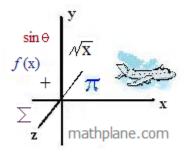
Absolute Value and Inequalities

Notes, strategies, examples, and practice test (w/solutions)



1) Fill in the blank with <,>, or =

Absolute Value Quick Review

- -(-5) ____ | -5 |
- (-5) ____ | -5 |
- |4-2|___|2-4|
- -2|4| ____ -4|2|
- |7 (-9) | ____ 7 | 9 |
 - |-3|___2
 - -|2| _____ -(-2)
 - |-4|____--4
- 2) |-5+3|-|-8| =
 - a) -6
 - b) 0
 - c) 6
 - d) 10
 - e) 16
- 3) $\frac{|-8|}{4} \frac{|14|}{|2|} =$

$$\frac{|-9|}{-3} - \frac{-9}{|-3|} =$$

$$5 = 5$$

$$-5 < 5$$

$$|4-2| = |2-4|$$

$$2 = 2$$

$$16 > -2$$

$$-2 < 2$$

2)
$$|-5+3|-|-8| =$$

$$2 - 8 = -6$$

- c) 6
- d) 10
- e) 16

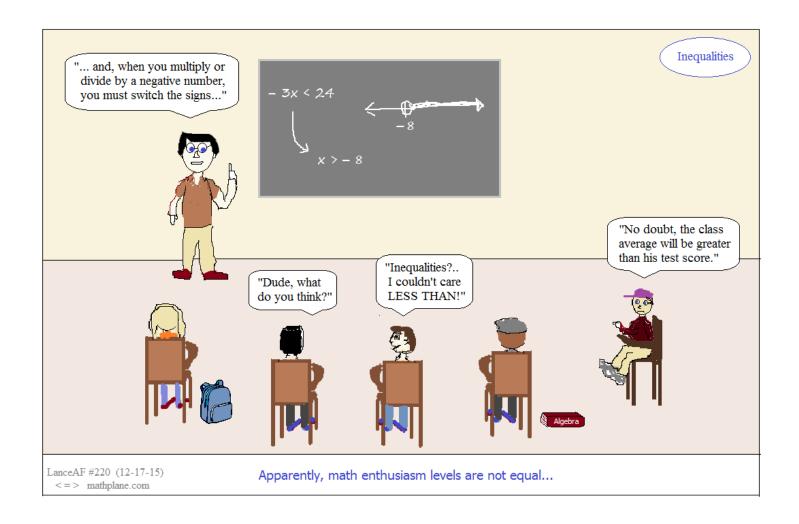
3)
$$\frac{|-8|}{4} - \frac{|14|}{|2|} = \frac{8}{4} - \frac{14}{2} = -5$$

$$\frac{|-9|}{-3} - \frac{-9}{|-3|} = \frac{9}{-3} - \frac{-9}{3} = -3 - (-3) = \boxed{0}$$

$$-|8| - |-10| = -8 - 10 = -18$$

$$-|-8|$$
 - $|10|$ = -8 - 10 = -18

$$|-8| - |-10| = 8 - 10 = -2$$



Notes and Examples-→

Solving Inequalities

Solve: Determine "Critical Values"

Graph: "Open Circles" or "Closed Circles"

Check Answer: Test regions (Plug solutions into original equation)

Example:

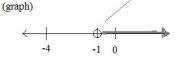
$$3x + 10 > -2x + 5$$

(solve)
$$3x + 10 = -2x + 5$$

 $5x = -5$

$$5x = -5$$
$$x = -1$$

open circle, because solution does not include -1



(check answer)

(test regions)

$$3(-4) + 10 > -2(-4) + 5$$

 $-2 \not > 13$

Example: 3x > 6 OR $-\frac{3}{2}(x+2) \ge 4$

OR

(solve)
$$3x = 6$$

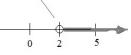
$$-\frac{3}{2}(x+2) = 4$$

$$(x+2) = 4\left(\frac{-2}{3}\right)$$

$$x + 2 = -8/3$$

$$x = -14/3$$

open circle because > does not (graph)



closed circle because > includes -14/3

(check critical points)

(test regions)

-10

-14/3

$$-3/2 (-14/3 + 2) = 42/6 - 3 = 24/6$$

$$-3/2 (-10 + 2) \ge 4$$
 ?
 $12 > 4$ Yes

$$-3/2 (0+2) \ge 4 ?$$

 $-4/3 \ngeq 4$ No

$$-3/2 (5+2) \ge 4$$
?
 $-21/2 \ge 4$ No

(Since -10 satisfies one of the "or" equations, the left side is a solution)

(Since 0 satisfies neither equation, the middle is not a solution)

(Although 5 does not satisfy the second equation, it works in the first one. Therefore, the right region is a solution)

Example: 4y < 8 AND $3y + 5 \ge y - 13$

(solve: find critical values)

$$4y = 8$$
$$y = 2$$

$$3y + 5 = y - 13$$

 $2y = -18$
 $y = -9$

Test Left with -10: 4(-10) < 8 ? Yes $3(-10) + 5 \ge -10 - 13$? No

Test Middle with 0:
$$4(0) < 8$$
 ? Yes $3(0) + 5 \ge 0 - 13$? Yes

$$3(5) + 5 > 5 - 13$$
? Y

 $3(5) + 5 \ge 5 - 13$? Yes Since this is an 'AND' problem, must satisfy BOTH equations.

Therefore, only the middle region works.

(graph: "open and closed" circles -- test regions)

(Quick check)

$$3(-9) + 5 = (-9) - 13$$

Solving Absolute Value Equations

Example:
$$|3x + 12| = 24$$

(the absolute value is 'isolated' already)

"Positive" Answer:
$$3x + 12 = 24$$

 $3x = 12$
 $x = 4$

"Negative" Answer:
$$3x + 12 = -24$$

 $3x = -36$
 $\boxed{x = -12}$

Check solutions:
$$|3(4) + 12| = 24$$

 $24 = 24$

$$|3(-12) + 12| = 24$$

 $|-24| = 24$
 $24 = 24$

Steps:

- 1) Isolate Absolute Value
- 2) Solve for 'Positive Answer'
- 3) Solve for 'Negative Answer'
- 4) Check Solutions! (Plug into original equation)

Example:
$$2 | x-5 | + 6 = 16$$

Isolate the absolute value part
$$2 | x-5| + 6 = 16$$

$$2 |x-5| = 10$$

$$\left| x-5 \right| = 5$$

"Positive" Answer:
$$x - 5 = 5$$

 $x = 10$

"Negative" Answer:
$$x - 5 = -5$$

 $\boxed{x = 0}$

$$2 | (10) - 5 | + 6 = 16$$

 $2 \cdot 5 + 6 = 16$
 $16 = 16$

$$\begin{array}{c|c}
2 & (0) - 5 & + 6 = 16 \\
2 \cdot 5 & + 6 = 16 \\
16 = 16
\end{array}$$

Example: |3x + 4| + 6 = 2

Isolate the absolute Value:
$$|3x + 4| + 6 = 2$$

$$\left|3x+4\right| = -4$$

"Positive" Answer:
$$3x + 4 = -4$$

$$3x = -8$$

 $x = -8/3$

No Solutions!

"Negative" Answer:
$$3x + 4 = 4$$

3x + 4 = 43x = 0

(absolute value result can never be

3x = 0 negative) x = 0

Check Solutions!

$$\begin{vmatrix} 3(-8/3) + 4 \end{vmatrix} + 6 = 2$$

 $\begin{vmatrix} -4 \end{vmatrix} + 6 = 2$
 $10 \neq 2$

$$\begin{vmatrix} 3(0) + 4 \end{vmatrix} + 6 = 2$$

 $4 + 6 = 2$
 $10 \neq 2$

Absolute Value Equations: How many solutions?

Two solutions:

$$|5x + 4| - 10 = -5$$

|5x+4| = 5

(isolate the absolute value)

('negative equation')

$$5x + 4 = -5$$

$$x = \frac{-9}{5}$$

(Check)

$$|5(1/5) + 4| - 10 = -5$$

('positive equation')

5x + 4 = 55x = 1

 $x = \frac{1}{5}$

$$|5(-9/5) + 4| - 10 = -5$$

Steps for solving absolute value equations:

- 1) Isolate the absolute value
- 2) "Split into negative and positive equations"
- 3) Solve
- 4) Check your answer(s)!

One solution:

$$2|x + 3| + 8 = 8$$

$$2|x + 3| = 0$$

$$|x + 3| = 0$$

$$x + 3 = 0$$

$$x = -3$$

$$2|(-3) + 3| + 8 = 8$$

$$2|0| + 8 = 8$$

After isolating the absolute value,

for
$$|ax + b| = c$$

if c > 0, then 2 solutions

c = 0, then 1 solution

c < 0, then no solutions

No solutions:

$$5|3x + 2| + 20 = 10$$

$$5|3x + 2| = -10$$

(isolate the absolute value)

$$|3x + 2| = -2$$

Absolute value output is never negative!

3x + 2 = -2

('positive

equation')

$$3x = 4$$

x = 4/3

3x + 2 = 2

3x = 0x = 0

('negative equation')

$$5|3(4/3) + 2| + 20 = 10$$

$$5|6| + 20 = 10$$

$$30 + 20 = 10$$

5|3(0) + 2| + 20 = 10

$$5|2| + 20 = 10$$

Solving Absolute Value/Inequality Equations

Example:
$$|3x + 7| < 10$$

(solve)
$$|3x + 7| = 10$$

$$3x + 7 = 10$$
$$3x = 3$$

$$3x + 7 = -10$$
$$3x = -17$$

$$x = 1$$

$$x = -17/3$$

Steps: 1) Solve absolute value equation (for both 'negative' and 'positive' values) Determine "critical points"

- 2) Graph --- "open circles" or "closed circles"?
- 3) Test regions and Check answers (plugging points into the ORIGINAL equation)

(graph) Since it is < , solutions don't include -17/3 or 1. Open circles -17/3

(test regions)

Left area: try -8

Middle area: try 0

Right area: try 5

$$|3(-8) + 7| < 10$$
 ?
 $17 < 10$
NO

$$|3(0) + 7| < 10 ?$$

7 < 10

$$|3(5) + 7| < 10?$$

15 < 10

(check answers -- "critical points")

$$|3(-17/3) + 7| = |-17 + 7| = 10$$

 $|3(1) + 7| = |3 + 7| = 10$

Example: $3|x-7|+4 \ge 10$

(solve)

$$3|x-7|+4=10$$

'positive'
$$x - 7 = 2$$

Isolate the absolute value terms. Then, solve equal to 'positive answer' and equal to 'negative answer'

$$3 |x - 7| = 6$$
$$|x - 7| = 2$$

'negative'
$$x - 7 = -2$$

"critical values" are x = 5 and x = 9

(graph)

"closed circles" because solution includes 5 and 9

(test regions)

Use:

0 (left)
$$3 | (0) - 7 | + 4 = 25 \ge 10$$
 YES

7 (middle)
$$3|(7)-7|+4=4 \not\ge 10$$
 NO

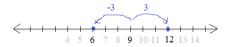
12 (right)
$$3 | (12) - 7 | + 4 = 19 \ge 10$$
 YES

(check answers)

(**Remember: plug values into original equation)

"Working Backwards": Determining the absolute value inequality

I. Absolute Value can represent distance on a number line



"6 is three units to the left of 9"

6 - 9 = -3"12 is three units to the right of 9" 12 - 9 = 3

The absolute value of both is 3, and the distance from 9 is 3.

$$\left| \mathbf{X} - \mathbf{9} \right| = 3$$

"The distance from 9 (in either direction) is 3"

$$X = 12$$
 $X = 6$

Example 2:

This number line graph represents a set of numbers within a distance.

The middle of the graph is the midpoint: 2

and, the distance to each endpoint is 5 units

X - 2 ("distance from 2")

|X-2| < 5 ("All numbers X less than 5 units from 2")

Note: You can plug in values from the number line to verify the equation!

II. Identify the equation using absolute value inequalities

Step 1: Identify the midpoint (central value)

The midpoint of 8 and 16: (8 + 16)/2 = 12

Step 2: Determine the distance to each endpoint

The distance to each endpoint is 4 units.

Step 3: Construct the inequality

$$|X-12| \leq 4$$

"The distance between X and 12 must be less than or equal to 4"

Step 4: Check your work!

Plug in values to Endpoints: |8 - 12| = 4 |16 - 12| = 4test endpoints

and regions.

Regions: $|0 - 12| \neq 4$ |10 - 12| < 4 $|20 - 12| \neq 4$

III. Word Problem Applications

Example 1: The length of a local football field must be between 90 and 100 yards. Write an absolute value inequality to represent all possible lengths.

Obviously, we could write the equation $~90 \le L \le 100$ where L is possible lengths.

But, the question asks for an absolute value inequality....

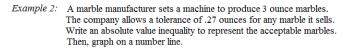
Step 1: Find midpoint.

Step 2: Determine distance/length to each endpoint.

Step 3: Construct the inequality

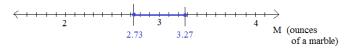
Step 4: Check answers! (construct a number line and check values)

note: in this example, "between 90 and 100" did not include 90 and 100. There may be different interpretations.



The target value of marbles is 3 (ounces)..

The variation (tolerance) allowed is \pm .27 (ounces)



"Unusual Absolute Value Solutions"

1)
$$|3x - 6| - 48 > -48$$

$$|3x - 6| > 0$$

All Real Numbers except 2

$$3x - 6 = 0$$

$$x = 2$$

2)
$$|2x-4|-10 \ge -13$$

$$\left|2x-4\right| \geq -3$$

All Real Numbers

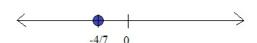
3)
$$14 + |7x + 4| \le 14$$

$$|7x+4| \leq 0$$

Only ONE solution

$$7x + 4 = 0$$

$$\mathbf{x} = -4/7$$



4)
$$2 + \left| .33756x + \sqrt{37} \right| < -4$$

$$\left| .33756x + \sqrt{37} \right| < -6$$

No Solutions

y = a|x-h| + k is the standard form where (h, k) is the vertex

Assume the vertex is on the origin (0, 0). then,

$$y = a|x|$$

where a is the amount the parent function is "multiplied" or "stretched".

(see graphs and tables)

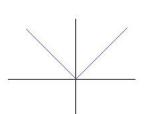
Also, 'a' indicates the slope:

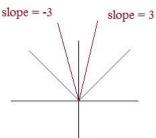
a is the slope of the absolute value line on the right side of the vertex.

And,

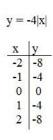
-a is the slope of the absolute value line on the left side of the vertex.

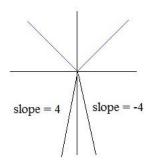
If a < 0, then the graph 'faces down'
Slope on the left side of the vertex will be
positive. And, slope on the right side of the
vertex will be negative.





X	У
-2	6
-1	3
0	0
1	3
2	6





How many solutions would the equation a|x + b| + c = d have if

- a) a < 0, c = d?
- b) a < 0, c > d?
- c) a > 0, c > d?

First, subtract c from both sides: a|x + b| = d - c

a) If c=d, then d-c=0 |x+b|=0 (one solution!) x must equal -b

$$3|x + 7| + 8 = 8$$

 $3|x + 7| = 0$
 $|x + 7| = 0$
 $x = -7$

b) If c > d, then a|x + b| ='negative number' and

if a < 0, then -|x + b| ='negative number'

(two solutions!)

$$-4|x + 4| + 12 = 8$$

 $-4|x + 4| = -4$
 $|x + 4| = 1$
 $x = -3 \text{ or } -5$

- Divide both sides by -: |x + b| = 'negative'/'negative' = 'positive'
 - (NO solutions!) $\begin{aligned} 6|x+2| + 10 &= 4 \\ 6|x+2| &= -6 \\ |x+2| &= -1 \\ \text{Impossible!} \end{aligned}$
- c) If c > d, then a|x + b| = 'negative number' and if a > 0, then a|x + b| must be positive..

Variables inside and outside the absolute value sign

A)
$$5|4 - 3x| = 10x - 30$$

Isolate the absolute value:

$$|4 - 3x| = 2x - 6$$

Split the equations:

$$4 - 3x = 2x - 6$$

$$4-3x = 2x-6$$
 or $4-3x = -(2x-6)$

$$10 = 5x$$

$$4 - 3x = 6 - 2x$$

Solve:

$$x = 2$$

$$x = -2$$

Check for extraneous:

$$5|4 - 3(2)| = 10(2) - 30$$

$$5|4 - 3(-2)| = 10(-2) - 30$$

$$5|-2| = 20 - 30$$

$$5|10| = -20 - 30$$

$$10 = -10$$
? NO

$$50 = -50$$
? NO

No solutions

B)
$$\frac{1}{3}|3x+7| = 6x+12$$

Isolate the absolute value:

$$|3x + 7| = 18x + 36$$

$$3x + 7 = 18x + 36$$
 or

$$3x + 7 = -(18x + 36)$$

Split the equations:

$$-29 = 15x$$

$$21x = -43$$

 $x = -43/21$

Solve:

$$\frac{1}{3}|3(-29/15) + 7| = 6(-29/15) + 12$$

$$\frac{1}{3}|3(-43/21) + 7| = 6(-43/21) + 12$$

x = -29/15

$$\frac{1}{3}$$
 $|3(-43/21) + 7| = 6(-43/21)$

Check for extraneous:

$$\frac{1}{3}$$
 |-29/5 + 35/5| = -58/5 + 60/5

Extraneous!

Absolutely, the best there is...

Serve with sub-zero temperatures..

Mix with any ingredient to bring out a positive result..

Remember to drink and calculate responsibly.

Practice Test and Solutions-→

a)
$$|x + 2| = 14$$

b)
$$|2x + 6| = 4x$$

c)
$$|x + 5| = -x + 3$$

d)
$$|x-2| = |5+x|$$

e)
$$2|x+1| = 5|x+1| - 12$$

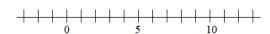
f)
$$\frac{2|x+7|}{5} = 12$$

g)
$$|3x + 9| = x + 1$$

h)
$$3 - 10|x - 5| = -17$$

i)
$$|x+6| = -|2x + 10| + 20$$

I. Graph the following on a number line



b)
$$2x \le 4$$

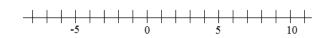
c)
$$3x + 2 < 9$$

d)
$$x = -4$$

e)
$$-3x > 6$$

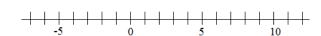
II. Absolute Values: Solve and graph the following

a)
$$|x + 3| < 6$$



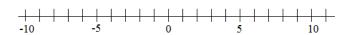
c)
$$2|x+1| \ge 6$$

d)
$$|2x| + 8 < 4$$



e)
$$|x-3|+4 \ge 9$$

f)
$$|x + 7| = 1$$



III. Solve and Graph

a) x > 4 or x < 0

b) x > 5 and $x \le 9$

c) |x + 4| > 0

d) 2|x+1|+6>10

e) -|x+3| > -5

f) $|x+6| \le 0$

IV: Describe each graph with an equation



BONUS:

1) Graph the following on a number line:



2) Use Absolute Value Inequalities to describe the following number line graphs:

a) -2 < x < 12

Solve the following:

a) |x + 2| = 14

"split the absolute value"

$$x + 2 = 14$$

OR
$$x + 2 = -14$$

x = 12

d) |x-2| = |5+x|

$$+ + v + 2 = 5 + 1$$

NO solution

$$+ - x + 2 = -(5 + x)$$

$$3 = -2x$$
 $x = -3/2$

$$-++-(x-2) = 5+x$$

$$-2x = 3$$

$$x = -3/2$$

$$+ + + (x - 2) = +(5 + x)$$

$$-x + 2 = -x - 5$$

NO solution

g) |3x + 9| = x + 1

$$3x + 9 = x + 1$$

$$3x + 9 = -(x + 1)$$

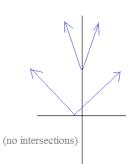
$$X = -2$$

$$3x + 9 = -x - 1$$

Both solutions are extraneous!

$$x = -\frac{5}{2}$$

NO SOLUTIONS



mathplane.com

SOLUTIONS

b) |2x + 6| = 4x

"Split the absolute value"

$$2x + 6 = 4x$$

$$2x + 6 = -4x$$
$$x = -1$$

"Check for extraneous solutions"

If
$$x = 3$$
:

If
$$x = -1$$
:

$$|2(3) + 6| = 4(3)$$

$$|2(-1) + 6| = 4(-1)$$

e) 2|x+1| = 5|x+1| - 12

"Collect 'like' terms"

$$+3|x+1| = +12$$

$$|x + 1| = 4$$

"Split and solve"

$$x + 1 = 4$$
 $x + 1 = -4$

$$x = 3$$
 or -5

h) 3 - 10|x - 5| = -17

$$-10|x-5| = -20$$

$$|x+5| = 2$$

$$x = 7 \text{ or } 3$$

(2 intersections)

c)
$$|x + 5| = -x + 3$$

$$|X \cap S| = |X \cap S|$$

$$x + 5 = -x + 3$$
 OR $x + 5 = -(-x + 3)$

$$2x = -2$$

$$x + 5 = x + 3$$

Absolute Value Equations

$$x = -1$$

Check answer:

$$|(-1) + 5| = -(-1) + 3$$

$$\frac{2|x+7|}{5} = 1$$

$$2|x + 7| = 60$$

$$|x + 7| = 30$$

$$x + 7 = 30$$

$$x = 23$$
 OR $x = -37$

x + 7 = -30

(If you check both answers, you'll see that they both work!)

i) |x + 6| = -|2x + 10| + 20

$$+ + x + 6 = -(2x + 10) + 20$$

$$x + 6 = -2x + 10$$

$$- x + 6 = -(-2x - 10) + 20$$

$$x + 6 = 2x + 30$$

$$+ + -(x+6) = -2x - 10 + 20$$

$$x - 6 = -2x + 10$$

extraneous

extraneous

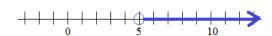
$$+ - (x + 6) = -(-2x - 10) + 20$$

$$-x - 6 = 2x + 30$$

Quiz: Absolute Value, Inequalities, and the Number Line

SOLUTIONS

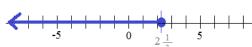
I. Graph the following on a number line

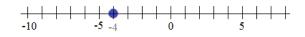


b)
$$2x \le 4$$
 $x \le 2$

c)
$$3x + 2 < 9$$
 subtract 2 from each side: $3x < 7$ divide both sides by 3:

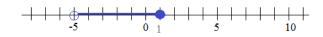
d)
$$x = -4$$





divide both sides by -3
e)
$$-3x > 6$$
 (**flip the sign!)



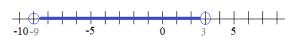


II. Absolute Values: Solve and graph the following

a)
$$|x+3| < 6$$
 $\begin{array}{c} x+3=6 \\ x+3=-6 \end{array}$ $\begin{array}{c} x=3 \\ x=-9 \end{array}$

test pts: -10; |-10 + 3| < 6 no 0; |0+3| < 6 yes b) |3x| < 185; |5+3| < 6 no

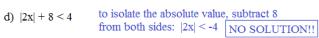
6 and -6 are critical points 3x = -18 x = -6since it is <, we use open circles. (then, test a point in each region)



isolate the absolute value: (divide by 2)

c)
$$2|x+1| \ge 6$$

$$|x + 1| \ge 3$$
 then, find $x + 1 = 3$
 $x + 1 = -3$
2 and -4



isolate the absolute value to solve:

$$|x - 3| \ge 5$$
 $x - 3 \ge 5$ $x \ge 8$
or
 $x - 3 \le -5$ $x \le -2$

test pts to check answer: -5: $|-5 - 3| + 4 \ge 9$ yes 0: $|0-3|+4 \not\geq 9$ no 10: $|10 - 3| + 4 \ge 9$ yes

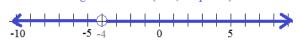
III. Solve and Graph

SOLUTIONS

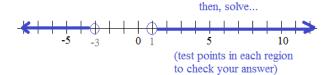
a) x > 4 or x < 0 note: all shaded values are EITHER greater than 4 OR less than 0

all shaded values are BOTH greater than 5 AND less than/equal to 9

c) |x + 4| > 0 at any value EXCEPT -4, the solution is greater than 0.. (at -4, it equals 0)

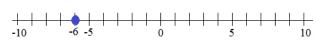


isolate the absolute value: 2|x+1| > 4d) 2|x+1|+6>10 |x+1|>2



(divide by -1; flip sign)

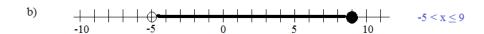
f) $|x + 6| \le 0$

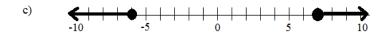


IV: Describe each graph with an equation

At -6, the output is = 0; at every other point, the absolute value is greater than 0.. therefore, there is only one solution..

 $x \le 3$





 $x \ge 7$ or $x \le -6$

Also, an alternative answer (using absolute values): $|x - 1/2| \ge 6 1/2$

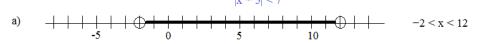
BONUS:

1) Graph the following on a number line:



Any real number is either less than 5 or greater than -3!!

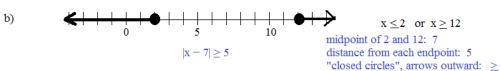
2) Use Absolute Value Inequalities to describe the following number line graphs:



midpoint of -2 and 12: 5 distance from 5 to either endpoint: 7 units |x-5| < 7

"the distance between x and 5 will be less than 7 units"

www.mathplane.com

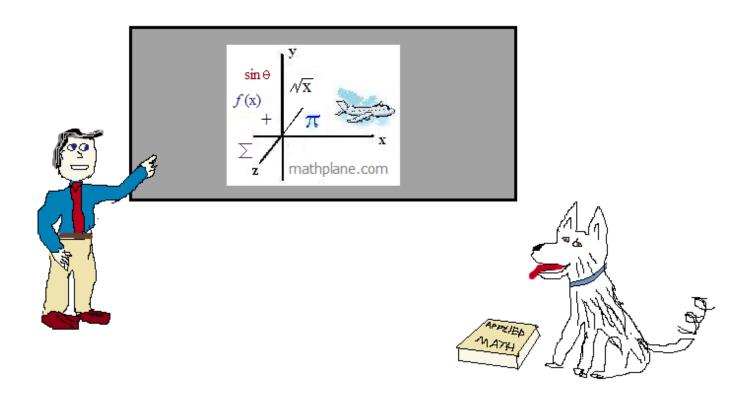


: 7

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers



Also, at Facebook, Google+, TeachersPayTeachers, TES, Pinterest