Geometry: Proofs and Postulates

Definitions, Notes, & Examples

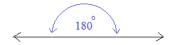
Statements	Reasons
1. AD and BC bisect each other	1. Given
2. $\overline{AM} \stackrel{\sim}{=} \overline{DM}$; $\overline{CM} \stackrel{\sim}{=} \overline{BM}$	2. Definition of bisector
3. ∠AMC≅ ∠BMD	3. Vertical angles are congruent
4. △AMC ≅ △ DMB	4. Side-Angle-Side (SAS) (2, 3, 2)
5. AC ≃ BD	5. CPCTC (Corresponding Parts of Congruent Triangles are Congruent)

Topics include triangle characteristics, quadrilaterals, circles, midpoints, SAS, and more.

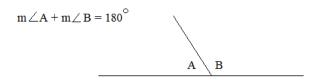
Proofs and Postulates: Triangles and Angles

Postulate: A statement accepted as true without proof.

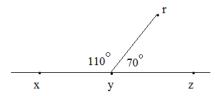
I. A Straight Angle is 180°



II. Supplementary Angles add up to 180°



Example:

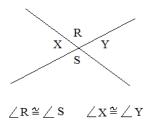


∠xyr and ∠ryz are supplementary angles.

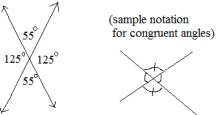
And, although they are not adjacent, \(\sum_S \) and \(\sum_X yr \) are supplementary as well.

Theorem: A statement or assertion that can be proven using rules of logic.

III. Vertical Angles are congruent

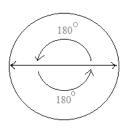


Examples:



(sample notation

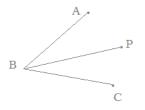
A circle has 360°



It follows that the semi-circle is 180 degrees.

Angle Addition Postulate: If point P lies in the interior of ∠ABC, then

$$m \angle ABP + m \angle CBP = m \angle ABC$$



(∠ABP is adjacent to ∠CBP because they share a common vertex and side)

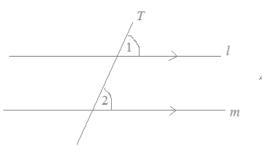
Informal proof: $\angle A = \angle C$

A + B = 180 degrees (supplementary angles) B + C = 180 degrees (supplementary angles) (substitution) A = C

> Using postulates and math properties, we construct a sequence of logical steps to prove a theorem.

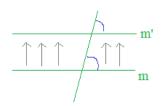
Proofs and Postulates: Triangles and Angles

Parallel Line Postulate: If 2 parallel lines are cut by a transversal, then their corresponding angles are congruent.



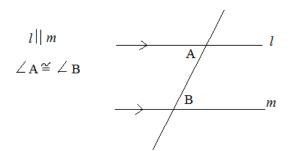
∠1≅∠2

A simple sketch can show the parallel line postulate.



note: moving each point the same distance and direction will produce a parallel line (and a corresponding angle)

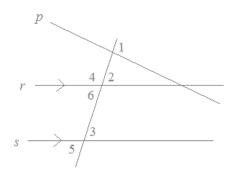
IV. If parallel lines are cut by a transversal, the *alternate interior* angles are congruent



(Theorem)

Proof of parallel lines/alt. interior angles:	
Statement	Reason
1. $l m$ 2. t is transversal 3. $\angle D \stackrel{\sim}{=} \angle E$	given given (def. of transversal) if parallel lines cut by transversal, then corresponding angles are congruent) vertical angles congruent
4. ∠C≅ ∠D 5. ∠C≅ ∠E	5. substitution
l	
-	

Examples:



If $\angle 2 = 70^{\circ}$ and r is parallel to s,

 $4 = 110^{\circ}$ (2 and 4 are supplementary)

 $3 = 70^{\circ}$ (3 and 2 are corresponding)

 $5 = 70^{\circ}$ (3 and 5 are vertical angles)

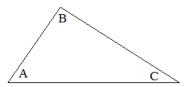
 $6 = 70^{\circ}$ (3 and 6 are alt. interior angles)

1 = ? (p is not parallel to r or s)

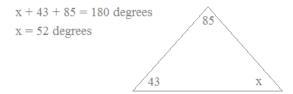
Proofs and Postulates: Triangles and Angles

V. The sum of the interior angles of a triangle is 180° (Theorem)

 $m \angle A + m \angle B + m \angle C = 180^{\circ}$



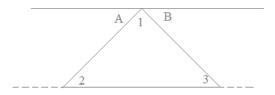
Examples:



** Illustrates the *triangle (remote) exterior angle theorem*: the measure of an exterior angle equals the sum of the 2 non-adjacent interior angles.

Informal Proof: $1 + 2 + 3 = 180^{\circ}$

Add parallel line to one of the sides



A + 1 + B = 180 degrees (straight angle and addition postulate)

A=2 and B=3 (parallel lines cut by transversal, then alt. interior angles are congruent)

2 + 1 + 3 = 180 degrees (substitution)

Tools to consider in Geometry proofs:

1) Using CPCTC (Corresponding Parts of Congruent Triangles are Congruent) after showing triangles within the shapes are congruent.

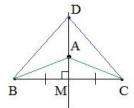
Try

- a) reflexive property
- b) vertical angles are congruent
- c) alternate interior angles (formed by parallel lines cut by a transversal) are congruent

Then, verify congruent triangles by SAS, SSS, ASA, AAS, HL

- 2) Common properties and theorems
 - a) Triangles are 180°; Quadrilaterals are 360°
 - b) Opposite sides of congruent angles are congruent (isosceles triangle)

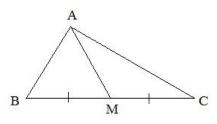
c) Perpendicular bisector Theorem (All points on perpendicular bisector are equidistant to endpoints)



 $\frac{DM \text{ is }}{BC}$ perpendicular bisector of $\frac{BC}{BC}$ (B and C are the endpoints)

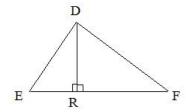
$$\frac{\overline{BD}}{\overline{BA}} = \frac{\overline{CD}}{\overline{CA}}$$

- 3) Other geometry basics:
 - a) All radii of a circle are congruent
 - b) Supplementary angles (180°); Complementary angles (90°)
 - c) Midpoints and medians divide segments into congruent parts



 \overline{AM} is median of $\triangle ABC$ M is midpoint of \overline{BC}

d) Altitudes form right angles

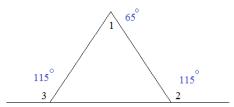


DR is altitude of △DEF

∠DRE and ∠DRF are right angles

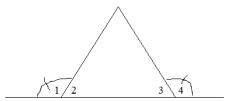
"Definition of Supplementary"

If 2 angles are supplementary to the same angle, then the angles are congruent.



Angle 3 is supplementary to angle 1... Angle 2 is supplementary to angle 1... Therefore, angles 3 and 2 are congruent!

If 2 angles are supplementary to congruent angles, then the angles are congruent.

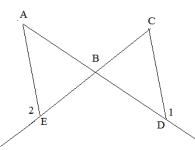


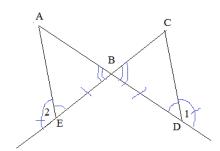
Angle 2 is supplementary to angle 1 Angle 3 is supplementary to angle 4 Since angles 1 and 4 are congruent, then therefore, angles 2 and 3 are congruent!

Given: $\underline{/1} \stackrel{\sim}{=} \underline{/2}$

 $\overline{BE} \cong \overline{BD}$

Prove: $\triangle ABE \stackrel{\sim}{=} \triangle CBD$





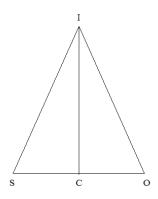
Statements	Reasons
1) $\overline{BE} \cong \overline{BD}$	1) Given
2) $\angle 1 \stackrel{\sim}{=} \angle 2$	2) Given
3) / CDB is supp to 1	3) Definition of Supplementary
4) <u>/</u> AEB is supp to 2	4) Def. of Supplementary (diagram)
5) $\angle CDB \stackrel{\sim}{=} \angle AEB$	5) If angles supp. to congruent angles, then angles congruent
6) $\angle CBD \stackrel{\mathcal{N}}{=} \angle ABE$	6) Vertical angles congruent
7) _ABE = _ CBD	7) Angle-Side-Angle (6, 1, 5)

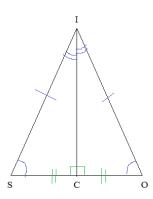
"Right Angle Theorem: If 2 angles are congruent and supplementary, then they are right angles."

Given: \triangle ISO is isosceles with base $\overline{\text{SO}}$

IC is an angle bisector

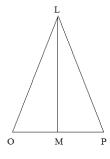
Prove: $\overline{\text{IC}}$ is an altitude

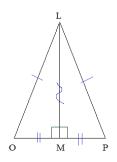




Given: Isosceles triangle LOP $$\overline{\rm OM}$$ is a median drawn to base of triangle

Prove: $\overline{\text{OP}} \perp \overline{\text{LM}}$

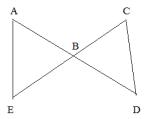




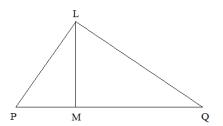
Statements	Reasons
ISO is an isosceles triangle	1) Given
2) $\overline{\text{IS}} = \overline{\text{IO}}$	Definition of isosceles (2 or more sides congruent)
3) \(\sum_{\text{ISC}} = \sum_{\text{IOC}}	If congruent sides, then congruent angles (or, base angles of isosceles triangle congruent)
4) IC is an angle bisector	4) Given
5) \angle SIC = \angle OIC	5) Definition of bisector (segment divides angle into congruent angles)
6) \triangle ISC = \triangle IOC	6) Angle-Side-Angle (5, 2, 3)
7) <u>/</u> ICS = <u>/</u> ICO	7) CPCTC (corresponding parts of congruent triangles are congruent)
8) ∠ICS and ∠ICO are supplementary	8) Definition of Supplementary angles (2 adjacent angles that for straight line/angle)
9) ICS and ICO are right angles	9) Right Angle Theorem (7, 8) (if angles are congruent AND supplementary than they are right angles)
10) IC is an altitude	10) Definition of altitude (If segment for right angle with side of triangle, then it is an altitude)

Statements	Reasons
LOP is isosceles △	1) Given
2) $\overline{\text{LO}} = \overline{\text{LP}}$	2) Definition of isosceles
3) $\overline{LM} = \overline{LM}$	3) Reflexive Property
4) OM is a median	4) Given
5) M is midpoint of \overline{OP}	5) Definition of median (segment drawn from vertex to midpoint of opposite side)
$6) \overline{OM} = \overline{PM}$	Definition of midpoint (a midpoint separates a segment into congruent halves)
7) \triangle LMO = \triangle LMP	7) SSS (Side-Side-Side) 3, 6, 2
8) \angle LMO = \angle LMP	CPCTC (corresponding parts of congruent triangles congruent)
Angles LMO and LMP are right angles	P) Right angle theorem (if angles are supplementary and congruent, then they are right angles)
10) <u>LM</u> <u>OP</u>	definition of perpendicular (Right angle is formed by perpendicular segments)

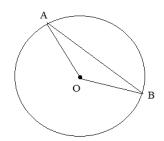
1) If AD bisects EC, then _____



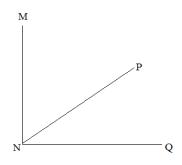
3) If <u>LM ___ PQ</u>, then _____



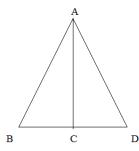
5) If O is the center of the circle, then



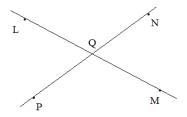
7) _MNP and _ MNQ are complementary angles, then ______ 8) If _ RGT and _HGM are right angles, then _____



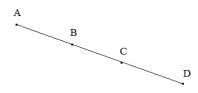
2) If AC bisects ∠BAD, then ____

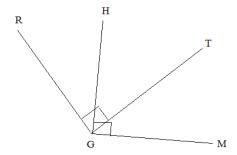


4) If lines LM and NP intersect at point Q, then _____

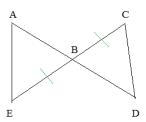


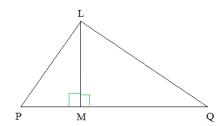
6) If $\overline{AC} \stackrel{A}{=} \overline{BD}$, then _____





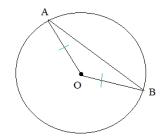
1) If \overline{AD} bisects \overline{EC} , then $\overline{BC} \stackrel{\text{red}}{=} \overline{BE}$





3) If $\overline{LM} \perp \overline{PQ}$, then \underline{LMQ} and \underline{LMP} are right angles

5) If O is the center of the circle, then $\overline{OA} \stackrel{\sim}{=} \overline{OB}$ (because all radii are congruent)

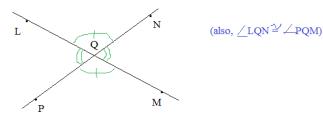


2) If AC bisects ∠BAD, then angles BAC and DAC are congruent

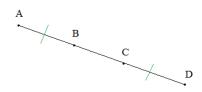


NOTE: It does not imply that $\overline{BC} = \overline{CD}$... It might be.. Or, they may not be..

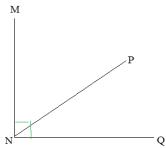
4) If lines LM and NP intersect at point Q, then angles NQM and LQP are congruent (by vertical angles)

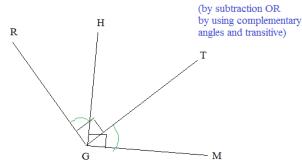


6) If $\overline{AC} \stackrel{A}{=} \overline{BD}$, then $\overline{AB} \stackrel{B}{=} \overline{CD}$ (by subtraction of BC)



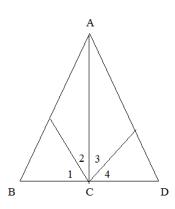
7) \angle MNP and \angle MNQ are complementary angles, then $\underline{\text{MNQ is a right angle}}$ 8) If \angle RGT and \angle HGM are right angles, then $\underline{\angle$ RGH $\stackrel{\subset}{=}$ \angle TGM (and $\overline{MN} \perp \overline{NQ}$)





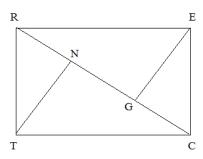
A) Given:
$$\angle 1$$
 is complementary to $\angle 2$
 $\underline{\angle 3}$ is complementary to $\underline{\angle 4}$
 \overline{AC} is a median

Prove: \triangle ACB $\stackrel{\wedge}{=}$ \triangle ACD



B)	Given:	$\overline{RN} \cong' \overline{GC}$	$\overline{\mathrm{NT}} \cong \overline{\mathrm{GE}}$
		${EG} \perp {RC}$	${\text{NT}}$ \perp ${\text{RC}}$

Prove: \triangle EGR $\stackrel{\mathcal{L}}{=}$ \triangle TNC



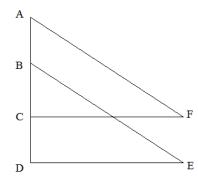
Reasons

Statements	Reasons

C) Given:
$$\overline{AD} \perp \overline{DE} \qquad \overline{AC} \perp \overline{CF}$$

$$\frac{\angle E \stackrel{\text{def}}{=} \angle F}{\overline{AB} \stackrel{\text{col}}{=} \overline{CD}}$$

Prove: $\triangle ACF \cong \triangle BDE$

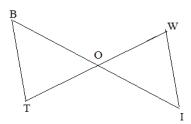


Reasons

D) Given: \overline{BI} bisects \overline{WT}

O is the midpoint of $\overline{\text{BI}}$

Prove: \triangle BOT \cong \triangle IOW



Statements	Reasons

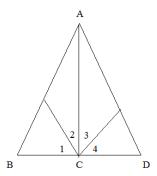
A) Given: $\angle 1$ is complementary to $\angle 2$ $\angle 3$ is complementary to $\angle 4$ AC is a median

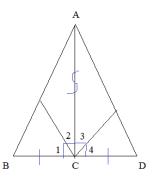
Prove: \triangle ACB $\stackrel{\sim}{=}$ \triangle ACD

SOLUTIONS

USES

- -- Reflexive Property
 -- Medians
 -- Complementary Angles





1) \(\sqrt{1} \) comp to \(\sqrt{2} \) \(\sqrt{3} \) comp to \(\sqrt{4} \)	1) Given
2) ACB and ACD are right angles	Complementary (adjacent) angles form right angles
3) <u>/</u> ACB = <u>/</u> ACD	3) All right angles are congruent
4) AC is a median	4) Given
5) $\overline{BC} \stackrel{\sim}{=} \overline{CD}$	5) Definition of Median (Median divides side into congruent segments)
6) $\overline{AC} \stackrel{\sim}{=} \overline{AC}$	6) Reflexive property
7) \triangle ACB = \triangle ACD	7) Side-Angle-Side (5, 3, 6)

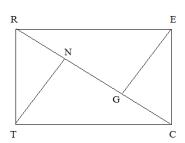
Reasons

Statements

B) Given: $\overline{RN} \cong \overline{GC}$ $\overline{NT} \cong \overline{GE}$ $\overline{\mathrm{EG}} \perp \overline{\mathrm{RC}}$ $\overline{\rm NT} \perp \overline{\rm RC}$

Prove: \triangle EGR $\stackrel{\mathcal{L}}{=}$ \triangle TNC

- USES
 -- Addition Property
 -- Perpendicular Segments
 and Right Angles



Statements	Reasons
1) NT [™] GE	1) Given
2) $\overline{RN} \stackrel{\sim}{=} \overline{GC}$	2) Given
3) $\overline{NG} \stackrel{\sim}{=} \overline{NG}$	3) Reflexive Property
4) $\overline{GR} \stackrel{\sim}{=} \overline{NC}$	Addition Property (If segment added to congruent segments, then sums are congruent)
5) EG ⊥RC; NT ⊥RC	5) Given
6) <u>/ EGR</u> and <u>/ TNC</u> are right angles	Definition of Perpendicular (Perpendicular segments form right angles)
7) <u>/</u> EGR = /_TNC	7) All right angles are congruent
8) \triangle EGR = \triangle TNC	8) Side-Angle-Side (1, 7, 4)

C) Given:
$$\overline{AD} \perp \overline{DE} \qquad \overline{AC} \perp \overline{CF}$$

$$\underline{/} E \stackrel{\text{df}}{=} \underline{/} F$$

$$\overline{AB} \stackrel{\text{cf}}{=} \overline{CD}$$

Prove: $\triangle ACF \cong \triangle BDE$

USES:

A

В

C

D

- -- Right angles
- -- Addition Property
- -- Reflexive Property

1) AD _	_DE;	\overline{AC}	CI

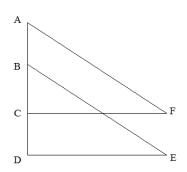
2) _ADE & _ACF are right angles

Statements

- 3) / ADE ≅ ∠ ACF
- 4) <u>∠</u>E ≅ ∠ F
- 5) AB = CD
- 6) $\overline{BC} \stackrel{\sim}{=} \overline{BC}$
- 7) $\overline{AC} \subseteq \overline{BD}$
- 8) \triangle ACF \cong \triangle BDE

Reasons

- 1) Given
- 2) Definition of Perpendicular (perpendicular segments form right angles)
- 3) All right angles are congruent
- 4) Given
- 5) Given
- 6) Reflexive Property
- 7) Addition Property (If segment is added to congruent segments, then sums are congruent)
- 8) Angle-Angle-Side (4, 3, 7)

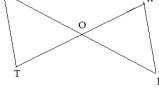


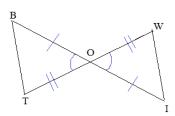
D) Given: BI bisects WT

O is the midpoint of BI

Prove: \triangle BOT \cong \triangle IOW

- -- Def. of Midpoint
- -- Def. of Bisector
- -- Vertical Angles





		Sta	tements
1)	$\overline{\mathrm{BI}}$	bisects	$\overline{\mathrm{WT}}$

- ______
- 2) TO ≅ WO
- 3) O is the midpoint of \overline{BI}
- 4) OB ≅ OI
- 5) ∠woi = ∠tob
- 6) $\triangle BOT \cong \triangle IOW$

Reasons

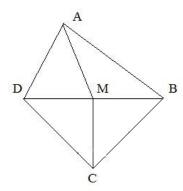
- 1) Given
- Definition of bisector
 (a bisector divides a segment into congruent segments)
- 3) Given
- Definition of Midpoint (midpoint divides a segment into congruent segments)
- 5) Vertical Angles are congruent
- 6) Side-Angle-Side (4, 5, 2)

Examples-→

Proving a Median of a Triangle: Example

Given: \overline{CM} bisects $\angle BCD$ $\overline{DC} \cong \overline{BC}$

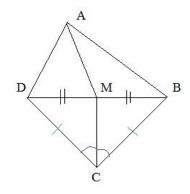
Prove: AM is a median of △BDA



Step 1: "Label the picture."

$$\overline{\text{CM}}$$
 bisects $\angle \text{BCD}$
 $\overline{\text{DC}} \cong \overline{\text{BC}}$

What are we trying to prove? $\overline{\rm DM} \stackrel{\mbox{\tiny def}}{=} \overline{\rm MB}$ (definition of a median)



Step 2: Determine a Strategy

To prove a median, I need to show a segment bisects the opposite side. (def. of a median).

Notice triangles CMD & CMB. They include DM & MB. If I can show CMD = CMB, then I can use CPCTC to prove that DM = MB.

Step 3: Write the Proof (describing your approach and strategy)

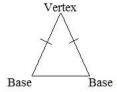
Statements	Reasons
1) DC = BC CM bisects ∠ BCD	1) Given
2) $\angle DCM = \angle BCM$	2) Definition of Angle Bisector
3) $\overline{MC} = \overline{MC}$	3) Reflexive Property
4) \triangle DCM = \triangle BCM	4) Side-Angle-Side (SAS) postulate
5) $\overline{\rm DM} = \overline{\rm BM}$	5) Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
6) AM is median of $\triangle ABD$	6) Definition of a Median (A line segment joining vertex of triangle to midpoint of opposite side)

Given: Isosceles Triangle

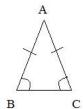
Prove: Base Angles are congruent

Step 1: Draw pictures and label..

What is given? A triangle with 2 sides of equal length.
(Definition of an Isosceles Triangle)



What are we trying to prove? $\angle B \stackrel{\sim}{=} \angle C$



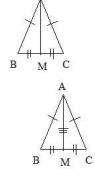
Step 2: Determine a strategy..

Try dividing into triangles.
Use properties of congruent triangles.
Then, CPCTC.

Step 3: Write the proof (describing your strategy!)

Reasons
Given/Definition of Isosceles Triangle
2. An angle has one median
3. Definition of a median (A line segment joining a vertex and the midpoint of the opposite side)
4. Reflexive Axiom
5. SSS congruence postulate
(If 3 sides of one triangle are congruent to corresponding sides of another triangle, then the triangles are congruent)
CPCTC (Corresponding Parts of Congruent Triangles are Congruent)

(Illustrations)



Alternate Proof: (Using angle bisector and Side-Angle-Side)

Reasons	
1. Given; Def. of Isosceles triang	
2. An angle has one bisector	
3. Def. of Angle Bisector	
4. Reflexive Property	
5. SAS postulate	
6. CPCTC	

Given: M is the midpoint of \overline{AB} and \overline{CD} Prove: Triangles are congruent

ABB

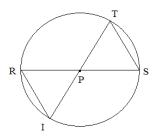
"Two Basic Circles Proofs"

NOTE: Both proofs use SAS (Side-Angle-Side)...

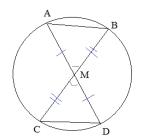
However, the first proof utilizes the midpoints to get congruent segments and, the second proof uses 'all radii congruent' to get congruent sides...

Given: Circle P

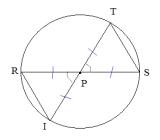
Prove: Triangles are congruent



Statements	Reasons
M is midpoint of BC M is midpoint of AD	1) Given
$\frac{\text{BM}}{\text{AM}} = \frac{\text{CM}}{\text{DM}}$	Definition of midpoint (midpoint divides into congruent segments)
$3)$ \triangle AMB = \triangle CMD	3) Vertical angles congruen
4) \triangle AMB = \triangle DMC	4) side-angle-side



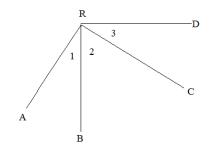
Statements	Reasons
1) Circle P	1) Given
2) $TP = IP = SP = RP$	2) All radii are congruent
3) <u>/</u> TPS = <u>/</u> RPI	3) Vertical angles congruent
4) \triangle TSP = \triangle RIP	4) side-angle-side



Applying "subtraction" or "complementary angles"

Given: $\overline{AR} \perp \overline{RC}$ $\overline{BR} \perp \overline{RD}$

Prove: $\angle 1 \stackrel{\sim}{=} \angle 3$



Statements	Reasons
1) $\overline{AR} \perp \overline{RC}$	1) Given
2) $\overline{BR} \perp \overline{RD}$	2) Given
3) ARC and BRD are right angles	Definition of Perpendicular (Perpendicular lines form right angles)
4) \(\sum 1 \) and \(\sum 2 \) are complementary angles	4) Complementary angles for right angles
5) $\frac{\sqrt{3}}{2}$ and $\frac{\sqrt{2}}{2}$ are complementary angles	5) Complementary angles for right angles
6) \(\sum_1 \) \(\sum_3 \)	If 2 angles are complementary to congruent angles, then the 2 angles are congruent (also, transitive property)

1) $\overline{AR} \perp \overline{RC}$	1) Given
2) BR <u>L</u> RD	2) Given
3) <u>ARC</u> and <u>BRD</u> are right angles	Definition of Perpendicular (Perpendicular lines form right angles)
4) ∠ARC ≅ ∠ BRD	4) All right angles are congruent
5) /.2 = / 2	5) Reflexive property
6) \(\sum_1 \) \(\sum_3 \)	Subtraction Property (If congruent angles are subtracted from congruent angles, then the difference are congruent)

Reasons

Using Complementary angles (and transitive property)

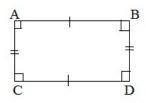
Using Subtraction Property...

Statements

Given: Rectangle ABDC

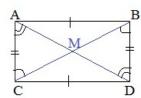
Prove: $\overline{BC} = \overline{\overline{AD}}$ and \overline{BC} , \overline{AD} bisect each other

PROOF



AB|| CD AC|| BD Definition of Rectangle

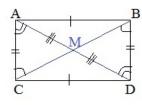
(opposite sides are congruent)
(all angles are congruent; right angles)



2) ∠CBD≅ ∠BCA ∠CAD≅ ∠BDA Parallel lines cut by a transversal, then alternate interior angles are congruent

3) \triangle ACM = \triangle DBM

Congruent triangles Angle-Side-Angle



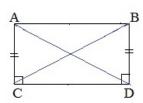
4) $\overline{AM} = \overline{DM}$ $\overline{CM} = \overline{BM}$

CPCTC

5) BC and AD bisect each other

Definition of Bisector

(A line, ray, or segment that cuts a segment into 2 congruent parts)



6) $\overline{CD} = \overline{CD}$

Reflexive Property

7)
$$\angle C = \angle D = 90^{\circ}$$

 $\overline{AC} = \overline{BD}$

Definition of Rectangle

8) \triangle ACD = \triangle BDC

Congruent triangles Side-Angle-Side

9)
$$\overline{BC} = \overline{AD}$$

CPCTC

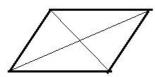
Note: Pythagorean theorem can show that diagonals are equal Proof Example

Prove the "Parallelogram Diagonals Theorem" (The Diagonals of a Parallelogram Bisect each other)

Given: Parallelogram

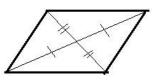
Prove: Diagonals Bisect Each Other

(Draw Picture)

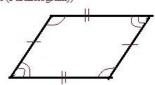


(Establish Strategy)

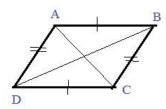
Diagonals bisecting each other implies that congruent line segments are inside the parallelogram.
(Also, notice that diagonals create triangles.)



(Label "things you know" about the Given (Parallelogram))



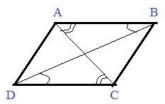
PROOF



1) AB≅DC AD≅BC AD∥BC AB∥DC

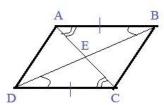
Definition of a Parallelogram (opposite sides are congruent)

(opposite sides are parallel)



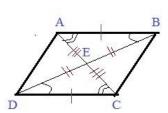
2) ∠ACD ≅ ∠ CAB ∠ABD ≅ ∠ CDB

If two parallel lines are cut by a transversal, then alternate interior angles are congruent.



3) △ABE ≅ △CDE

ASA (Angle-Side-Angle) Triangles are congruent



4) $\overline{BE} \stackrel{\sim}{=} \overline{DE}$

AE ≅ CE

CPCTC (Corresponding Parts of Congruent Triangles are Congruent)

5) AC bisects BD and BD bisects AC

Definition of a Bisector

(A line, ray, or segment that cuts a segment into 2 congruent parts)

("Diagonals of a Parallogram bisect each other)

Prove that the <u>shortest</u> distance between a point and a line is a perpendicular line segment.

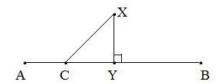
Step 1: Write out the Given and Prove statements

Given: Line AB with external point X

Line segment XY is perpendicular to AB Segment XC is non-perpendicular to AB

Prove: Segment XY is shorter than segment XC

Step 2: Draw a diagram to clarify



Step 3: Determine a strategy

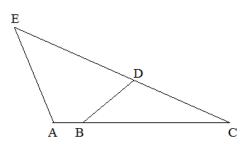
We need to prove that XY < XC. We see that we're dealing with a right triangle (angles X and C are both acute, and Y is 90 degrees) And, we know that size of angles indicates size of opposite sides.

Step 4: Proof

Statements	Reasons
 Line AB with external point X XY ⊥ AB 	1. Given
2. ∠XYC is a right angle	2. Perpendicular lines form right angle
3. ∠XCY is an acute angle	 (Interior angles of Triangle add up to 180°) Non-right angles of a right triangle (i.e. △XYC are always acute (< 90°)
4. ∠XCY < ∠XYC	4. Definition of Acute Angle (Angles that are less than 90°)
5. XY is shorter than XC	5. In a triangle, the side opposite the smaller angle is shorter than a side opposite a larger angle ∠XCY < ∠XYC so, XY < XC

No-Choice Theorem Examples

Given: \angle DBC \cong \angle E Prove: \angle A \cong \angle BDC



C.	tat	Ott	ner	1te
	ıaı	CH	ICI	ΙLS

1. ∠DBC≅ ∠E

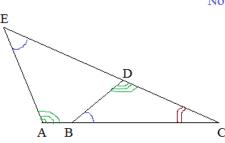
2. $\angle C \cong \angle C$

3. $\angle A \stackrel{\checkmark}{=} \angle BDC$

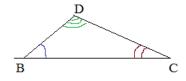
Reasons

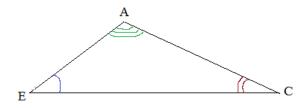
- 1. Given
- 2. Reflexive Property
- 3. No-Choice Theorem

(If 2 angles of one triangle are congruent to 2 angles of another triangle, then the 3rd angles of both triangles are congruent)



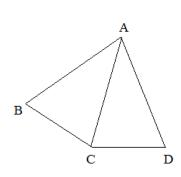
Note: The angles are congruent.
So, the triangles are *similar*.
(We need at least one pair of congruent sides for congruent triangles)

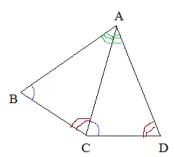




Given: $\angle ABC \cong \angle ACD$ $\angle ACB \cong \angle D$

Are the triangles congruent?



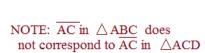


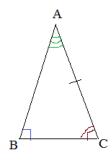
Since two angles are congruent, the 3rd angles must be congruent (no-choice theorem)

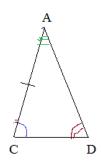
We have angle-angle-angle...

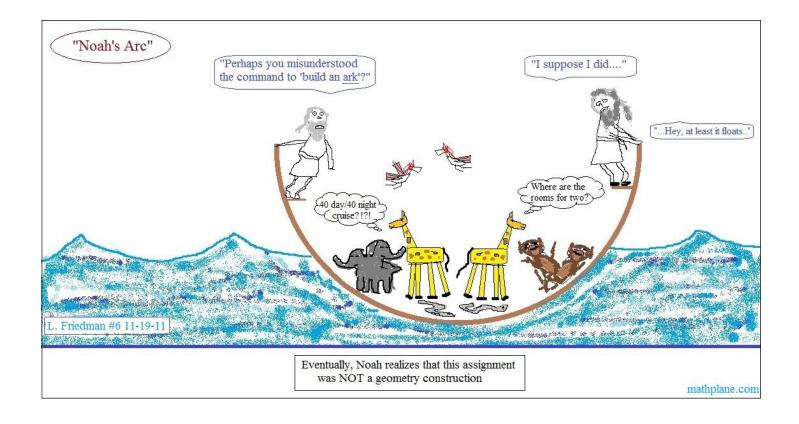
(Similar Triangles)

BUT, the triangles <u>may or may not</u> be congruent...





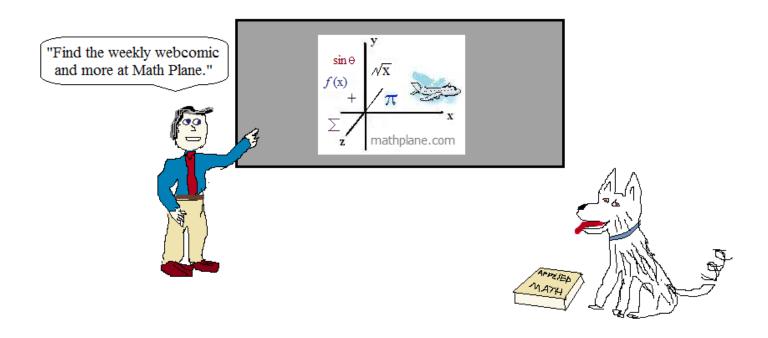




Thanks for visiting. (Hope it helped!)

Find more proofs and geometry content at mathplane.com

If you have questions, suggestions, or requests, let us know.



Also, at Facebook, Google+, Pinterest, TES and TeachersPayTeachers

And, Mathplane Express for mobile and tablets at Mathplane.ORG