Example: Given: $\overline{AB} \perp \overline{BD}$ $\overline{AC} \perp \overline{CD}$ $\overline{AB} \cong \overline{AC}$ Prove: _BED is a right angle - Statements - 1. $\overline{AB} \perp \overline{BD}$; $\overline{AC} \perp \overline{CD}$ - 2. ACD and ABD are right angles - 3. $\overline{AB} \cong \overline{AC}$ - 4. $\overline{AD} \cong \overline{AD}$ - 5. \triangle ABD \cong \triangle ACD - 6. $\overline{\text{CD}} \cong \overline{\text{BD}}$ - 7. / BDE ≅ ∠ CDE - 8. $\overline{ED} \cong \overline{ED}$ - 9. △ BED ≅ △ CED - $10. \angle CED = \angle BED$ - 11. / BED is right angle - Reasons - 1. Given - 2. Definition of perpendicular (Perpendicular segments form right angles) - 3. Given - 4. Reflexive property - 5. RHL (Right Angle-Hypotenuse-Leg) 2, 4, 3 - 6. CPCTC (Corresponding Parts of Congruent Triangles are Congruent) - 7. CPCTC - 8. Reflexive property - 9. SAS (Side-Angle-Side) 6, 7, 8 - 10. CPCTC - 11. Right Angle Theorem (If angles are both congruent and supplementary, then each angle is a right angle) NOTE: A detour was taken, using the "big triangles", to get information needed for the "medium triangles" Draw a diagram... Devise a proof (using "if..., then....") Given: \overline{BD} and \overline{CE} are altitudes $\overline{\mathrm{BD}} = \overline{\mathrm{CE}}$ Prove: \triangle ACD is isosceles Method 1: | Statements | Reasons | |--|---| | 1) $\overline{BD} = \overline{CE}$ | 1) Given | | 2) \overline{BD} and \overline{CE} are altitudes | 2) Given | | 3) <u>CBD</u> and <u>DEC</u> are right angles | 3) Definition of Altitude | | 4) \angle CBD = \angle DEC | 4) All right angles are congruent | | 5) $\overline{\text{CD}} = \overline{\text{CD}}$ | 5) Reflexive Property | | $6) \triangle BCD = \triangle EDC$ | 6) RHL (4, 5, 1)
(Right Angle-Hypotenuse-Leg) | | 7)/ BCD = / EDC | 7) CPCTC (Corresponding Parts of Congruent Triangles are Congruent) | | 8) \triangle ACD is isosceles | 8) If base angles of triangle are congruent, then triangle is isosceles | Method 2: | Statements | Reasons | |--|--| | 1) $\overline{\mathrm{BD}} = \overline{\mathrm{CE}}$ | 1) Given | | 2) \overline{BD} and \overline{CE} are altitudes | 2) Given | | 3) _ABD and _AEC are right angles | 3) Definition of Altitude | | 4) $\angle ABD = \angle AEC$ | 4) All right angles are congruent | | 5) <u>/</u> A = <u>/</u> A | 5) Reflexive property | | $6)$ \triangle AEC = \triangle ABD | 6) AAS (5, 4, 1)
(Angle-Angle-Side) | | 7) $\overline{AD} = \overline{AC}$ | 7) CPCTC | | 8) \triangle ACD is isosceles | 8) Definition of Isosceles
(If 2 or more sides congruent) | Step 1: Draw a diagram (go phrase by phrase) Step 2: Devise a proof.... "IF" ----> the 'givens' Given: AM bisects ∠BAC M is the midpoint of BC "THEN" ----> what you're proving Prove: △ABC is isosceles | Statements | Reasons | |--|---| | 1. AM bisects ∠BAC | 1. Given | | 2. M is the midpoint of BC | 2. Given | | 3. TM <u></u> AB | 3. Auxilary lines join 2 points | | MVAC | | | 4. AVM and ATM rt angles | 4. Definition of perpendicular | | 5. ATM and AVM congruent | 5. All right angles are congruent | | 6. <u>/ MAC = / MAB</u> | 6. Definition of angle bisector | | 7. $\overline{AM} = \overline{AM}$ | 7. Reflexive property | | 8. \triangle MAT = \triangle MAV | 8. AAS (angle-angle-side) 5, 6, 7 | | 9. MV = MT | 9. CPCTC | | BTM and CVM are
congruent right angles | Def. of perpendicular, all right angles are congruent | | 11. BM = CM | 11. Definition of midpoint | | 12. \triangle CVM = \triangle BTM | 12. RHL (right angle-hypotenuse-leg) 10, 11, 9 | | 13. angles B and C are congruent | 13. CPCTC | | 14. AB = AC | 14. If congruent angles, then congruent sides | 15. ABC is isosceles 15. Def. of isosceles (at least 2 congruent sides) | | Statements | Reasons | |--|------------|---------| 2) Prove a trapezoid inscribed in a circle is isosceles. | | | | | | | | | Statements | Reasons | 1) If a triangle is isosceles, then the triangle formed by its base and the angle bisectors of its base angles is also isosceles. Diagramless Proofs Prove: △ AFE is isosceles | Statements | Reasons | |------------|---------| 4) Given: <u>\(\sum \) WNI = \(\sum \) ABL</u> D is the midpoint of \overline{BN} $\overline{ID} = \overline{LD}$ Prove: $\overline{WN} = \overline{AB}$ | Statements | Reasons | |------------|---------| Statements | Reasons | |------------|---------| 6) Given: $$\overline{SR} = \overline{SK}$$ $$\overline{RE} = \overline{KE}$$ $$\overline{TR} = \overline{AK}$$ Prove: E is the midpoint of \overline{TA} | Statements | Reasons | |------------|---------| Statements | Reasons | |------------|---------| 8) "In an isosceles triangle, if a point on the base is NOT the midpoint, then the segment from the vertex to that point does NOT bisect the vertex angle." | Statements | Reasons | |------------|---------| $$\overline{AC} = \overline{AP}$$ $$\angle$$ PAM = \angle CAH Prove: SA ___ HM | Statements | Reasons | |------------|---------| 10) Given: \overline{KS} bisects $\underline{/}BSE$ \overline{AK} bisects \angle_BKE Prove: KR bisects __BRE | Statements | Reasons | |------------|---------| | , | SOLUTIONS Given: Triangle ABC is isosceles BD and CD are angle bisectors Prove: Triangle BDC is isosceles | Statements | Reasons | |--|--| | | 1) Given | | 2) $\overline{AB} \cong \overline{AC}$ | 2) Definition of Isosceles | | 3) ∠ABC = ∠ACB | If congruent sides, then congruent angles (or, base angles of isos, are congruent) | | 4) BD and CD are angle bisectors | 4) Given | | 5) \(\text{DBC} \) \(\text{DCB} | 5) "Like Division Property" If congruent angles are bisected, then the halves are congruent | | 6) BD = CD | If congruent angles (in a triangle), then opposite sides congruent | | 7) △ BDC is isosceles | 7) Definition of isosceles (A triangle with 2 or more congruent sides) | 2) Prove a trapezoid inscribed in a circle is isosceles. | Statements | Reasons | |----------------------------------|--| | 1) Trapezoid ABCD | 1) Given | | 2) AB CD | Definition of Trapezoid (bases are parallel) | | 3) Draw Diagonal AC | 3) Given (definition of trapezoid) | | 4) ∠ACD ≅ ∠BAC | 4) If parallel lines are cut by transversal, then alternate interior angles are congruent. | | 5) $\widehat{AD} = \widehat{BC}$ | 5) If inscribed angles are congruent, then the arcs are congruent | | 6) AD = BC | If arcs in a circle are congruent, then their chords are congruent | | 7) ABCD is isosceles | 7) If legs/sides of a trapezoid are congruent, then the trapezoid is isosceles. | Prove: \triangle AFE is isosceles SOLUTIONS | | Statements | Reasons | |---------------|--------------------------------------|--| | | $1) \overline{AB} = \overline{DE}$ | 1) Given | | | 2) BC = CD | 2) Given | | Detour | $3) \overline{AC} = \overline{EC}$ | Addition Property (If congruent sides are added to congruent sides, then the sums are equal) | | | 4) \angle ACD = \angle ECB | 4) Reflexive Property | | | 5) $\triangle ACD = \triangle ECB$ | 5) Side-Angle-Side (2, 4, 3) | | \Rightarrow | 6) <u>BEC</u> = <u>DAC</u> | CPCTC (Corresponding Parts of Congruent Triangles Congruent) | | | 7) \angle BFA = \angle DFE | 7) Vertical angles congruent | | | 8) \triangle FAB = \triangle FED | 8) Angle-Angle-Side (6, 7, 1) | | | 9) AF = EF | 9) CPCTC | | | 10) AFE is isosceles | 10) Definition of Isosceles | 4) Given: \(\sum WNI = \sum ABL \) D is the midpoint of \overline{BN} $\overline{\text{ID}} = \overline{\text{LD}}$ Prove: $\overline{WN} = \overline{AB}$ Statements Reasons 1) D is the midpoint of \overline{BN} B 1) Given $2) \overline{DN} = \overline{DB}$ Definition of midpoint (midpoint divides segment into = parts) (At least 2 congruent sides) 3) \angle NDI = \angle LDB 4) $\overline{ID} = \overline{LD}$ Detour _ 4) Given 5) \triangle NDI = \triangle BDL 5) Side-Angle-Side (2, 3, 4) 3) Vertical angles congruent 6) <u>/</u>DBL = <u>/</u>.DNI 6) CPCTC (corresponding parts of congruent triangles are congruent) 7) <u>/</u>DBA = __.DNW 7) Additional property (If 2 congruent angles are added to 8) \triangle DBA = \triangle DNW congruent angles, the sums are the same) 8) Angle-Side-Angle (3, 2, 7) 9) $\overline{WN} = \overline{AB}$ 9) CPCTC NOTE: there are other methods that could prove.. (i.e. proving $\triangle ABL = \triangle WNI$ would lead to answer) Detour Given: Rectangle RECT Prove: RC and ET bisect each other (creating isosceles triangles) an isosceles triangle... "If rectangle, then diagonals create | - 1. | Rectangle RECT | |------|----------------| | | | ∠T and ∠C are right angles Statements 3. ∠T ≅ ∠C 4. $\overline{RT} \stackrel{d}{=} \overline{EC}$ 5. $\overline{TC} = \overline{TC}$ 6. \triangle RTC \cong \triangle ECT 7. <u>∕</u>TRM = ∠CEM 8. <u>/_RMT = /_EMC</u> 9. \triangle RMT = \triangle EMC 10. $\overline{EM} \stackrel{\sim}{=} \overline{RM}$ $\overline{\text{TM}} \stackrel{\sim}{=} \overline{\text{CM}}$ Statements 11. \triangle RME and \triangle TMC are isosceles triangles Reasons 1. Given 2. Definition of rectangle 3. All right angles are congruent 4. Definition of rectangle (opposite sides congruent) 5. Reflexive property 6. SAS (Side-Angle-Side) 4, 3, 5 7. CPCTC (Corresponding Parts of Congruent Triangles are Congruent) 8. Vertical angles congruent 9. AAS (Angle-Angle-Side) 7, 8, 4 10. CPCTC 11. Definition of isosceles triangle (2 or more congruent sides of a triangle are congruent) 6) Given: $$\overline{SR} = \overline{SK}$$ $$\overline{RE} = \overline{KE}$$ $$\overline{TR} = \overline{AK}$$ Prove: E is the midpoint of \overline{TA} 1) $\overline{SR} = \overline{SK}$ 2) $\overline{RE} = \overline{EK}$ Detour 3) $\overline{SE} = \overline{SE}$ 4) \triangle SER = \triangle SEK 5) \angle TSE = \angle ASE 6) $\overline{TR} = \overline{AK}$ 7) $\overline{ST} = \overline{SA}$ 8) $\wedge TSE = \triangle ASE$ 9) TE = AE 10) E is midpoint of TA Reasons 1) Given 2) Given 3) Reflexive Property 4) Side-Side-Side (1, 2, 3) 5) CPCTC 6) Given 7) Subtraction Property (If congruent segments are subtracted from congruent segments, then the differences are the same) 8) Side-Angle-Side (7, 5, 3) 9) CPCTC 10) Definition of Midpoint (If point divides segment into congruent halves, then it is midpoint of segment) 7) "If a radius is NOT perpendicular to a chord, then the radius does NOT bisect chord." Step 1: Sketch a diagram Step 2: Design the proof Given: Circle O TO is NOT perpendicular to MP Prove: LO does NOT bisect MP Step 3: Use indirect proof to solve Uses Equidistance Theorem Auxilary Lines Indirect Proof | Statements | Reasons | |---|--| | 1) Circle O | 1) Given | | 2) TO NOT perpendicular to MP | 2) Given | | 3) Draw radii OP and OM | 3) Auxilary lines
(line joins 2 points) | | 4) $\overline{OP} = \overline{OM}$ | 4) All radii congruent | | 5) TO bisects MP | 5) Assume for contradiction | | 6) MD = PD 7) LO is perpendicular bisector of MP | 6) Definition of bisector
(Bisector divides segment
into congruent halves) | | disector of MP | Equidistance Theorem | Diagramless Indirect Proofs However, statements 2) and 7) contradict each other! 8) "In an isosceles triangle, if a point on the base is NOT the midpoint, then the segment from the vertex to that point does NOT bisect the vertex angle." Step 1: Sketch diagram by picking out key phrases... Step 2: Write out "givens" using IF statements... And, write "prove" using THEN statements... Given: Isosceles Triangle ABC D is NOT a midpoint Prove: AD is NOT an angle bisector | Statements | Reasons | |--|---| | 1) ABC is isosceles | 1) Given | | $2) \overline{AB} = \overline{AC}$ | Definition of Isosceles (2 or more congruent sides) | | 3) D is NOT a midpoint of \overline{BC} | 3) Given | | 4) AD is angle bisector | 4) Assume for contradiction | | $5)\overline{AD} = \overline{AD}$ | 5) Reflexive Property | | 6) \triangle ABD = \triangle ACD | 6) Side-Angle-Side (SAS) (2, 3, 4) | | 7) $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ | 7) CPCTC (Corresponding parts of congruent triangles are congruent) | | 8) D is midpoint of BC | 8) Definition of Midpoint (If point divides segment into congruent halves, then it is a midpoint) | However, statements 3) and 8) contradict each other! Prove: SA ____ HM | C1 | \sim | т 1 | T | CT. | \sim | NTC1 | |----|--------|-----|---|-----|--------|------| | | | | | | | | Uses Detour and Right Angle Theorem | | Statements | Reasons | |---------|--------------------------------------|--| | | 1) S is midpoint of CP | 1) Given | | | $2) \overline{CS} = \overline{PS}$ | 2) Definition of Midpoint | | | 3) $\overline{AC} = \overline{AP}$ | 3) Given | | Detour> | 4) $\overline{SA} = \overline{SA}$ | 4) Reflexive Property | | | 5) \triangle CAS = \triangle PAS | 5) Side-Side-Side (2, 3, 4) | | | 6) $\angle CAS = \angle PAS$ | 6) CPCTC | | | 7) \angle PAM = \angle CAH | 7) Given | | | 8) \angle SAM = \angle SAH | 8) Addition Property | | | SAM and SAH are supplementary angles | 9) Definition of Supplementary | | | 10) SAM and SAH are right angles | Right Angle Theorem If angles are congruent and then they are right angles | | | 11) SA <u> </u> | 11) If right angles, then segmen perpendicular | 10) Given: $\overline{\text{KS}}$ bisects \angle BSE $\overline{\text{AK}}$ bisects \angle BKE Prove: KR bisects __BRE detour | Statements | Reasons | |---------------------------------------|--| | 1) KS bisects _BSE | 1) Given | | 2) <u>/</u> BSK = <u>/</u> ESK | 2) Definition of angle bisector | | 3) $\overline{KS} = \overline{KS}$ | 3) Reflexive Property | | 4) AK bisects BKE | 4) Given | | 5) <u>/</u> AKB = <u>/</u> AKE | 5) Definition of angle bisector | | 6) _AKB is supplementary to _BKS | 6) Definition of Supplementary | | AKE is supplementary toEKS | (Adjacent angles that form a straight angle are supplementary) | | 7) \angle BKS = \angle EKS | 7) If 2 angles are congruent, then their supplements are congruent | | 8) \triangle BSK = \triangle ESK | 8) Angle-Side-Angle (2, 3, 7) | | 9) BS = SE | 9) CPCTC | | 10) RS = RS | 10) Reflexive Property | | 11) \triangle SBR = \triangle SER | 11) Side-Angle-Side (9, 2, 10) | | 12) \angle BRK = \angle ERK | 12) CPCTC | | 13) KR bisects BRE | 13) Definition of Angle Bisector | Thanks for visiting. Hope it helps! If you have questions, suggestions, or requests, let us know. ## Cheers Also, at Mathplane Express for mobile and tablets at Mathplane.ORG