

Example: Given: $\overline{AB} \perp \overline{BD}$

 $\overline{AC} \perp \overline{CD}$

 $\overline{AB} \cong \overline{AC}$

Prove: _BED is a right angle

- Statements
- 1. $\overline{AB} \perp \overline{BD}$; $\overline{AC} \perp \overline{CD}$
- 2. ACD and ABD are right angles
- 3. $\overline{AB} \cong \overline{AC}$
- 4. $\overline{AD} \cong \overline{AD}$
- 5. \triangle ABD \cong \triangle ACD
- 6. $\overline{\text{CD}} \cong \overline{\text{BD}}$
- 7. / BDE ≅ ∠ CDE
- 8. $\overline{ED} \cong \overline{ED}$
- 9. △ BED ≅ △ CED
- $10. \angle CED = \angle BED$
- 11. / BED is right angle

- Reasons
- 1. Given
- 2. Definition of perpendicular (Perpendicular segments form right angles)
- 3. Given
- 4. Reflexive property
- 5. RHL (Right Angle-Hypotenuse-Leg) 2, 4, 3
- 6. CPCTC (Corresponding Parts of Congruent Triangles are Congruent)
- 7. CPCTC
- 8. Reflexive property
- 9. SAS (Side-Angle-Side) 6, 7, 8
- 10. CPCTC
- 11. Right Angle Theorem
 (If angles are both congruent and supplementary, then each angle is a right angle)

NOTE: A detour was taken, using the "big triangles", to get information needed for the "medium triangles"

Draw a diagram... Devise a proof (using "if..., then....")

Given: \overline{BD} and \overline{CE} are altitudes

 $\overline{\mathrm{BD}} = \overline{\mathrm{CE}}$

Prove: \triangle ACD is isosceles

Method 1:

Statements	Reasons
1) $\overline{BD} = \overline{CE}$	1) Given
2) \overline{BD} and \overline{CE} are altitudes	2) Given
3) <u>CBD</u> and <u>DEC</u> are right angles	3) Definition of Altitude
4) \angle CBD = \angle DEC	4) All right angles are congruent
5) $\overline{\text{CD}} = \overline{\text{CD}}$	5) Reflexive Property
$6) \triangle BCD = \triangle EDC$	6) RHL (4, 5, 1) (Right Angle-Hypotenuse-Leg)
7)/ BCD = / EDC	7) CPCTC (Corresponding Parts of Congruent Triangles are Congruent)
8) \triangle ACD is isosceles	8) If base angles of triangle are congruent, then triangle is isosceles

Method 2:

Statements	Reasons
1) $\overline{\mathrm{BD}} = \overline{\mathrm{CE}}$	1) Given
2) \overline{BD} and \overline{CE} are altitudes	2) Given
3) _ABD and _AEC are right angles	3) Definition of Altitude
4) $\angle ABD = \angle AEC$	4) All right angles are congruent
5) <u>/</u> A = <u>/</u> A	5) Reflexive property
$6)$ \triangle AEC = \triangle ABD	6) AAS (5, 4, 1) (Angle-Angle-Side)
7) $\overline{AD} = \overline{AC}$	7) CPCTC
8) \triangle ACD is isosceles	8) Definition of Isosceles (If 2 or more sides congruent)

Step 1: Draw a diagram (go phrase by phrase)

Step 2: Devise a proof....

"IF" ----> the 'givens'

Given: AM bisects ∠BAC

M is the midpoint of BC

"THEN" ----> what you're proving

Prove: △ABC is isosceles

Statements	Reasons
1. AM bisects ∠BAC	1. Given
2. M is the midpoint of BC	2. Given
3. TM <u></u> AB	3. Auxilary lines join 2 points
MVAC	
4. AVM and ATM rt angles	4. Definition of perpendicular
5. ATM and AVM congruent	5. All right angles are congruent
6. <u>/ MAC = / MAB</u>	6. Definition of angle bisector
7. $\overline{AM} = \overline{AM}$	7. Reflexive property
8. \triangle MAT = \triangle MAV	8. AAS (angle-angle-side) 5, 6, 7
9. MV = MT	9. CPCTC
 BTM and CVM are congruent right angles 	Def. of perpendicular, all right angles are congruent
11. BM = CM	11. Definition of midpoint
12. \triangle CVM = \triangle BTM	12. RHL (right angle-hypotenuse-leg) 10, 11, 9
13. angles B and C are congruent	13. CPCTC
14. AB = AC	14. If congruent angles, then congruent sides

15. ABC is isosceles

15. Def. of isosceles (at least 2 congruent sides)

	Statements	Reasons
2) Prove a trapezoid inscribed in a circle is isosceles.		
	Statements	Reasons

1) If a triangle is isosceles, then the triangle formed by its base and the angle bisectors of its base angles is also isosceles.

Diagramless Proofs

Prove: △ AFE is isosceles

Statements	Reasons

4) Given: <u>\(\sum \) WNI = \(\sum \) ABL</u>

D is the midpoint of \overline{BN}

 $\overline{ID} = \overline{LD}$

Prove: $\overline{WN} = \overline{AB}$

Statements	Reasons

Statements	Reasons

6) Given:
$$\overline{SR} = \overline{SK}$$

$$\overline{RE} = \overline{KE}$$

$$\overline{TR} = \overline{AK}$$

Prove: E is the midpoint of \overline{TA}

Statements	Reasons

Statements	Reasons

8) "In an isosceles triangle, if a point on the base is NOT the midpoint, then the segment from the vertex to that point does NOT bisect the vertex angle."

Statements	Reasons

$$\overline{AC} = \overline{AP}$$

$$\angle$$
PAM = \angle CAH

Prove: SA ___ HM

Statements	Reasons

10) Given: \overline{KS} bisects $\underline{/}BSE$

 \overline{AK} bisects \angle_BKE

Prove: KR bisects __BRE

Statements	Reasons
,	

SOLUTIONS

Given: Triangle ABC is isosceles BD and CD are angle bisectors

Prove: Triangle BDC is isosceles

Statements	Reasons
	1) Given
2) $\overline{AB} \cong \overline{AC}$	2) Definition of Isosceles
3) ∠ABC = ∠ACB	If congruent sides, then congruent angles (or, base angles of isos, are congruent)
4) BD and CD are angle bisectors	4) Given
5) \(\text{DBC} \) \(\text{DCB}	5) "Like Division Property" If congruent angles are bisected, then the halves are congruent
6) BD = CD	If congruent angles (in a triangle), then opposite sides congruent
7) △ BDC is isosceles	7) Definition of isosceles (A triangle with 2 or more congruent sides)

2) Prove a trapezoid inscribed in a circle is isosceles.

Statements	Reasons
1) Trapezoid ABCD	1) Given
2) AB CD	Definition of Trapezoid (bases are parallel)
3) Draw Diagonal AC	3) Given (definition of trapezoid)
4) ∠ACD ≅ ∠BAC	4) If parallel lines are cut by transversal, then alternate interior angles are congruent.
5) $\widehat{AD} = \widehat{BC}$	5) If inscribed angles are congruent, then the arcs are congruent
6) AD = BC	If arcs in a circle are congruent, then their chords are congruent
7) ABCD is isosceles	7) If legs/sides of a trapezoid are congruent, then the trapezoid is isosceles.

Prove: \triangle AFE is isosceles

SOLUTIONS

	Statements	Reasons
	$1) \overline{AB} = \overline{DE}$	1) Given
	2) BC = CD	2) Given
Detour	$3) \overline{AC} = \overline{EC}$	Addition Property (If congruent sides are added to congruent sides, then the sums are equal)
	4) \angle ACD = \angle ECB	4) Reflexive Property
	5) $\triangle ACD = \triangle ECB$	5) Side-Angle-Side (2, 4, 3)
\Rightarrow	6) <u>BEC</u> = <u>DAC</u>	CPCTC (Corresponding Parts of Congruent Triangles Congruent)
	7) \angle BFA = \angle DFE	7) Vertical angles congruent
	8) \triangle FAB = \triangle FED	8) Angle-Angle-Side (6, 7, 1)
	9) AF = EF	9) CPCTC
	10) AFE is isosceles	10) Definition of Isosceles

4) Given: \(\sum WNI = \sum ABL \)

D is the midpoint of \overline{BN}

 $\overline{\text{ID}} = \overline{\text{LD}}$

Prove: $\overline{WN} = \overline{AB}$

Statements Reasons

1) D is the midpoint of \overline{BN}

B

1) Given

 $2) \overline{DN} = \overline{DB}$

Definition of midpoint
 (midpoint divides segment into = parts)

(At least 2 congruent sides)

3) \angle NDI = \angle LDB

4) $\overline{ID} = \overline{LD}$

Detour

_

4) Given

5) \triangle NDI = \triangle BDL

5) Side-Angle-Side (2, 3, 4)

3) Vertical angles congruent

6) <u>/</u>DBL = <u>/</u>.DNI

6) CPCTC (corresponding parts of congruent triangles are congruent)

7) <u>/</u>DBA = __.DNW

7) Additional property

(If 2 congruent angles are added to

8) \triangle DBA = \triangle DNW

congruent angles, the sums are the same)
8) Angle-Side-Angle (3, 2, 7)

9) $\overline{WN} = \overline{AB}$

9) CPCTC

NOTE: there are other methods that could prove..

(i.e. proving $\triangle ABL = \triangle WNI$ would lead to answer)

Detour

Given: Rectangle RECT

Prove: RC and ET bisect each other (creating isosceles triangles)

an isosceles triangle...

"If rectangle, then diagonals create

- 1.	Rectangle RECT

∠T and ∠C are right angles

Statements

3. ∠T ≅ ∠C

4. $\overline{RT} \stackrel{d}{=} \overline{EC}$

5. $\overline{TC} = \overline{TC}$

6. \triangle RTC \cong \triangle ECT

7. <u>∕</u>TRM = ∠CEM

8. <u>/_RMT = /_EMC</u>

9. \triangle RMT = \triangle EMC

10. $\overline{EM} \stackrel{\sim}{=} \overline{RM}$

 $\overline{\text{TM}} \stackrel{\sim}{=} \overline{\text{CM}}$

Statements

11. \triangle RME and \triangle TMC are isosceles triangles

Reasons

1. Given

2. Definition of rectangle

3. All right angles are congruent

4. Definition of rectangle (opposite sides congruent)

5. Reflexive property

6. SAS (Side-Angle-Side) 4, 3, 5

7. CPCTC (Corresponding Parts of Congruent Triangles are Congruent)

8. Vertical angles congruent

9. AAS (Angle-Angle-Side) 7, 8, 4

10. CPCTC

11. Definition of isosceles triangle (2 or more congruent sides of a triangle are congruent)

6) Given:
$$\overline{SR} = \overline{SK}$$

$$\overline{RE} = \overline{KE}$$

$$\overline{TR} = \overline{AK}$$

Prove: E is the midpoint of \overline{TA}

1) $\overline{SR} = \overline{SK}$

2) $\overline{RE} = \overline{EK}$

Detour

3) $\overline{SE} = \overline{SE}$

4) \triangle SER = \triangle SEK

5) \angle TSE = \angle ASE

6) $\overline{TR} = \overline{AK}$

7) $\overline{ST} = \overline{SA}$

8) $\wedge TSE = \triangle ASE$

9) TE = AE

10) E is midpoint of TA

Reasons

1) Given 2) Given

3) Reflexive Property

4) Side-Side-Side (1, 2, 3)

5) CPCTC

6) Given

7) Subtraction Property (If congruent segments are subtracted from congruent segments, then the differences are the same)

8) Side-Angle-Side (7, 5, 3)

9) CPCTC

10) Definition of Midpoint (If point divides segment into congruent halves, then it is midpoint of segment)

7) "If a radius is NOT perpendicular to a chord, then the radius does NOT bisect chord."

Step 1: Sketch a diagram

Step 2: Design the proof

Given: Circle O

TO is NOT perpendicular to MP

Prove: LO does NOT bisect MP

Step 3: Use indirect proof to solve

Uses Equidistance Theorem Auxilary Lines

Indirect Proof

Statements	Reasons
1) Circle O	1) Given
2) TO NOT perpendicular to MP	2) Given
3) Draw radii OP and OM	3) Auxilary lines (line joins 2 points)
4) $\overline{OP} = \overline{OM}$	4) All radii congruent
5) TO bisects MP	5) Assume for contradiction
6) MD = PD 7) LO is perpendicular bisector of MP	6) Definition of bisector (Bisector divides segment into congruent halves)
disector of MP	Equidistance Theorem

Diagramless Indirect Proofs

However, statements 2) and 7) contradict each other!

8) "In an isosceles triangle, if a point on the base is NOT the midpoint, then the segment from the vertex to that point does NOT bisect the vertex angle."

Step 1: Sketch diagram by picking out key phrases...

Step 2: Write out "givens" using IF statements...
And, write "prove" using THEN statements...

Given: Isosceles Triangle ABC D is NOT a midpoint

Prove: AD is NOT an angle bisector

Statements	Reasons
1) ABC is isosceles	1) Given
$2) \overline{AB} = \overline{AC}$	Definition of Isosceles (2 or more congruent sides)
3) D is NOT a midpoint of \overline{BC}	3) Given
4) AD is angle bisector	4) Assume for contradiction
$5)\overline{AD} = \overline{AD}$	5) Reflexive Property
6) \triangle ABD = \triangle ACD	6) Side-Angle-Side (SAS) (2, 3, 4)
7) $\overline{\mathrm{BD}} = \overline{\mathrm{CD}}$	7) CPCTC (Corresponding parts of congruent triangles are congruent)
8) D is midpoint of BC	8) Definition of Midpoint (If point divides segment into congruent halves, then it is a midpoint)

However, statements 3) and 8) contradict each other!

Prove: SA ____ HM

C1	\sim	т 1	T	CT.	\sim	NTC1

Uses Detour and Right Angle Theorem

	Statements	Reasons
	1) S is midpoint of CP	1) Given
	$2) \overline{CS} = \overline{PS}$	2) Definition of Midpoint
	3) $\overline{AC} = \overline{AP}$	3) Given
Detour>	4) $\overline{SA} = \overline{SA}$	4) Reflexive Property
	5) \triangle CAS = \triangle PAS	5) Side-Side-Side (2, 3, 4)
	6) $\angle CAS = \angle PAS$	6) CPCTC
	7) \angle PAM = \angle CAH	7) Given
	8) \angle SAM = \angle SAH	8) Addition Property
	SAM and SAH are supplementary angles	9) Definition of Supplementary
	10) SAM and SAH are right angles	Right Angle Theorem If angles are congruent and then they are right angles
	11) SA <u> </u>	11) If right angles, then segmen perpendicular

10) Given: $\overline{\text{KS}}$ bisects \angle BSE $\overline{\text{AK}}$ bisects \angle BKE

Prove: KR bisects __BRE

detour

Statements	Reasons
1) KS bisects _BSE	1) Given
2) <u>/</u> BSK = <u>/</u> ESK	2) Definition of angle bisector
3) $\overline{KS} = \overline{KS}$	3) Reflexive Property
4) AK bisects BKE	4) Given
5) <u>/</u> AKB = <u>/</u> AKE	5) Definition of angle bisector
6) _AKB is supplementary to _BKS	6) Definition of Supplementary
AKE is supplementary toEKS	(Adjacent angles that form a straight angle are supplementary)
7) \angle BKS = \angle EKS	7) If 2 angles are congruent, then their supplements are congruent
8) \triangle BSK = \triangle ESK	8) Angle-Side-Angle (2, 3, 7)
9) BS = SE	9) CPCTC
10) RS = RS	10) Reflexive Property
11) \triangle SBR = \triangle SER	11) Side-Angle-Side (9, 2, 10)
12) \angle BRK = \angle ERK	12) CPCTC
13) KR bisects BRE	13) Definition of Angle Bisector

Thanks for visiting. Hope it helps!

If you have questions, suggestions, or requests, let us know.

Cheers

Also, at Mathplane Express for mobile and tablets at Mathplane.ORG