 \text{ fr}}{3})$$

$$B = (-4, \frac{1}{4})$$

$$C = (0, \frac{1}{2})$$

$$D = (3, 0)$$

$$E = (-1, \frac{-511}{3})$$

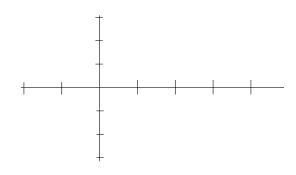
$$G = (3, 90^{\circ})$$

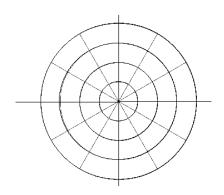
$$H = (-2, -150^{\circ})$$

$$J = (-1, 405^{\circ})$$

$$K = (0, 60^{\circ})$$

- C) Sketch $y = 3\sin x$ on the xy axis. then, sketch $r = 3\sin \Theta$ on the polar graph





a)
$$(-5, 5\sqrt{3})$$

c)
$$(10, -24)$$

2) Convert to rectangular coordinates

a)
$$\ominus = \frac{5 \, \text{T}}{6}$$

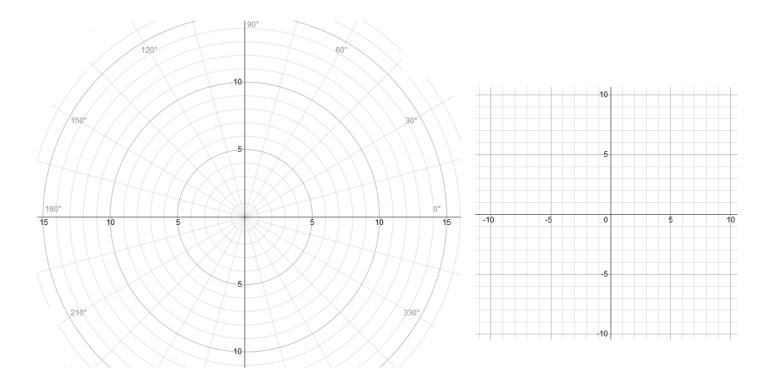
b)
$$r = \frac{1}{3\cos\Theta + 8\sin\Theta}$$

3) Convert $4x^2 + y^2 = 1$ into polar coordinates

4) Convert $r^2 = \cos 2 \bigoplus$ into rectangular coordinates

Then, write the equation of a circle that passes through that point (in polar form)

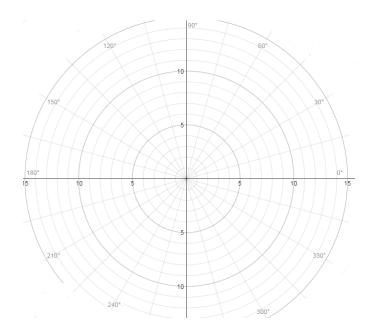
6) Convert xy = 5 into polar coordinates Sketch the graphs and compare...

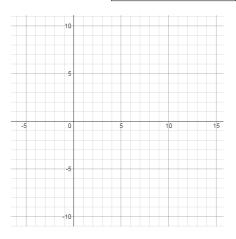


7)
$$r = \frac{2}{1 - \cos \theta}$$

Convert to rectangular coordinates. Then, graph each equation to confirm.

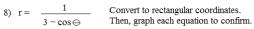
Polar/Rectangular Coordinates

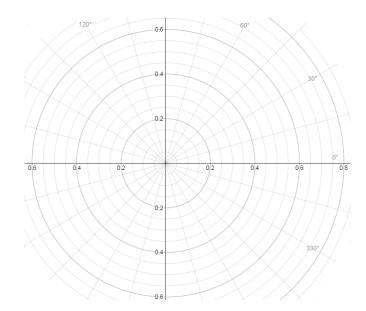


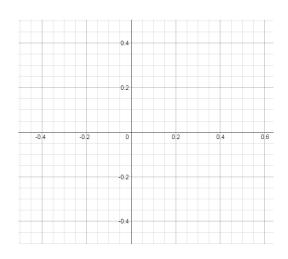


$$r = \frac{2}{1 - \cos \theta}$$

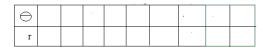
\ominus		*.			
r					

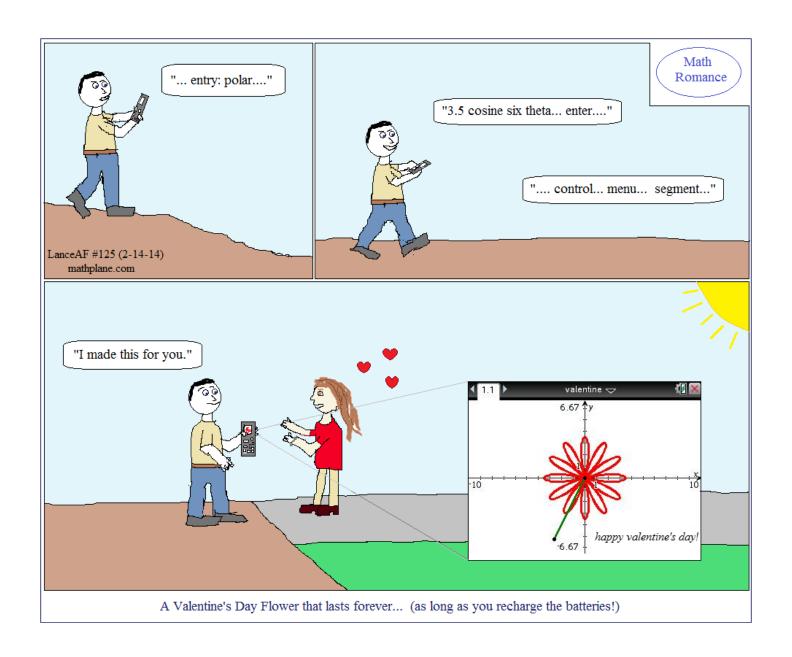






$$r = \frac{1}{3 - \cos \Theta}$$





SOLUTIONS-→

A) Express
$$(3, \frac{517}{6})$$
 where $r < 0$ and $-217 < \bigcirc < 0$ $(-3, \frac{-17}{6})$ Express $(6, 225^{\circ})$ where $r > 0$ and $-360^{\circ} < \bigcirc < 0^{\circ}$

$$(-3, \frac{-11}{6})$$

Express (6, 225°) where
$$r > 0$$
 and $-360° < \Theta < 0°$

(find the coterminal angle..)
$$(6, -135^{\circ})$$

where
$$r > 0$$
 and $-2 \uparrow \uparrow < \ominus < 0$ (3. $-\frac{7 \uparrow \uparrow \uparrow}{6}$)

$$(3. -\frac{711}{6})$$

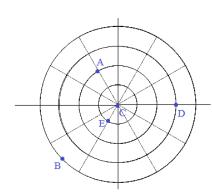
where
$$r < 0$$
 and $-360^{\circ} < \bigcirc < 0^{\circ}$
(-6, $+315^{\circ}$)

where
$$r < 0$$
 and $0 < \Theta < 2 \text{ Tr}$ (-3, $\frac{11 \text{ Tr}}{6}$)

$$(-3, \frac{11}{6})$$

where r < 0 and 0° <
$$\ominus$$
 < 360°
 (-6, 45°)

B) On the polar graph, label the following coordinates:



$$A = (2, \frac{2 \cancel{11}}{3})$$

$$B = (-4, \frac{1}{4})$$

$$C = (0, \frac{11}{2})$$

$$D = (3, 0)$$

$$E = (-1, \frac{-51}{3})$$

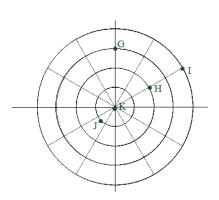
$$G = (3, 90^{\circ})$$

$$H = (-2, -150^{\circ})$$

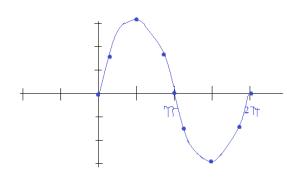
$$I = (4, 390^{\circ})$$

$$J = (-1, 405^{\circ})$$

$$K = (0, 60^{\circ})$$



C) Sketch $y = 3\sin x$ on the xy axis. then, sketch $r = 3\sin \Theta$ on the polar graph

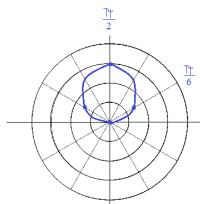


$$3\sin(0) = 0$$

$$3\sin(\frac{\uparrow\uparrow}{6}) = 1.5$$

$$3\sin(\frac{7\uparrow}{2}) = 3$$

etc...

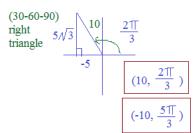


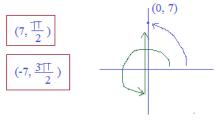
1) Convert to polar coordinates. Give 2 answers where $0 \le \Theta < 2 \gamma \gamma$

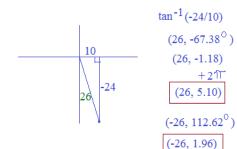
SOLUTIONS

Polar/Rectangular Coordinates

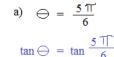
a)
$$(-5, 5\sqrt{3})$$



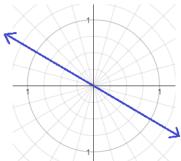




2) Convert to rectangular coordinates



$$\frac{y}{x} = \frac{1}{\sqrt{3}} \qquad x = -\sqrt{3} y$$



b)
$$r = \frac{1}{3\cos\Theta + 8\sin\Theta}$$

$$r(3\cos\Theta + 8\sin\Theta) = 1$$

$$= 1$$
 $x = rcos \bigcirc$

$$3r\cos\Theta + 8r\sin\Theta = 1$$

$$y = rsin \bigcirc$$

$$3x + 8y = 1$$

3) Convert
$$4x^2 + y^2 = 1$$
 into polar coordinates

$$4r^2\cos^2\Theta + r^2\sin^2\Theta = 1$$

$$x = r\cos \ominus y = r\sin \ominus$$

$$r^2 (4\cos^2 \ominus + \sin^2 \ominus) = 1$$

$$r^2 = \frac{1}{(4\cos^2 \ominus + \sin^2 \ominus)}$$

$$r = \sqrt{\frac{1}{(4\cos^2 \ominus + \sin^2 \ominus)}}$$

Convert r² = cos2 ⊕ into rectangular coordinates

$$x^2 + y^2 = \cos^2 \ominus - \sin^2 \ominus$$

$$x^{2} + y^{2} = \left(\sqrt{\frac{x}{x^{2} + y^{2}}}\right)^{2} - \left(\sqrt{\frac{y}{x^{2} + y^{2}}}\right)^{2}$$

$$x = rcos \ominus$$

$$x = rcos \Leftrightarrow cos \Leftrightarrow = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$y = rsin \Leftrightarrow$$

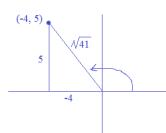
$$\sin \Leftrightarrow = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}}$$

$$x^2 + y^2 = \frac{x^2 - y^2}{x^2 + y^2}$$

$$(x^2 + y^2)^2 = x^2 - y^2$$

$$x^4 + 2x^2y^2 + y^4 - x^2 + y^2 = 0$$

Then, write the equation of a circle that passes through that point (in polar form)



Use Pythagorean Theorem to get r

$$x^2 + y^2 = r^2$$

$$Tan \bigcirc = \frac{y}{x} = \frac{5}{-4} = -51.3$$

The radius is $\sqrt[4]{41}$ so the circle is all points (in every direction) $\sqrt[4]{41}$ from the origin..

$$r = \sqrt{41}$$

$(\sqrt{41}, 128.7^{\circ})$ or $(\sqrt{41}, 2.246)$

**since the point is in Quadrant II, add 180 degrees....

$$-51.3 + 180 = 128.7^{\circ}$$
 or 2.246 radians

(Note: There are an infinite number of circles that can pass through (-4, 5)... We chose the one where the center is at the origin)

6) Convert xy = 5 into polar coordinates Sketch the graphs and compare...

$$r\cos\ominus(r\sin\ominus)=5$$

(
$$y = 5/x$$
 reciprocal function)

$$r^2 \sin \ominus \cos \ominus = 5$$

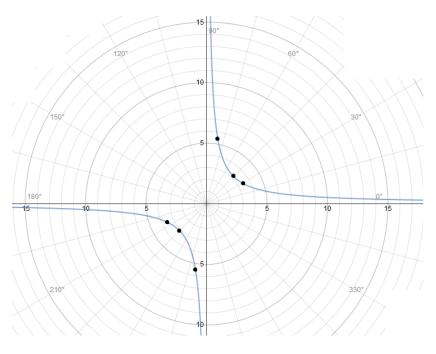
$$r = \sqrt{\frac{5}{\sin \ominus \cos \ominus}}$$

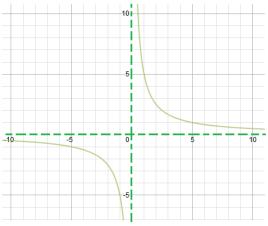
Note: the equation is undefined at 0, 90, 180, and 270!

negative values)

				(negative values)					
\bigcirc	0	30	45	80	120	150	170		
<u>+</u> r	DNE	3.4	3.16	5.4	DNE	DNE	DNE		

Note: asymptotes are the x and y-axis!





Convert to rectangular coordinates.

Then, graph each equation to confirm.

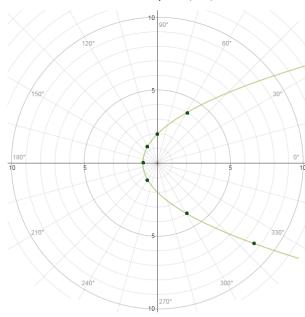
cross multiply:
$$r - rcos \ominus = 2$$

$$\sqrt{x^2 + y^2} + x = 2$$

$$\sqrt{x^2 + y^2} = 2 + x$$

$$x^2 + y^2 = x^2 + 4x + 4$$

$$y^2 = 4(x+1)$$
 Parabola!



8)
$$r = \frac{1}{3 - \cos \ominus}$$
 Convert to rectangular coordinates. Then, graph each equation to confirm.

$$3r - rcos \ominus = 1$$

$$3\sqrt{x^2+y^2} - x = 1$$

$$3\sqrt{x^2+y^2} = x+1$$

$$9x^2 + 9y^2 = x^2 + 2x + 1$$

$$8x^2 + 9y^2 - 2x = 1$$

$$8(x^2 - \frac{1}{4}x + \frac{1}{64}) + 9y^2 = 1 + \frac{1}{8}$$

$$8(x-\frac{1}{8})^2+9y^2=\frac{9}{8}$$

$$\frac{64 \left(x - \frac{1}{8}\right)^2}{9} + \frac{8y^2}{1} = 1$$

Ellipse!

$$r = \frac{1}{3 - \cos \Theta}$$

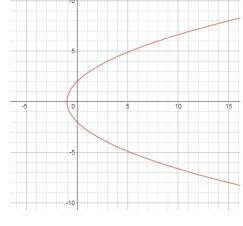
	\ominus	0	60	90	120	180	240	300	360
ĺ	r	1/2	2/5	1/3	2/7	1/4	2/7	2/5	1/2

SOLUTIONS

Polar/Rectangular Coordinates

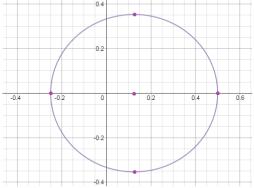
Vertex: (-1, 0)
Focus: (0, 0)

Directrix:
$$x = -1$$



$$r = \frac{2}{1 - \cos \Theta}$$

\ominus	0	60	90	120	180	240	300	320	350
r	DNE	4	2	4/3	1	4/3	4	8.55	131.6

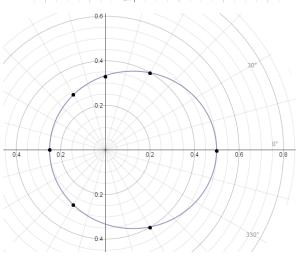


center: (1/8, 0)

vertices: (1/2, 0) (-1/4, 0)

covertices: $(1/8, \sqrt{2}/4)$

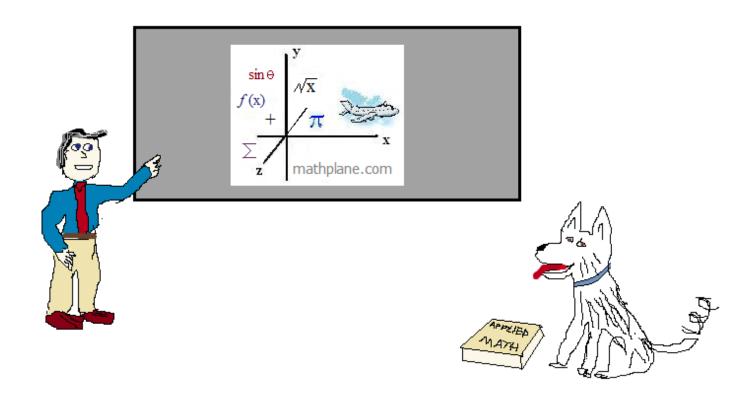
 $(1/8, -\sqrt{2}/4)$



Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers



Visit Mathplane Express for mobile at mathplane.org

Also, at Facebook, Google+, TeachersPayTeachers, TES, and Pinterest