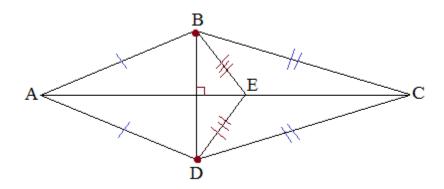
Geometry: Equidistance Theorem

Notes, Examples, and Practice Test (with Solutions)

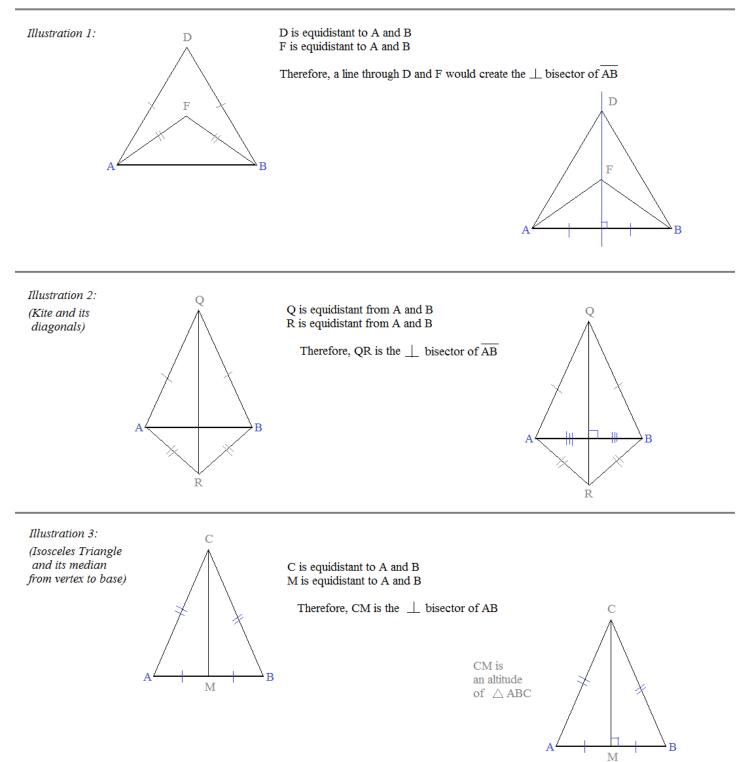


Topics include perpendicular bisector, 2-column proofs, kite, isosceles triangle, circles, congruent triangles, and more...

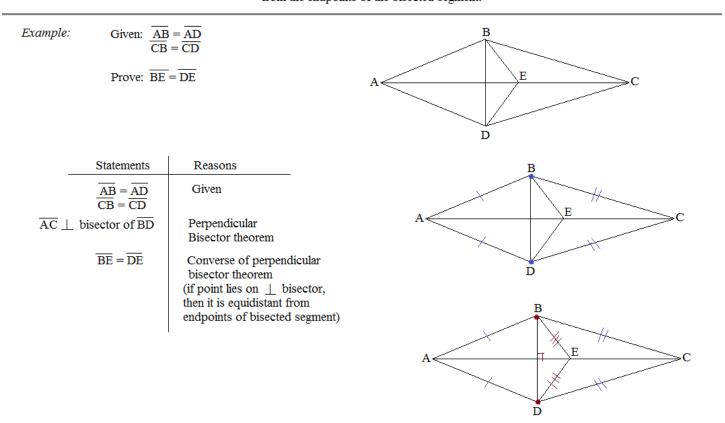
Mathplane.com

Equidistance Theorem

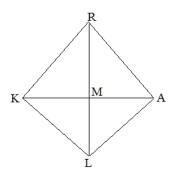
Definition: If two points are each equidistant from the endpoints of a segment, then the two points determine the perpendicular bisector of the segment.



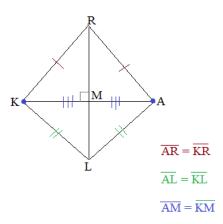
Converse of Perpendicular Bisector Theorem: If a point lies on the perpendicular bisector, then it is equidistant from the endpoints of the bisected segment.



Question: If \overline{RL} is the perpendicular bisector of \overline{KA} , which segments are congruent?



Answer: Bisected segment is \overline{KA} , so any pair of segments from endpoints A and K that meet on \overline{RL} would be congruent!!

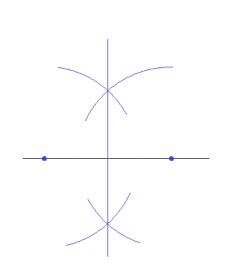


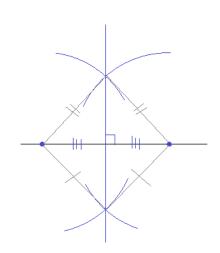
construct perpendicular bisector

1) pick endpoints on line segment ...

Equidistance Theorem: If two points are equidistant from the endpoints of a segment, then the two points determine the perpendicular bisector of the segment.

2) from each endpoint, using a compass, construct arcs above and below...





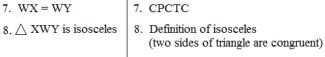
Observation: The arcs create 2 points that are equidistant from the endpoints...

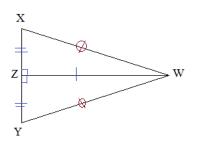
Equidistance Theorem: A Shortcut

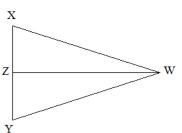
For many proofs, the equidistance theorem is a nice shortcut.

Example: Given: \overline{WZ} is perpendicular bisector of \overline{XY} Prove: A VWV in --- :---

Prove: $\triangle XW$	Y is an isosceles triangle	2
Approach 1:		
Statements	Reasons	
1. $\overline{\text{WZ}} \perp \text{bisector of } \overline{\text{XY}}$	1. Given	
2. \angle WZX and \angle WZY	2. Definition of perpendicular	
are right angles		
3. ∠WZX≌ ∠WZY	All right angles are congruent	
4. $\overline{WZ} = \overline{WZ}$	 Reflexive Property 	
5. $\overline{\mathrm{XZ}} \cong \overline{\mathrm{YZ}}$	5. Definition of Bisector	
6. $\triangle XZW \cong \triangle YZW$	6. Side-Angle-Side (4, 3, 5)	
7. $WX = WY$	7. CPCTC	

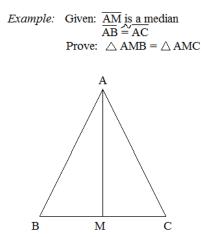






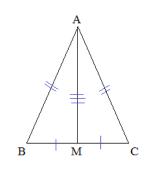
Statements	Reasons
1. WZ \perp bisector of XY	1. Given
2. WY ≝ WX	 If point lies on perpendicular bisector, then it is equidistant to endpoints of bisected segment. (converse) perpendicular bisector theorem
3. \triangle XWY is isosceles	 Definition of isosceles (two sides of triangle are congruent)
X Z Y	w

And, for other proofs, the Equidistance Theorem is an alternative.

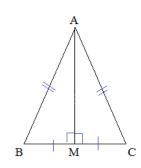


Approach 1:

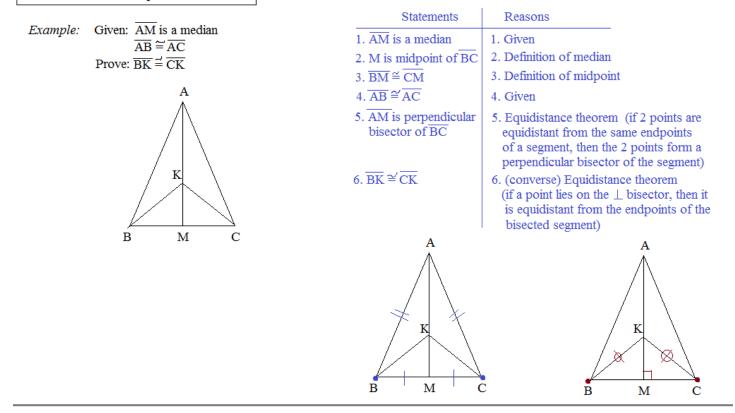
Statements	Reasons
1. $\overline{\text{AM}}$ is a median	1. Given
2. $\overline{BM} \cong \overline{CM}$	2. Definition of Median
	(and midpoint)
3. $\overline{AB} \stackrel{\sim}{=} \overline{AC}$	3. Given
4. $\overline{AM} \stackrel{\sim}{=} \overline{AM}$	 Reflexive property
5. \triangle AMB $\stackrel{\sim}{=} \triangle$ AMC	5. SSS (Side-Side-Side)
	(2, 3, 4)



Statements	Reasons
1. \overline{AM} is a median 2. $\overline{BM} \cong \overline{CM}$	 Given Definition of Median (and midpoint)
3. $\overline{AB} \stackrel{\sim}{=} \overline{AC}$	3. Given
4. $\overline{\text{AM}}$ is \perp bisector of BC	4. Equidistance theorem
5. AMB and AMC are right angles	5. Definition of perpendicular
6. $\angle AMB \stackrel{\leq}{=} \angle AMC$ 7. $\triangle AMB \stackrel{\leq}{=} \triangle AMC$	6. All right angles are congruent7. HL (Hypotenuse-Leg) (6, 3, 2)

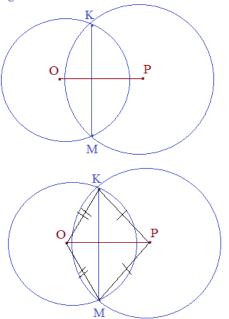


Proofs that utilize the equidistance theorem



Example: Given: 2 intersecting circles with a segment $\overline{\text{KM}}$ connecting the points <u>of</u> intersection. Prove: The segment joining the centers from each circle bisects $\overline{\text{KM}}$.

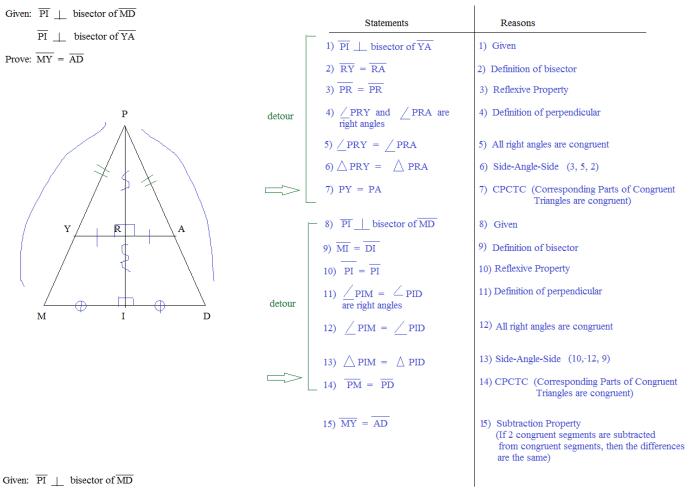
Draw a diagram:



2 column proof;

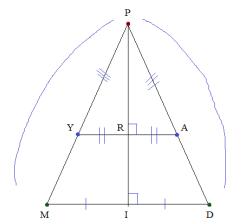
Statements	Reasons
1. Intersecting circles with centers O and P	1. Given (diagram)
2. Draw auxilary lines (radii) KP, PM, KO, MO	2. A line segment connects two points
3. $\overline{\text{KO}} = \overline{\text{MO}}$ 4. $\overline{\text{KP}} = \overline{\text{MP}}$	 All radii of a circle are congruent All radii of a circle are congruent
5. OP is perpendicular bisector of KM	 5. Equidistance Theorem (if 2 pts. are equidistant from endpoints of a segment, the 2 pts. form ⊥ bisector of segment)
6. OP bisects KM	6. def. of \perp bisector

Using Detours



PI _____ bisector of YA

Prove: $\overline{MY} = \overline{AD}$

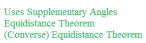


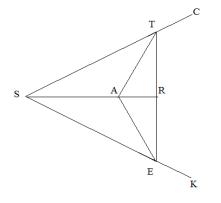
Using Equidistance Theorem ...

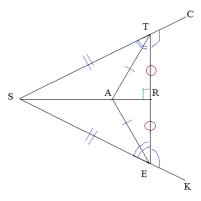
Statements	Reasons
1) $\overline{\text{PI}}$ \perp bisector of $\overline{\text{YA}}$	1) Given
2) $\overline{\mathrm{PY}} = \overline{\mathrm{PA}}$	2) Equidistance Theorem (Converse)(If a point lies on a perpendicular bisector, then it is equidistant to the endpoints of the segment)
3) <u>PI</u> bisector of MD	3) Given
4) $\overline{PM} = \overline{PD}$	4) Equidistance Theorem (Converse)
5) $\overline{\text{MY}} = \overline{\text{AD}}$	 Subtraction Property (If 2 congruent segments are subtracted from congruent segments, then the differences are the same)

 $\overline{TA} = \overline{EA}$

 $\overline{\text{TR}} = \overline{\text{ER}}$ Prove:





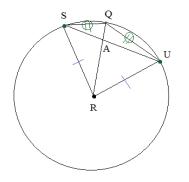


Statements	Reasons
1) \angle CTR = \angle KER	1) Given
2) STR and CTR are supplementary angles	2) Definition of Supplementary If (adjacent) angles form a straight angle, then angles are supplementar
KER and SER are supplementary angles	ange, men anges are supprementary
3) \angle SER = \angle STR	 If 2 angles are supplementary to congruent angles, then the 2 angles congruent
4) $\overline{\text{ST}} = \overline{\text{SE}}$	4) If congruent angles, then congruent sides (in triangle)
5) $\overline{\text{TA}} = \overline{\text{EA}}$	5) Given
6) SR is perpendicular bisector of TE	6) Equidistance Theorem (If 2 points are equidistant to endpoints of a segment, then the points determine perpendicular bisector of segment
7) $TR = ER$	 Fquidistance Theorem (Converse) If point lies on perpendicular bised then point is equidistant from endp of segment

Example: Given: Circle R

 $\overline{\text{QR}}$ is not a perpendicular bisector

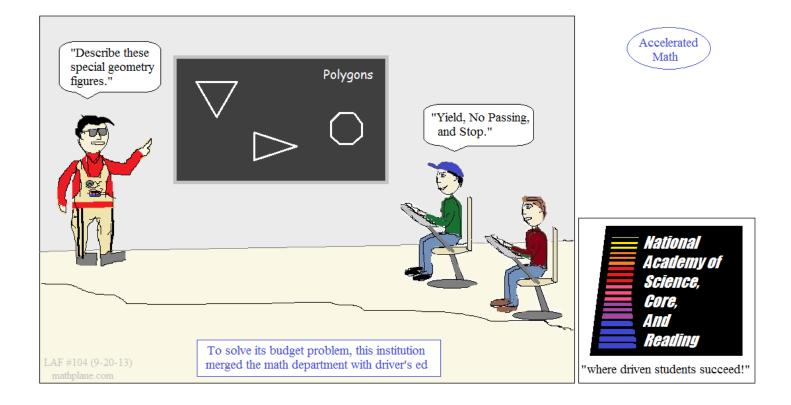
Prove: $\overline{SQ} \notin \overline{UQ}$



Uses Indirect Proof Method of Contradiction

Statements	Reasons
1) Circle R	1) Given
2) QR is not bisector	2) Given
3) $\overline{SQ} \stackrel{\sim}{=} \overline{UQ}$	3) Assume to reach a contradiction
4) $\overline{\text{RS}} \stackrel{\mathcal{N}}{=} \overline{\text{RU}}$	4) All radii are congruent
5) QR is perpendicular bisector of segment SU	 Equidistance Theorem (If 2 points are equidistant to endpoints of a segment, then the points form a perpendicul bisector of the segment)

However, statements 2) and 5) contradict each other... Proof by contradiction...



Practice Test: Proofs and Applications

Practice Exercise: Proofs utilizing the Equidistance Theorems

1) Given: \overline{BD} is the base of isosceles triangles ABD and CBD Prove: $\overline{BE} \cong \overline{ED}$

Prove:	$\overline{\text{BE}} \cong \overline{\text{ED}}$		B
	Statements	Reasons	. /\
			AE
			D
		•	

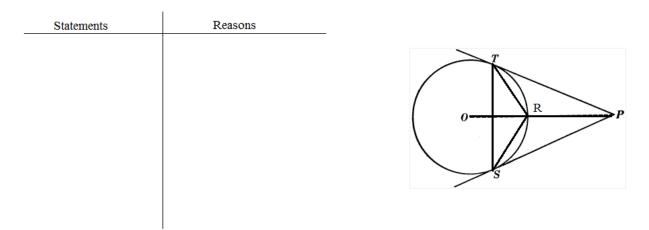
2) Prove the median of an equilateral triangle is also the altitude.

С

ents	s			Rea	sons	3		_

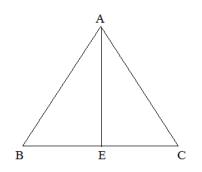
3) Given: $\overline{PT} \cong \overline{PS}$; Circle O

Prove: $\overline{\mathrm{TR}} \cong \overline{\mathrm{SR}}$



Equidistance Theorem Questions

4) Given: \triangle ABC is isosceles with $\overline{AC} \cong \overline{AB}$; E is midpoint of \overline{BC} Prove: $\overline{AE} \perp \overline{BC}$

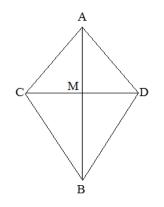


Write 2 proofs: 1 utilizing the Equidistance Theorem, and 1 *without* the Equistance Theorem.

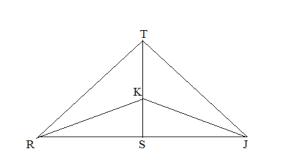
Statements	Reasons
Statements	Reasons

5) $\overline{\text{DC}}$ is the perpendicular bisector of $\overline{\text{AB}}$.

Which segments are congruent?

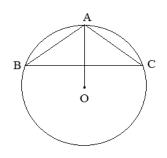


6) Given: \overline{TS} is a perpendicular bisector of \overline{RJ} Prove: $\triangle TRK = \triangle TJK$



Statements	Reasons

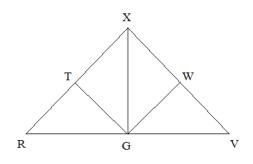
7) Given: Circle O; $\angle B \stackrel{\sim}{=} \angle C$ Prove: \overline{AO} bisects \overline{BC}



Statements	Reasons

8) Given: G is the midpoint of \overline{RV} $\overline{TG} \perp \overline{RX}$ and $\overline{WG} \perp \overline{VX}$ $\overline{\mathrm{TR}} \stackrel{\sim}{=} \overline{\mathrm{WV}}$

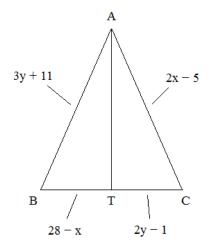
Prove: $XG \perp RV$



Statements	Reasons

Equidistance Theorem Questions

9) \overline{AT} is the perpendicular bisector of \overline{BC} . What is the perimeter of $\triangle ABC$?

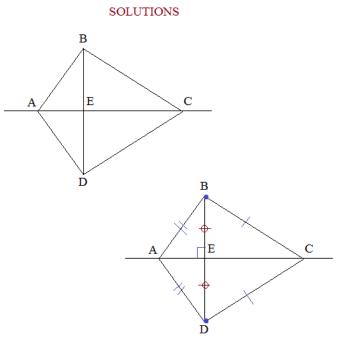


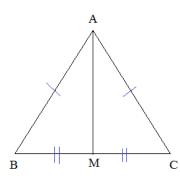
SOLUTIONS

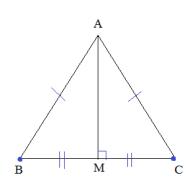
Practice Exercise: Proofs utilizing the Equidistance Theorems

1) Given: \overline{BD} is the base of isosceles triangles ABD and CBD Prove: $\overline{BE} \cong \overline{ED}$

Statements	Reasons
1. ABD and CBD are isosceles \triangle_s	1. Given
2. $\overline{BA} \cong \overline{DA}$ 3. $\overline{BC} \cong \overline{DC}$ 4. \overline{AC} is \perp bisector of \overline{BD}	 Definition of Isosceles Definition of Isosceles Equidistance Theorem
5. $\overline{\mathrm{BE}} \cong \overline{\mathrm{ED}}$	5. Definition of Bisector







B and C are the endpoints of the segment

equidistance pair 1: BA and CA equidistance pair 2: BM and CM

Therefore, AM is the perpendicular bisector

2) Prove the median of an equilateral triangle is also the altitude.

Statements	Reasons
1. 🛆 ABC is equilateral	1. Given (diagram)
2. $\overline{AB} \stackrel{\sim}{=} \overline{AC}$	2. Definition of equilateral (all sides congruent)
3. \overline{AM} is median	3. Given (diagram)
4. M bisects \overline{BC}	4. Definition of median (segment from vertex to midpoint of opposite side)
5. $\overline{BM} = \overline{MC}$	5. Definition of midpoint
6. AM is perpendicular bisector of BC	 Equidistant theorem (if 2 pts. are each equidistant to the endpoints of a segment, then the 2 pts. determine the perpendicular bisector of the segment)
7. \overline{AM} is altitude	7. Definition of altitude (segment from vertex that is perpendicular to opposite side)

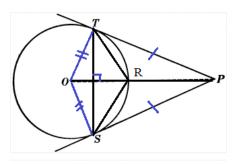
Practice Exercise: Proofs utilizing the Equidistance Theorems

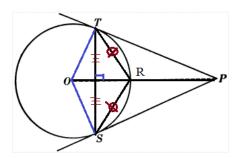
SOLUTIONS

3) Given: $\overline{PT} \cong \overline{PS}$; Circle O

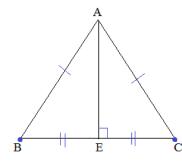
Prove: $\overline{\mathrm{TR}} \cong \overline{\mathrm{SR}}$

Statements	Reasons
1. $\overline{PT} = \overline{PS}$ 2. \overline{TO} and \overline{OS} are auxilary line segments 3. $\overline{TO} = \overline{OS}$ 4. \overline{PO} is \perp bisector of \overline{TS}	 Given Line segment connects two points All radii are congruent Equidistance Theorem
5. $\overline{\text{TR}} = \overline{\text{RS}}$	5. Converse of Equidistance Theorem (If a point lies on a perpendicular bisector, then it is equidistant from the endpoints of the bisected segment.)





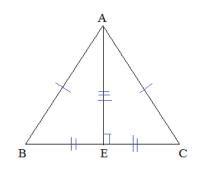
4) Given: \triangle ABC is isosceles with $\overline{AC} \stackrel{\checkmark}{=} \overline{AB}$; E is midpoint of \overline{BC} Prove: $\overline{AE} \perp \overline{BC}$



endpoints are B and C

A and E are each equidistant to the endpoints

Statements	Reasons
1. AC ≅ AB 2. E is midpoint 3. BE ≅ EC	 Given Given definition of midpoint
4. AE is ⊥ bisector of BC	4. Perpendicular Bisector Theorem
5. $\overline{\text{AE}} \perp \overline{\text{BC}}$	5. Def. of ⊥ bisector



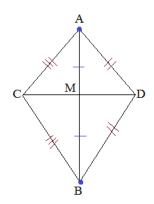
Statements	Reasons
1. $\overline{AC} \stackrel{\sim}{=} \overline{AB}$ 2. E is midpoint 3. $\overline{BE} \stackrel{\sim}{=} \overline{EC}$	 Given Given definition of midpoint
4. $\overline{AE} \cong \overline{AE}$ 5. $\triangle AEB = \triangle AEC$	 4. reflexive property 5. Side-Side-Side (4, 3, 1)
 ∠AEB = ∠AEC ∠AEB and ∠AEC are right angles 	6. CPCTC7. Right angle theorem (if 2 angles are both supplementary and congruent, then they are right)
8. AE_BC	8. Definition of perpendicular

Equidistance Theorem Questions

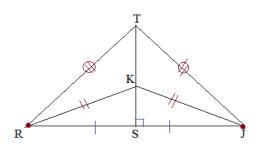
SOLUTIONS

5) $\overline{\text{DC}}$ is the perpendicular bisector of $\overline{\text{AB}}$.

Which segments are congruent?

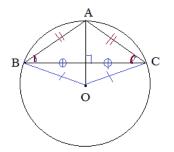


6) Given: \overline{TS} is a perpendicular bisector of \overline{RJ} Prove: $\triangle TRK = \triangle TJK$



7) Given: Circle O; $\angle B \stackrel{\sim}{=} \angle C$

Prove: \overline{AO} bisects \overline{BC}



Although \overline{AB} appears to bisect \overline{CD} ,
DC bisects AB !!

therefore, $\overline{\text{MB}} \cong \overline{\text{MA}}$

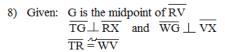
also, every point on perpendicular bisector is equidistant to endpoints A and B.

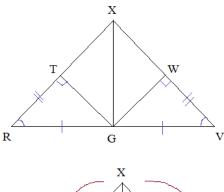
therefore,	$\overline{\operatorname{CB}} \stackrel{\scriptscriptstyle {\mathcal{L}}}{=} \overline{\operatorname{CA}}$	$\overline{\mathrm{DB}} \stackrel{\simeq}{=} \overline{\mathrm{DA}}$
------------	--	--

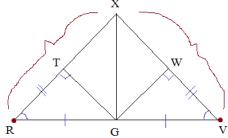
Statements	Reasons
1. $\overline{\text{TS}}$ is \perp bisector of $\overline{\text{RJ}}$	1. Given
2. $\frac{\overline{RK}}{RT} \stackrel{\simeq}{=} \frac{\overline{JK}}{JT}$	 Equidistance Theorem (If point lies on ⊥ bisector, then it is equidistant from endpoints of bisected segment)
3. TK = TK	3. Reflexive property
4. \triangle TRK = \triangle TJK	4. Side-Side-Side (SSS) (2, 2, 3)

Statements	Reasons
1. ∠B ≌ ∠C	1. Given
2. Circle with center O	2. Given (diagram)
3. Auxilary line segments OB and OC	3. line segment joins 2 points
4. $\overline{OB} \cong \overline{OC}$	4. All radii are congruent
5. $\overline{AB} \cong \overline{AC}$	5. If congruent angles, then congruent sides
6. $\overline{AO} \perp \text{bisector of } \overline{BC}$	6. Equidistance theorem
7. \overline{AO} bisects \overline{BC}	7. Definition of perpendicular bisector

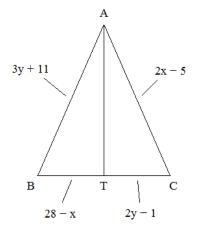
SOLUTIONS







9) AT is the perpendicular bisector of BC.
 What is the perimeter of △ABC ?



Statements	Reasons
1. G is midpt. of \overline{RV}	1. Given
2. $\overline{\text{RG}} = \overline{\text{VG}}$	2. Definition of midpoint
3. TG⊥RX	3. Given
WG⊥VX	
4. ∠GTR &∠GWV	4. Definition of perpendicular
are right angles	
5. $\angle \text{GTR} \cong \angle \text{GWV}$	5. All right angles are congruent
6. $\overline{\mathrm{TR}} \cong \overline{\mathrm{WV}}$	6. Given
7. $\triangle \text{GTR} = \triangle \text{GWV}$	7. Hypotenuse Leg (HL) (4, 2, 6)
8. $\angle R \stackrel{\sim}{=} \angle V$	8. CPCTC (corresponding parts of congruent triangles are congruent)
9. $\overline{\mathrm{RX}} = \overline{\mathrm{VX}}$	 If congruent angles, then congruent sides
10. $\overline{\text{XG}}$ \perp bisector $\overline{\text{RV}}$	10. Equidistance Theorem
11. $\overline{\mathrm{XG}} \perp \overline{\mathrm{RV}}$	11. Definition of perpendicular bisector

Since \overline{AT} is \bot bisector of \overline{BC} , $\overline{AC} \cong \overline{AB}$ and $\overline{TC} \cong \overline{TB}$

$$3y + 11 = 2x - 5$$

and
$$28 - x = 2y - 1$$

$$2x - 3y = 16$$

$$x + 2y = 29$$

$$-2x - 4y = -58$$

$$-7y = -42$$

$$y = 6$$

$$x + 2(6) = 29$$

$$x = 17$$

Since x = 17 and y = 6,

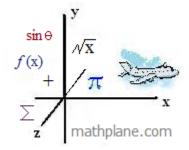
AB = 29 AC = 29 BT = 11 and TC = 11

Perimeter of triangle ABC = 80

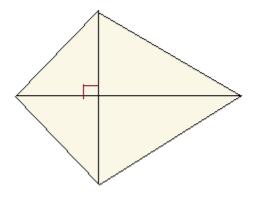
Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers, LAF



One more question: Prove the diagonals of a kite are perpendicular.

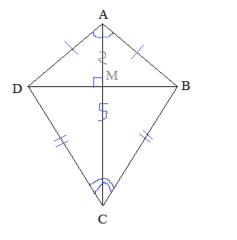


Prove the Diagonals of a Kite are Perpendicular



Statements	Reasons
1. Kite ABCD	1. Given (diagram)
2. $\overline{AB} \cong \overline{AD}$ $\overline{CB} \cong \overline{CD}$	 Definition of Kite (2 pairs of adjacent sides are congruent)
3. \overline{AC} is perpendicular bisector of \overline{DB}	 Equidistance Theorem (if 2 points are equidistant from the endpoints of a segment, then the 2 points determine the perpendicular bisector of the segment)
4) AC ⊥ DB	4. Definition of perpendicular bisector

An alternative:



Statements	Reasons
1. Kite ABCD	1. Given (diagram)
2. $\overline{AB} \cong \overline{AD}$ $\overline{CB} \cong \overline{CD}$	 Definition of Kite (2 pairs of adjacent sides are congruent)
3. $AC = AC$	3. Reflexive property
4. $\triangle DAC = \triangle BAC$	4. Side-Side-Side (SSS) (2, 2, 3)
5. $\angle DAC = \angle BAC$	5. CPCTC
6. $\overline{AM} \stackrel{\sim}{=} \overline{AM}$	6. Reflexive property
7. ∆AMD≅ ∆AMB	7. Side-Angle-Side (SAS) (2, 5, 6)
8. ∠AMD ≚ ∠AMB	8. CPCTC
9. ∠AMD & ∠AMB are right angles	 If angles are supplementary and congruent, then they are right angles
10. AC \perp DB	10. If right angles, then segments are perpendicular

Utilizing the Equidistance Theorem

