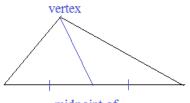


Perpendicular Bisectors Angle Bisectors

Includes definitions, illustrations, and notes... And, practice test (& Solutions)

www.mathplane.com

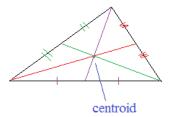
Triangle: Median


What is it?

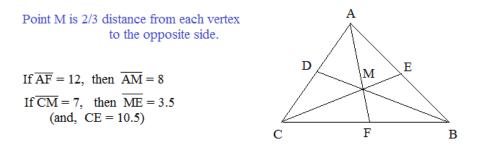
A line segment from a vertex to the midpoint of the opposite side.

How to draw it:

--- Start at a vertex


--- Draw a line to the midpoint of the opposite side

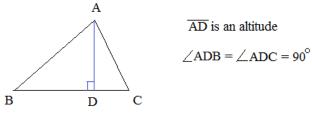
Notes:


- --- Every triangle has 3 medians
- --- The medians meet at a point inside the triangle (The "centroid")
- --- The median bisects the area of the triangle

"Centroid 2/3 Theorem":

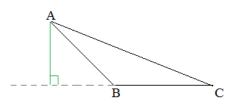
The centroid is the 'center of gravity'. If a triangle were made of solid material, then it would balance on the centroid!

Example: The centroid "divides triangle ABC into three balanced triangles: AMC, AMB, CMB"

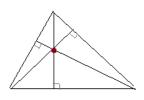

Triangle: Altitude

What is it?

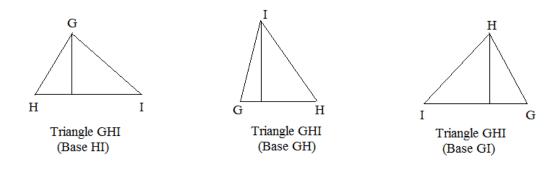
A perpendicular line segment that connects a vertex to the (opposite) base.


How to draw it:

- --- Start at a vertex
- --- Drop a line *straight* to the *opposite side* (base)


Notes:

- --- Every triangle has 3 altitudes
- --- An obtuse triangle has an altitude that connects the vertex to an 'imaginary base'
- --- The altitudes are concurrent (meet at) a common point (The "orthocenter")


Obtuse triangle ABC ∠ABC > 90

Altitude from A to base \overline{BC} lies outside the triangle

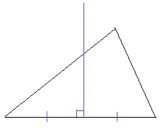
3 altitudes meet at the orthocenter

--- Altitude is the "height", depending on which side you consider the base

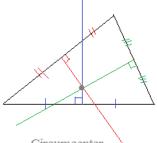
Triangle: Perpendicular Bisector

www.mathplane.com

What is it?


A line, segment, or ray that is *perpendicular* to a triangle side at the midpoint.

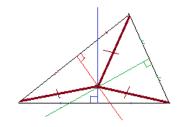
How to draw it:


- --- Start at a side
- --- Go to the midpoint
- --- Draw a perpendicular line (or segment or ray)

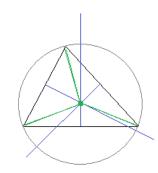
Notes:

- --- Every triangle has $3 \perp$ bisectors
- --- The 3 perpendicular bisectors are
- concurrent at a point in the middle (The "circumcenter")
- --- The circumcenter is equidistant from the vertices of the triangle

PerpendicularBisector90 degree angle2 congruent segments


Circumcenter

"Circumcenter and Circumscribed Circle":

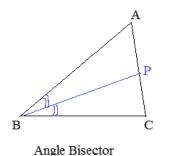

Construct 3 perpendicular bisectors

Connect the circumcenter to each vertex of the triangle (this creates 3 <u>congruent</u> segments)

**The circumcenter becomes the center of a circle. And, the 3 congruent segments are radii of the circle!!

3 congruent segments meet at the circumcenter

Triangle: Angle Bisector

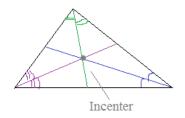

www.mathplane.com

What is it?

A line segment from the vertex that cuts that angle in half.

How to draw it:

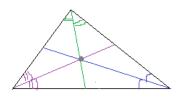
- --- Start at a vertex
- --- Bisect that angle
- --- Extend the line segment to the opposite side

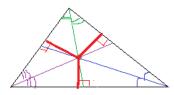


2 congruent angles

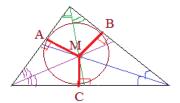
 $\angle CBP = \angle ABP = (1/2) \angle ABC$

Notes:


- --- Every triangle has 3 angle bisectors
- --- The three angle bisectors meet at a point inside the triangle (The "incenter")

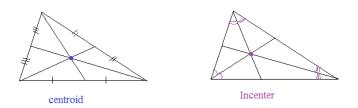

"Incenter and Inscribed Circle":

The incenter is equidistance from the 3 sides of the triangle.


**The incenter is the center of the inscribed circle (in the triangle)

angle bisectors establish the incenter.

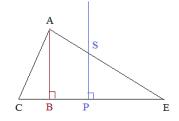
perpendicular line segments from sides to incenter (the segments are congruent!)


Inscribed circle $\overline{AM} = \overline{BM} = \overline{CM}$

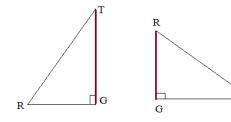
(can be verified by AAS)

Triangle Observations

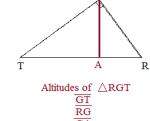
1) In most cases, angle bisectors and medians meet at different points. (i.e. the centroid and incenter are usually different points inside a triangle)


(Note the slight difference is location)

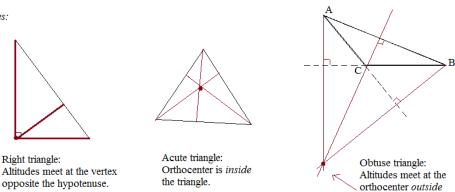
Т


- 2) Altitudes and Perpendiculars are different.
 - --- Altitudes 'start at' the vertex
 - --- Perpendicular Bisectors 'start at' the side

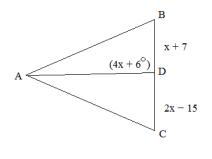
(AB is parallel to PS)



 $\frac{\text{Right Triangle RGT is rotated.}}{\text{RG and GT}}$ are the legs. RT is the hypotenuse.


4) Orthocenters may lie inside, outside, or on a triangle.

Examples:


G

the triangle!

Example:

If \overline{AD} is a median, what is the length of $\overline{BC?}$

If AD is a median, then
$$BD = CD$$
 $BD = CD = 29$

If \overline{AD} is an altitude, what is the length of \overline{BC} ?

x + 7 = 2x - 15

x = 22

If AD is an altitude, then ADB is a right angle...

$$4x + 6 = 90$$

$$x = 21$$
BD = x + 7 = 28
CD = 2x - 15 = 27
So, BC = 55

P Q R Points: (0, 0) (5, 12) (10, 0) Find centroid of PQR

We can see it's an isosceles triangle with base PR...

So, one of the medians is a segment from (5,12) to (5,0)

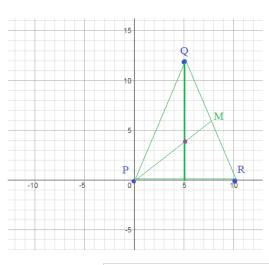
**since the centroid lies 2/3 of the way down the median, we know it's at (5, 4)

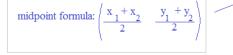
And, we can verify it... How?

Draw a second median from P to the midpoint of \overline{QR} ...

midpoint of \overline{QR} is (7.5, 6)

The equation of line PM is:

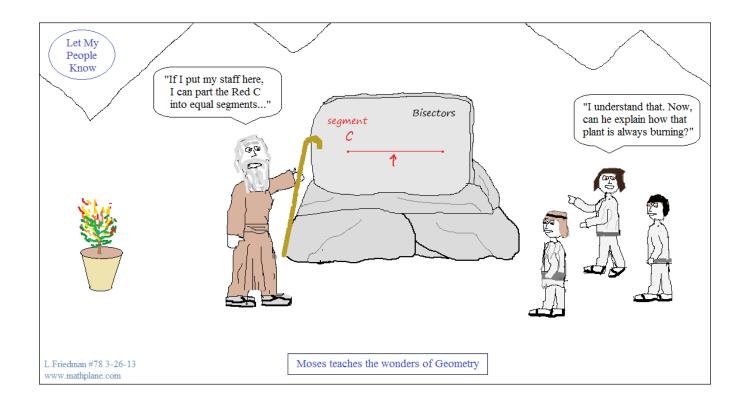

slope: 6/7.5 or 4/5... y-intercept: (0, 0)


y = (4/5)x

and, the intersection of the medians is

x = 5 and y = 4

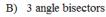
Example:



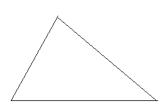
median of a triangle: a segment drawn from a vertex to the midpoint of the opposite side..

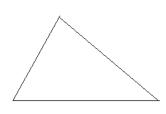
centroid: the intersection of the 3 medians...

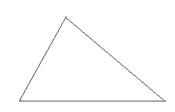
mathplane.com


PRACTICE EXERCISES

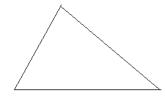
Triangle Test: Median, Altitude, Perpendicular Bisector, and Angle Bisector


I. Identify the parts of the triangle

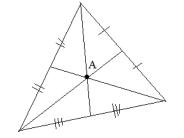

Draw the following:

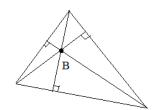


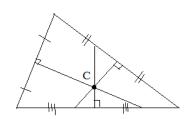
C) 3 perpendicular bisectors

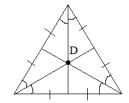


D) 3 Altitudes

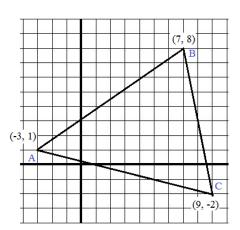





II. Definitions and Concepts


Match each of the following geometry terms with the appropriate triangle points:

- Incenter Centroid Orthocenter Circumcenter
- A)
- B)
- .
- C)
- D)



Triangle Test: Median, Altitude, Perpendicular Bisector, and Angle Bisector

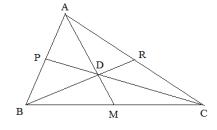
III. Geometry Applications

Find lines that include the following (from triangle ABC):

 The median from A to BC (write as a linear equation in *point-slope form*)

 The Altitude from B to AC (write as a linear equation in standard form)

 The Perpendicular Bisector of BC (write the linear equation slope intercept form)


IV: Miscellaneous

1) Given: $\triangle ABC$ with medians $\overline{AM} \quad \overline{BR} \quad \overline{PC}$ $\overline{DM} = 4 \text{ cm}$ area of $\triangle PBC = 52 \text{ sq. cm}$

What is the area of triangle ABC?

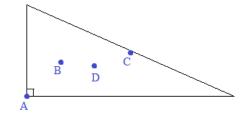
What is the area of triangle ABR?

What is the length of \overline{AM} ?

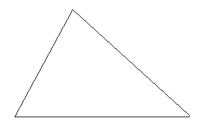
2) What type of triangle can have an identical median, perpendicular bisector, and altitude?

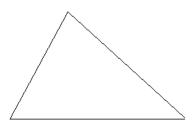
3) Draw a triangle where all 3 altitudes have identical lengths.

More Triangle Parts Questions

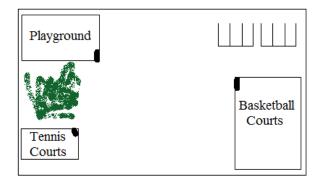

1) Where is the point of concurrency?

(Determine the point where the 3 lines intersect)

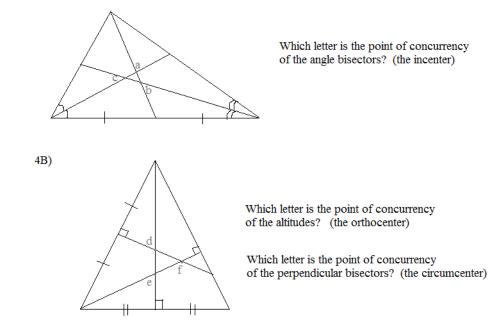

- 1. Perpendicular Bisectors
- 2. Medians


2) a) Inscribe a circle:

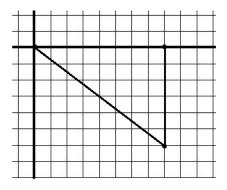
- 3. Altitudes _____
- 4. Angle Bisectors



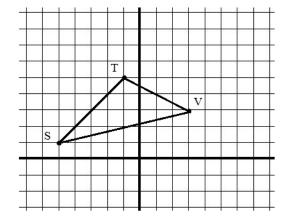
b) Circumscribe a circle:



3) The sketch is a diagram of a local park. (the entrances are marked). Where should they place a drinking fountain that is equal distance from the playground, tennis courts, and basketball courts?



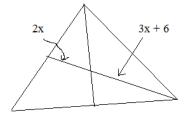
mathplane.com


mathplane.com

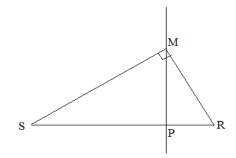
5) Find the *center of a circle* that circumscribes a triangle with vertices (0, 0) (8, 0) and (8, -6)

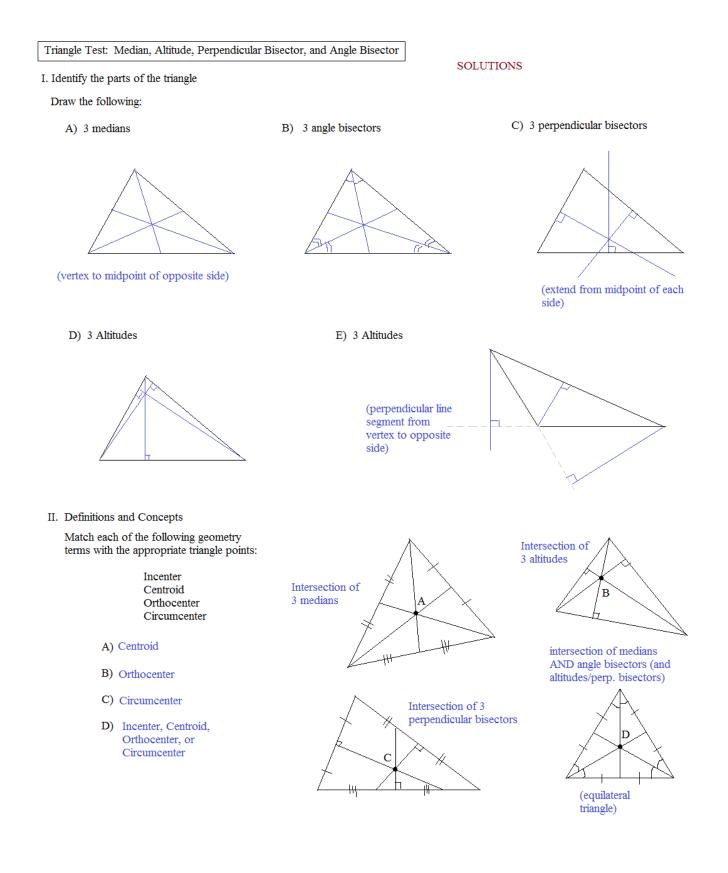
6) Find the coordinates of the *centroid* C in △ STV where S (-5, 1) T (-1, 5) V (3, 3)

4A)


7) \overline{AE} and \overline{CD} are medians.

 $\overline{AE} = 12$ What is \overline{ME} ? \overline{AM} ?


Triangle Test: Median, Altitude, Perpendicular Bisector and Angle Bisector


8) The diagram shows a triangle and its 2 medians. What is the length of the labeled median?

9) Given: Right triangle SMR with altitude $\overline{\rm MP}$ and horizontal hypotenuse $\overline{\rm SR}$

Find: Coordinate R

Triangle Test: Median, Altitude, Perpendicular Bisector, and Angle Bisector

www.mathplane.com

III. Geometry Applications

Find lines that include the following (from triangle ABC):

1) The median from A to \overline{BC}

(write as a linear equation in point-slope form)

To express the equation of a line, we need the slope and a point:

Point: A --
$$(-3, 1)$$

Slope: the slope going through A and the midpoint of \overline{BC}

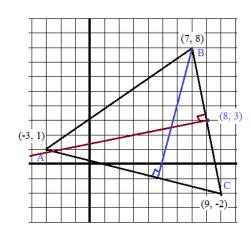
Midpoint M = $\left(\frac{7+9}{2}, \frac{8+(-2)}{2}\right)$ Slope of line g

$$\overline{C} y - 1 = \frac{2}{11}(x + 3) or y - 3 = \frac{2}{11}(x - 8)$$

Altitude line:

y - 8 = 4x - 284x - y = 20

linear equation of perpendicular bisector:

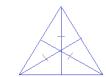

y - 3 = 1/5(x - 8)

y - 3 = 1/5x - 8/5y = 1/5x + 7/5

y - 8 = 4(x - 7)

SOLUTIONS

(7, 8)B (8, 3) Μ (-3, 1)(9. -2)



2) What type of triangle can have an identical median, perpendicular bisector, and altitude?

3) Draw a triangle where all 3 altitudes have identical lengths.

equilateral triangle

$$\left(\frac{1}{2}, \frac{1}{2}\right) = (8, 3)$$
Slope of line going through A and M: $\frac{3-1}{8-(-3)} = \frac{2}{11}$
2) The Altitude from B to \overline{AC} (write as a linear equation in *standard form*)

We need a point and the slope ...

Point: B (7, 8) Slope: *perpendicular* to \overline{AC}

slope of \overline{AC} is $\frac{1 - (-2)}{-3 - 9} = \frac{3}{-12}$

slope of line perpendicular to AC is 4 (opposite reciprocal)

3) The Perpendicular Bisector of \overline{BC} (write the linear equation slope intercept form)

Need the midpoint of \overline{BC} and the slope of a line perpendicular to BC

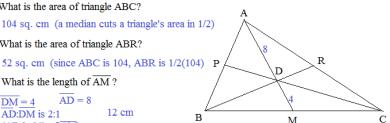
Midpoint of $\overline{BC} = (8, 3)$ (found in question 1))

slope of $\overline{BC} = \frac{8 - (-2)}{7 - 9} = -5$

slope of line perpendicular to $\overline{BC} = 1/5$

IV: Miscellaneous

1) Given: $\triangle ABC$ with medians $\overline{AM} \quad \overline{BR} \quad \overline{PC}$ $\overline{DM} = 4 \text{ cm}$ area of $\triangle PBC = 52$ sq. cm

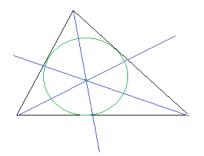

What is the area of triangle ABC?

What is the area of triangle ABR?

52 sq. cm (since ABC is 104, ABR is 1/2(104) P

What is the length of \overline{AM} ?

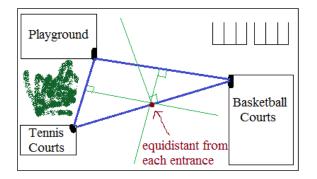
 $\overline{AD} = 8$ $\overline{DM} = 4$ AD:DM is 2:1 12 cm (AD is 2/3 of \overline{AM})

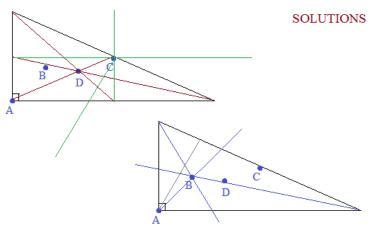


More Triangle Parts Questions....

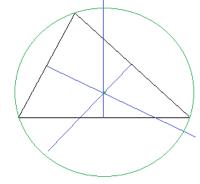
1) Where is the point of concurrency?

(Determine the point where the 3 lines intersect)

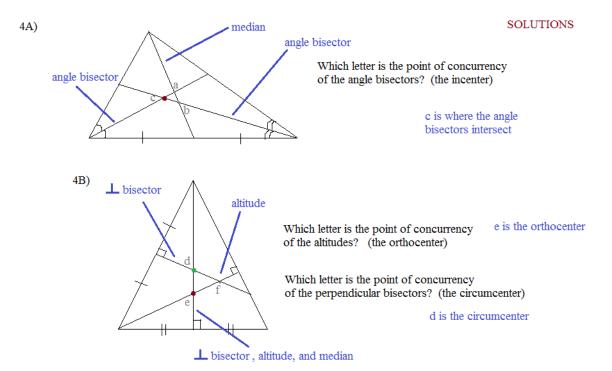

- 1. Perpendicular Bisectors _____
- 2. Medians D
- 3. Altitudes A
- 4. Angle Bisectors _B_
- 2) a) Inscribe a circle:



Draw angle bisectors. Then, inscribe the circle...


(the intersection is equidistant from each side of the triangle)

3) The sketch is a diagram of a local park. (the entrances are marked). Where should they place a drinking fountain that is equal distance from the playground, tennis courts, and basketball courts?


b) Circumscribe a circle:

Draw perpendicular bisectors. Then, circumscribe the circle...

> (the point of concurrency/intersection is the center of the circle. and the distance to each vertex is the radius)

Draw a triangle connecting the entrances. Then, construct the perpendicular bisectors. The intersection of the $3 \perp$ bisectors are equidistant from the 'vertices'.

5) Find the *center of a circle* that circumscribes a triangle with vertices (0, 0) (8, 0) and (8, -6)

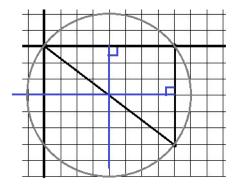
To find the circumcenter, identify where the perpendicular bisectors meet...

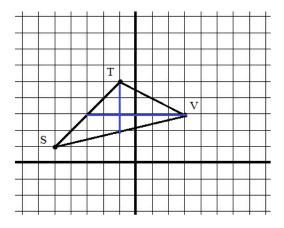
```
-- midpoint of (0, 0) and (8, 0) is (4, 0) and, since it is perpendicular to the side of the triangle, the segment is vertical....
```

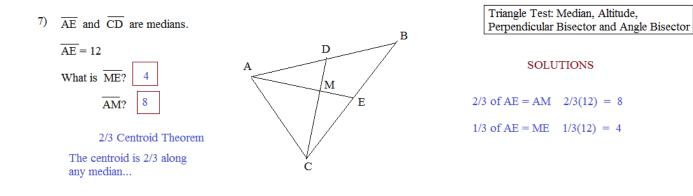
-- midpoint of (8, 0) and (8, -6) is (8, -3) and, this segment is horizontal...

their intersection is at (4,-3)....

6) Find the coordinates of the *centroid* C in △ STV where S (-5, 1) T (-1, 5) V (3, 3)


The centroid is where the medians intersect...


- -- median from vertex V to \overline{ST} is horizontal line
- -- median from vertex T to SV is vertical line


the medians are concurrent at (-1, 3)

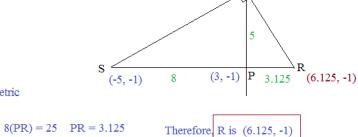
(the third median will pass through (-1, 3) also)

(**Note: each distance from vertex to centroid is 2/3 of the length of the median)

8) The diagram shows a triangle and its 2 medians.

What is the length of the labeled median?

$$3x + 6 = 2(2x)$$
 $x = 6$ length is 36...
(because the large portion is 2/3
the length of the median and the small portion is 1/3
the length of the median... i.e. the larger portion
is twice as large and the small)


9) Given: Right triangle SMR with altitude MP and horizontal hypotenuse SR

Find: Coordinate R

Since MP is an altitude, it is perpendicular to SR... If SR is horizontal, then MP is vertical and P is (3, -1)

Length of MP is 5 and SP is 8

"Altitude to Hypotenuse": MP is the geometric mean of PR and SP $\frac{8}{5} = \frac{5}{PR}$ 8(P

(3, 4) M

3x + 6

21

Thanks for downloading this geometry packet. (Hope it was useful!)

If you have questions, suggestions, or feedback, let us know.

Cheers,

Lance@mathplane.com

Mathplane is also at facebook, google+, pinterest, and teacherspayteachers